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Financial Firms’ Production
and Supply-Side Monetary
Aggregation Under Dynamic

Uncertainty

HIS PAPER IS FOCUSED ON the production
theory of the financial firm and supply-side
monetary aggregation in the framework of dy-
namics and risk. On the demand side, there has
been much progress in applying consumer de-
mand theory to the generation of exact mone-
tary aggregates and integrating them into
consumer demand system modeling~However,
on the supply-side, monetary services are
produced by financial firms through financial
intermediation, and, hence, exact supply-side
monetary aggregation must be based upon
financial firm output aggregation. Most of the
literature on exact aggregation theory is based
upon perfect certainty, which often is a reasona-
ble assumption regarding contemporaneous con-
sumer goods allocation decisions. Risk, however,
is an important consideration in modeling the
decisions of financial intermediaries. Further-
more, that risk not only applies to future prices

and interest rates, but also to contemporaneous
interest rates and thereby to the contemporane-
ous user costs of produced monetary services.
In this paper we derive a model of financial
firm behavior under dynamic risk, and we find
the exact monetary services output aggregate.
We estimate the Euler equations that comprise
the first-order conditions for optimal behavior
by financial firms.

Barnett (1978,1980) introduced economic
aggregation and index number theory to demand-
side monetary aggregation by applying Diewert’s
(1976) results on superlative index numbers. The
proposed Divisia index in Barnett’s work is an
element of Diewert’s superlative index number
class. Analogous to demand-side monetary aggre-
gation, Hancock (1985,1987), Barnett (1987), and
Barnett, Hinich and Weber (1986) have provided
results on supply-side monetary aggregation.2

They use neoclassical economic theory to model

1See Barnett, Fisher and Serletis (1992).
2Demand-side” and supply-side” imply respectively the
demand tor monetary services by consumers and manu-
facturing firms, and the production of monetary services by
financial intermediaries. Barnett (1987) has shown that con-
sumer’s demand for money and manufacturing firm’s de-
mand for money result in the identical aggregation
problem, at least in the perfect certainty case. However,
supply-side aggregation of produced monetary services

creates uniquely different aggregation problems resulting
from the existence of required reserves, which alter the
user cost of produced monetary services. For further
results regarding demand for monetary services by
manufacturing firms, see Robles (1993) and Barnett and
Vue (1991).
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financial firms’ production, so the existing eco-
nomic aggregation and index number theory are
directly applicable. In fact, throughout the litera-
ture on applying economic aggregation and in-
dex number theory to monetary aggregation,
researchers usually assume perfect certainty.
Exceptions are Barnett and Yue (1991) and Poter-
ba and Rotemberg (1987), who generalize to
demand-side exact monetary aggregation under
risk. Supply-side monetary aggregation under
risk has not previously been the subject of
research.

Introduction of dynamics and uncertainty into
supply-side monetary aggregation requires
extensions of earher research in this area. A
financial firm’s portfolio is generally diversified
across different investment instruments, and the
portfolio’s rate of return is unknown at the time
that the investment decision is made. Hence, the
assumption of perfect-certainty and single-period
modeling is not appropriate. Furthermore, super-
lative index numbers, such as the discrete time
Divisia index, have known tracking ability only
under the assumption of perfect certainty. In this
paper, we develop a dynamic approach to supply-
side monetary aggregation under uncertainty.

Historically, the literature on financial inter-
mediation has produced many diverse models,
often linked only weakly with neoclassical eco-
nomic theory and having various objectives. The
early view of the creation of money by financial
firms, primarily viewed to be banks, was the
deposit multiplier approach. By this theory in its
original form, the process of creating money is
simply determined by the reserve requirement
ratio. Another approach is based upon the
Miller-Modigliani theorem, which asserts the
irrelevance of financial firms to the real econo-
my in a setting of a perfect capital market. In
recent years, many economists have questioned
the appropriateness of either of those two very
different propositions and attempts have been
made to extend those theories by weakening the
underlying assumptions.

Another approach is based upon the capital-
asset pricing model (CAPM). Under the assump-
tions of that model, either the financial firm’s
portfolio rate of return is normally distributed
or investors have a quadratic utility function de-
fined over end-of-period wealth. Under either of

those assumptions, the financial firm’s optimal
portfolio behavior can be represented by max-
imizing utility over the portfolio’s expected rate
of return and variance. This approach has been
useful in modeling the optimal portfolio allocation
decision conditionally upon the real resource in-
puts, which are not explained endogenously.
Another important approach is represented by
Diamond and Dybvig (1983). They apply tradi-
tional consumption-production theory and use
an intertemporal model subject to privately ob-
served preference shocks to examine the equi-
librium between banks and depositors. The
studies in this tradition have been successful in
explaining bank runs. However, banks, serving
solely as a production technology to depositors,
play only a passive role in that approach.

Another approach is represented by Hancock
(1985, 1987), Barnett (1987), and Barnett, Hinich
and Weber (1986). They treat the financial inter-
mediary in the same manner as a conventional
production unit and use neoclassical firm theory
to model a financial intermediary’s production
of output services and employment of inputs
subject to the firm’s technological feasibility con-
straint.3 This approach fully models the role
played by financial firms as producers of mone-
tary services. Moreover, it provides the needed
tools to apply existing economic aggregation the-
ory to aggregation over financial firms’ output
monetary services, which comprise the econo-
my’s inside money. However, those studies have
not developed a dynamic model of financial
firms’ production under uncertainty. This paper
provides that difficult extension of financial firm
modeling and output aggregation under neoclas-
sical assumptions with dynamic risk.

With the theoretical model of a financial
firm’s monetary services production and the
derived exact theoretical output aggregate, we
estimate the model’s parameters and test for
weak separability of output services from factor
inputs. We then substitute the parameter esti-
mates into the weakly separable output aggrega-
tor function to generate the estimated exact
supply-side monetary aggregate.4 lb this end,
we develop a procedure for testing weak
separability and for estimating the parameters
of a flexible functional form specification of
bank technology. The estimation is accomplished

3The papers of Tobin (1961) and Brainard and Tobin (1963,
1968) were the first to argue forcefully for the use of micro-
economics and equilibrium theory in modeling the financial
firm.

4Diewert and Wales (1987) and Blackorby, Schworm and
Fisher (1986) have illustrated the difficulty of maintaining
flexibility, regularity and weak separability simultaneously.
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through Hansen and Singleton’s (1982) general-
ized method of moments approach to estimating
Euler equations.

Our empirical results are based upon com-
mercial banking data. Our evidence indicates
that banks’ outputs are weakly separable from
factor inputs in the transformation function.
Moreover, even under uncertainty, the Divisia in-
dex provides a better approximation to the
estimated theoretical aggregate than does the
simple-sum or CE index.~These findings support
the existence of a supply-side monetary ag-
gregate and the potential usefulness of the
Divisia index to aggregate over the weakly
separable monetary assets on the supply side of
money markets. The result is a measure of in-
side money, in the sense of monetary services
produced by private financial firms.

The paper proceeds as follows. In the next
section, we construct our theoretical model of
monetary service production by financial firms
under dynamic uncertainty The model reduces
to a dynamic stochastic choice problem, for
which we derive the Euler equations. In the
third section, we present our approach to flexi-
ble parametric specification, weak separability
testing and parameter estimation using Hansen
and Singleton’s (1982) generalized method of mo-
ments estimation. The fourth section formulates
the empirical application using banking industry
data. The fifth section contains the empirical
results, including parameter estimates, weak
separability test results, the estimated theoretical
aggregate, and the comparison among index
number approximations to the estimated exact
aggregate, where the index numbers considered
include the Divisia, simple-sum and CE indexes.
Section 6 brings together the demand side with
the supply side to investigate the implications of
our model in general equilibrium. Section 7 pro-
vides a graphical illustration of the errors-in-the-
variables problem produced by the use of the
simple-sum index as a measure of the monetary
service flow. The final section presents a few
concluding remarks.

THEORETICAL MODEL
In this section, we derive our theoretical model

of monetary services production by financial
firms under dynamic uncertainty Consider a
financial firm which issues its own liabilities and
reinvests the borrowed funds in primary finan-
cial markets. In this process, real resources such
as labor, materials and capital are used as fac-
tors of production in creating the services of
the produced liabilities. Those produced liabili-
ties are deposit accounts providing monetary
service combinations that would not have exist-
ed in the economy without the financial firm.
The liabilities of the financial firms include, for
example, demand deposits and passbook ac-
counts, and are assets to the depositors. The
value added through the creation of those assets
by a financial intermediary is that firm’s contri-
bution to the economy’s inside money services.
Without the existence of financial firms and the
accounts that they create, investors in money
markets would be limited to the use of primary
money-market securities as the short maturity
assets in their portfolios. While the produced
liabilities of financial firms may not appear to
be “outputs” to an accountant looking at the
firm’s balance sheet, the produced liabilities of
financial firms are the outputs of the firms’
production technologies.°

The financial firm’s profits are made from the
interest rate spread between the financial firm’s
financial assets (loans) and the firm’s produced
liabilities. That spread must exceed the real
resource costs, in order for the firm to profit
from its operation. Let Y, be the real balances of
the financial firm’s asset (loan) portfolio during
period t.

7 Let R, be the portfolio rate of return,
which is unknown at the beginning of each
period. Financial firms also hold excess reserves
in the form of cash, which has a nominal
return of zero. The real balance of cash holding
is C,. Let y~,be real balances in the firm’s ith
produced account type and h~be holding cost
per dollar for that liability, where i’~’1,-~,L

8The
amount of the jth real resource used is z~,and

5The formula for computing the Divisia index is in Barnett
(1980). Further details regarding the data sources used
with the index are in Thornton and Yue (1992), who also
provide instructions on downloading the data from the Fed-
eral Reserve Bank of St. Louis’ public electronic bulletin
board, called FRED. The formula for computing the CE
(‘currency equivalent”) index is in Rotemberg, Driscoll and
Poterba (1991).

°SeeBarnett (1987).7As used in this paper, portfolio is the sum of all
investments.

8The holding cost lift is defined as h1,=r~,÷R,kt.In this for-
mula, r~is the account’s net interest rate, which is defined
such that all the benefits (for example, service charges)
and costs (for example, deposit insurance) generated by
the borrowed funds have been factored into the interest
rate, and R,k1, is the implicit tax rate on the financial firm
from the existence of a reserve requirement on that ac-
count type. Required reserves are assumed to yield no
interest and hence, produce an opportunity cost to the
financial firm, since the firm otherwise could have invested
the required reserves at a positive rate of return.
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its price is wp, where j=1)..,J. Let P, be the
general price index, which is used to deflate
nominal to real units. All financial transactions
are contracted at the beginning of each period,
but interest is paid or received at the end of the
period. The cost of employing resource ~ is
paid at the start of the period.

The firm’s variable profit at the beginning of
period t in accordance with Hancock’s (1991,
equation 3.1) formula, is

(1) ii~, = (i+ii,~) Y,
1
P,,—Y,P,+C,,P,

1
--C~P,

+ 5 [y,,P,—(i+h,,)y,,,P,,] —~

i—i f—I

The first two terms in equation I represent the
net cash flow generated from rolling over the
loan portfolio during period t. The third and
fourth terms represent the change in the nomi-
nal value of excess reserves. The fifth term is
the net cash flow from issuing produced finan-
cial liabilities. The last term is total payments for
real resource inputs.

Portfolio Y, investment, however, is constrained
by total available funds, under the assumption
that all earnings are paid out as dividends. The
relationship is

(2) 1~P, ~ (i—k1,) y,,P,—C,P,— ~
1=l f—I

where k1, is the reserve requirement ratio for
the ith produced account type, with 0 k1, 1.

Rearranging, equation 2 can be seen to state

that total deposits ~ y,,P,, are allocated to

required reserves, excess reserves, investment in
loans, and payments for all real resource inputs.
Substituting 2 into I to eliminate 1’,, we obtain
the firm’s profit function subject to its balance
sheet constraint:

(3) ir, = ~ [E(i+R,_,) (1—k, ,_~)

/—i

— (i+h, ,~)]y1,3~,+k,~y11I~}

— ~ (1 +R,,) 145, ,1z1 ,~, -

f—I

We assume the financial firm chooses the level
of borrowed funds, excess reserves, and real
resource inputs to maximize its expected dis-
counted intertemporal utility of variable profits,

subject to the firm’s technology. We further as-
sume the financial firm’s intertemporal utility
function is additively separable. l’hen, the firm’s
maximization problem can be expressed by the
following dynamic choice problem:

(4) Max E,[>1 (_iu_) s—i U(ir)]
s-I

si. C)(y,, , .., y,~,C~,z Is~ , z,,) = 0
V S t,

where E, denotes expectation conditional on the
information known at time t, p is the subjective
rate of time preference and is assumed to be
constant, U is the utility function, ir, is the vari-
able profit at period s given by equation 3, and
C) is the firm’s transformation function, defining
the firm’s efficient production technology from

(5) 0(y1, ,..-, .v,~C5, z,,,, z,,) =0 V s t.

In accordance with the usual properties of a
neoclassical transformation function, C) is con-
vex in its arguments. In addition, the inputs are
distinguished from the outputs by the inequality
constraints:°

0, o Vj=1
aç 3%

and

0 V i=1 ,.., L

We also assume that C) is continuous and
second-order differentiable.

Substituting equation 3 into 4, we have

(8) Max E, ~ (——)‘‘U(~ {UI+R,,) (1-k,,,)

—(i+h1 ,_~y,-,,
1

P,
1

+k
1

y
11

P,}

—R
51

C,,P,,—~ (1+R,,) ,
1
z~, f_1)}

st. C)(y11,..., y,,, C~,z,
1
,..., z,,) = 0 V s t.

We now proceed to derive the Euler equations,
comprising the first-order conditions, for this
stochastic optimal control problem. We use
Bellman’s method. To do so, we must put the de-
cision into Bellman’s form, which requires iden-
tifying the state and control variables and
determining that the decision, stated in terms of
those variables, is in the form providing known
Euler equation structure.

9See Barnett (1987), Hall (1973) and Diewert (1973).
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We assume that the financial firm behaves
competitively so that the prices h,3, and
are taken as given by the firm. In addition, h,3,
and w~31are nonstochastic, since they are lagged
one period. From the same perfect competition
assumption, it follows that R,, k

15
, and i~are

random processes that are not controllable by
the firm. We select as state variables during
period 5: y,5, V i, z, V j, C1, H,, H, k13, h13,
V i ~ Vj, P

11
, and P

1
. We choose y1, V i and

z~Vj to be the control variables during period s.

Define w to be the vector of all of the state
variables, and define u to be the vector of all
control variables. Let A be the subset of state
variables defined by A3 = (Rd k~,h,

3
, V i, ~

V j,P
1
). We assume that A, follows a first-order

Markov process, with transitions governed by
the conditional distribution function F1A1 IA3).
Hence, the transition equation for state variables
(R

3
,, R3, k~,hjg_1 V i, ~ V j, P,_,, P) is im-

plicitly defined by F(A141JA5). The transition
equations for y,,, V i and z1,, V j are the trivial
identities

(9) y,~= y~,V

and

(10) z~.= V s.

The role played by these two equations in our
application of Bellman’s method follows from the
fact that each of the variables in equations 9
and 10 are included both among the control
and state variables, although with a time shift
distinguishing them in each of their roles?0
Hence, with the appropriate time shift in the
subscript, equations 9 and 10 can be viewed
as connecting together some of the control and
state variables. This connection accounts for the
function of those equations as transition equa-
tions. In particular, the left-hand sides can be
identified as next-period state variables, while
the right-hand sides can be identified as current-
period control variables. Hence, each of those
equations can be interpreted as defining the
evolution of a state variable conditionally on a
control variable. The transition equation for C3_1

is implicitly determined by the transformation
function 5.

The objective function in equation 8 is an in-
finite summation of discounted utilities of varia-
ble profits, starting at period t. Recalling the
time shifts appearing in our definition of the
state and control variables during period s, we
see that the discounted utility of variable profit
at period s depends only on that period’s state
variables and control variables. By examining the
transition equations, it is evident that each state
variable is a function of only previous controls
and not of previous values of the states. In par-
ticular, if we let g represent the vector of all
transition functions, we can rewrite the dynamic
decision problem as

Max E, {~ (—
1
—)~’t][ir(w,, ii)]]

~ 1+p

st. w34, = g(u3), s t.

This dynamic problem meets all of the condi-
tions to be a recursive problem in the Bellman
form. Using Bellman’s principle, we can derive
the first-order conditions for solving the dynam-
ic problem 8. ‘The Bellman recursive equation
is

v(w,) = max E,{L]lir,(w,, u,)I
Ut

+ ~ v(iv,41) J n~, st. tv,
4

, =

where v(w,) is the optimized value of the objec-
tive function.

The first-order conditions for the Bellman
equation are

Dir,(11) E, [— (ir,) — (w,, u,)
øir, 3u,

~ )IwI= °-

1+~2 3u, ‘ Sw, 141 I

The functional form of v is unknown. However,

since !~-=o we can use the Benveniste and
3w,

‘°Theuse of such trivial identities as transition equations
(laws of motion) in optimal control and dynamic program-
ming is not unusual. For example, it is common in optimal
growth models to define current capital stock to be a state
variable, while next period’s capital stock is defined to be a
control, with those state and control variables tied together
by a trivial identity. The nontrivial dynamics is found in the
objective function of such models. See, for example, Sar-
gent (1987, p. 24).
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Scheinkman equations to eliminate Th~Jw,41)?~
8w,

The general form of the Benveniste and

Scheinkman equations is

SirSi’ SU(w) - (ir) .L (w, U,)
Sw, Sir, ‘8w,

+ _LE,L~!~ Dv
(w,, u,) (it’,

4
)J-

I+p tSw, 8w,

Since = 0, the above equation implies
Sw

dir
(12) —~-~- (w,) = (ir) —i- (w,, U,).

Sw, 8 ‘ Sw,

Substituting 12 into 11, we get

Sir
(13) E, (ir,) -~ (it’,, U,)

Sir,

+ 18W SU(U) (÷,)1+i Sii, ‘ 8;

S-n-
(iv,~,,U,

91
) Fw,J = 0.

8 w

A very general specification of utility to
represent risk is the hyperbolic absolute risk
aversion (HARA) class, defined by

(14) U(ir,) = ~ (—p--— ir
p i-p

where p, h and d are three parameters to be
estimated. The foliowing useful utility functions
are fully nested special cases of the HARA
class:’~

a. risk neutrality: p=i, U(ir)=hii-,,

b. quadratic: p=2, U(ir,) = —(1/2) (—hr, + d)’,

c. negative exponential: p= —co and d=i,
U(ir,) = —

d. power: d=0 and p<i, U(-,r,) = (ir?/p),

e. logarithmic: d=p=o, U(ir,) = log ir,.

‘The general HARA specification for U(ir,) satis-

138

fies the relevent theoretical regularity conditions
when the domain of U(ir,) is constrained to

{ir,: ~ ir,+d>o} with h constrained to satisfy

h >0. When p >1, absolute risk aversion (Arrow-
Pratt) is decreasing, and when p >1, absolute
risk aversion is increasing. The power utility
function special case is very widely used. Since
that functional form exhibits constant relative
risk aversion (CRRA), the power utility function
often is called the CRRA or isoelastic case?3

Differentiating (14) with ir,, we get

(15) -~-~ = h (—p--— ir,+df’,
8; I-p

Using equations 13 and 15 along with the de-
fined state variables, control variables and tran-
sition equations, we obtain

(16) E,{i~k~(_!L 11-+w~’
1-p

and

+P,—1---- [(1+R) (1—k,,)—(i+h,)
1+p

SQ/Dy (JL. +d)}+ B, - rn ~~i-p

= 0 Vy,1, i=1,...,I

(17) E,[P1B,5 Q/Szk (_IL. ir,91+d)~
SQ/DC, i—p

— - ir,91+d)(I+R)~,

= 0 Vz,,,j=1,...,J.

Equations 16 and 17 are a system of I+i
nonlinear equations. Theoretically from 16 and
17 plus the transformation function 5, we
could solve for (Y11, ..., Y,,, C,, Z,,, ...,z,,).
However, in practice the solution could be
produced only numerically, since a closed
form algebraic solution rarely exists for such
Euler equations.

11See Sargent (1987) for an excellent presentation of dynam-
ic programming.

‘2See Ingersoll (1987, pp. 37-40). In case (d) below, imposing
the restriction d—O alone on equation 14 will not produce
the exact form provided for the power function. However,
the form acquired subject to that sole restriction is a posi-
tive affine transformation of the power function. Hence both
forms represent the same risk behavior.

13See, for example, Barnett and Yue (1991).
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Sir, 1911+12 dir, ‘~‘ 8z,, (w,91,

- SQ/8z SU

Sd/ac (w,, U) ~

Sir,
(it’,

91
, U,

91
)]] = 0

SC,,

“While the risk-neutral case is acquired directly by making
those substitutions in the original decision problem, the
resulting Euler equations are not acquired simply by mak-
ing those substitutions in the risk-averse Euler equations,
16 and 17. The reason is that a cancellation within the
Euler equations that is produced when the rate of discount
is the constant, p. does not apply when the rate of dis-
count becomes the variable, R,. In particular, after replac-
ing p with 1.Q and p with R,, it also is necessary to
multiply the two terms within equation 17 by 1I(li-R,) to get
the risk neutral case Euler equations. No such adjust-

ment is needed within equation 16, since no relevant fac-
tors cancelled out in the derivation of equation 16. This
observation also is relevant to the risk-neutral Euler equa-
tions 80 and 81 below.

lSSee, for example, Debreu (1959, ch. 7) and Duffie (1991,
section 6.3). Regarding the complications produced by in-
complete markets, see Magill and Shafer (1991, section 4).

and

SU S-zr(20) K, {— (ir,) —..—~ (w,, ti)
Sir, 871

In the following discussion, we extend the
dynamic decision 8 into the more general case
incorporating learning by doing technological
change. In the econometric literature on es-
timating returns to scale in manufacturing,
increasing returns to scale usually are found,
despite the fact that increasing returns to scale
violates the second-order conditions for profit
maximization. We believe that a likely source of
this paradox is the potential to confound techno~
logical change with returns to scale, when
learning by doing technological change exists
but is not incorporated within one’s model.

Let y, be the vector of y,, for all i and z, be
the vector of z,, for ali j. We then write the
maximization problem as

(18) Max E,[~ (_.L)~’U(ir)]
1+p

Q(y,, C,, z,, J’3~I) = 0 V

The appearance of y31 in the transformation
function represents learning by doing. Firm
technology improves through experience.

At the present stage of this research, we are
not using the learning by doing extension of our
model in our empirical work, so we only pro-
vide the Euler equations below, without supply-
ing the details of the derivation. Those Euler
equations under learning by doing are

(19) E,[ 42 (ii) -i: (w,, U)

1 SU Sir,+ -j—~-—[-a-- (iç
91

)
5~

1
-, (w,91, U,÷

1
)

i 8Q/Sy,~,
— i+p SQ/SC, ~t’I+if ~1+l

SU Sir,(ir,÷3) (w,92, ti,
93

)
Sir, SC,,

5~8Y~( )DU(
— SQ/SC, ii~, U, -

r (w U,÷)]] = 0

Vz,

Equations 19 and 20 are generalizations of
(16) and (17). If learning by doing is excluded by
imposing SQ/Sy, l=0, then (19) and (20) reduce
to (16) and (17), respectively. In the rest of the
current paper, we return to the special case of
no technological change.

A further nested special case is also interest-
ing. We acquire risk neutrality by setting p = 1.
As is conventional under risk neutrality dis-
counting is acquired objectively by replacing the
subjective rate of time discount, p, by RtY4 One
reason for interest in that special case is that, in
general equilibrium theory, the assumption of
complete contingent claims markets combined
with perfect competition can be shown, under
certain additional assumptions, to produce the
conclusion that firms wili be risk neutral, even
if their owners are risk-averse. The risk aversion
of the owners then is captured within the
contingent claims prices, which are taken as
given by the firms’ managers under perfect
competition?~

While this theoretical issue is interesting, we
do not consider it alone to be a convincing rea-
son to impose risk neutrality on the manage-
ment of an industry that behaves in a manner
exhibiting clear risk aversion. However, we are
interested in that fact that the Divisia index,
along with virtually all of the literature on index
number theory is produced under the assump-
tion of perfect certainty. This fact would suggest
that the tracking ability of such index numbers
may degrade as the level of risk aversion in-
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creases. Hence, we produce results both with
and without risk neutrality imposed, as a means
of exploring the extent to which the tracking
ability of index numbers is degraded in the risk
averse case relative to the risk-neutral case.

Under risk neturality our Euler equations

reduce to’°

(19’) E[P B,(1—k,) — r,, + ~ ~ SQ~’3y311+R, ‘ 1+R, SQ/ac,

and

= 0 V j’,,, i=1,...,J

-. IL 30/8 -(20 )L,[P, 1+R, DQ/3c, ~ = 0 V ¶j=1 ,...,.J.

The assumption of perfect competition is itself
sufficient for the existence of a representative
firm. See Debreau 1959, p. 45, result 1. Hence,
the theory acquired from our model can be
applied with data aggregated over banks?’

SIJrPLY~s:l1)EMONETARY
.A.GGREG.~-YFION.ANI.) A WE.A.K

SEPA.RABLEJTY ‘FEET

Having formulated our dynamic model of
financial firm production under uncertainty and
having derived the Euler equations, we can pro-
ceed to investigate the exact supply-side mone-
tary aggregates that are generated, if the firm’s
output monetary services are weakly separable
from inputs.

SuppIv~ShIe4gflf3pp~~flfl

Most money in modern economies is inside
money which is simultaneously an asset and a
liability of the private sector. Inside money pro-
vides net positive services to the economy as a
result of the value added that is created by the

financial intermediation that produces the inside
money In our model, the borrowed funds that
are outputs produced by financial intermediaries
are inside money Inside money may take vari-
ous forms such as demand deposits, interest-
bearing checking accounts, small time deposits,
and checkable money market deposit accounts.
The sum of the dollar value in such accounts
does not measure the services of inside money
any more than the sum of subway trains and
roller skates measures transportation services,
since the components of the aggregate are not
perfect substitutes. The aggregation-theoretic
exact quantity aggregate does, however, measure
the service flow?~

The procedures involved in identifying and
generating the exact quantity aggregates of
microeconomic theory are described in detail
by Barnett (1980). The approach necessarily
involves two steps: identification of the compo-
nents over which exact aggregation is admissible
and determination of the aggregator function de-
fined over those components. The first step de-
termines whether or not an exact aggregate
exists, and the second step creates the exact ag-
gregate that is consistent with microeconomic
theory. The second step cannot be applied
unless the first step succeeds in identifying a
component cluster that satisfies the existence
condition. That existence condition, which is the
basis for the first stage clustering of compo-
nents, is blockwise weak separability. In accor-
dance with the definition of weak separability, a
blocking of components is admissible if and only
if the goods in the block can be factored out
of the structure of an economy through a sub-
function. In other words, it must be possible to
formulate the economic structure in the form
of a composite function, with the goods in the
cluster being the sole variables entering into the
inner function of the structure. If that condition

leobset-ve that only one time subscript exists in the risk-
neutral Euler equations, so that the solution becomes stat-
ic. Once the nonlinear utility function has been removed
from the objective function, the terms with common time
subscripts can be grouped together. However, under risk
aversion, even under our assumption of intertemporal
strong separability, more than one time subscript exists wi-
thin the utility function for each time period, since both
current and lagged t appear as subscripts in equation 3
for each value of profit, ‘r,. Hence, the dynamics found wi-
thin the objective function of equation 4 cannot be re-
moved by regrouping terms.

“In fact, Debreu’s theorem can be used to aggregate over
all firms of all types in the economy to produce the ag-
gregated technology of the country. The representative firm
maximizes profits subject to that aggregated technology.
However, we use the theorem only to aggregate over the

firms in one industry. It should be observed that the ease
of aggregation over firms under perfect competition is in
marked contrast with the complexity of the theorems on
aggregating over consumers.

‘8See, for example, Blackorby, Schworm and Fisher (1986)
regarding the importance of using appropriately aggregated
output data from firms.
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is satisfied, an exact quantity aggregate exists
over the goods in the cluster and the aggregator
function that produces the exact aggregate over
those goods is the inner function within the
composite function.

Let y=(y1,,...,y,,)’ and x=(C,, z,,,...,z,,)’ where y
is the vector of the firm’s outputs and x is the
vector of the firm’s inputs. The transformation
function becomes

Q(yx)=0.

An exact supply-side aggregator exists over all of
the elements of y if and only if y is weakly
separable from x within the structure of Q.
Mathematically, that statement is equivalent to
the existence of two functions H and y0 such
that

Q(yx) =

where y0(y) is a convex function of y.’~In aggre-
gation theory y0(y) is called the output aggrega-
tor function. Furthermore, suppose that y0 (y) is
linearly homogeneous in y. Under this assump-
tion, if each y, grows at the same common rate,
the theoretical aggregate y

0
(y) will grow at that

rate. Clearly, without that condition, y0 (y) could
not serve as a reasonable aggregate.10

As shown by Leontief (1947a, 1947b), the
weak separability condition is equivalent to

(21) —~— (SQ(v~x)/SY1)= 0 for all k.
Sick 8Q(y,x)/Dy1

If a subset of the components of y were weakly
separable from all of the other variables in Q,
then an exact output aggregate would exist only
over the services of that subset of components
and not over the services of all outputs. If we
can test for the separability structure of the
transformation function and acquire the func-
tional form of y0(y), when y is weakly separable
from x, then we could estimate the parameters
of y0 (y) to acquire an econometric estimate of
the exact output aggregate.

Although aggregation theory can provide us
with the tools to estimate the exact aggregator
function, the resulting aggregate is specification
and estimator dependent. Alternatively the
literature on statistical index number theory
provides nonparametric approximations to aggre-
gator functions when the existence of the aggre-
gator can be demonstrated through a weak
separability test. Statistical index numbers pro-
vide only approximations to the theoretical ag.
gregate, however, and when uncertainty exists,
little is known about the tracking ability of
statistical index numbers as approximations to
the exact aggregates of microeconomic theory
In this paper we consider the Divisia, simple-
sum and CE indexes to explore their abil-
ities to track the econometrically estimated exact
output aggregate.21 We produce our econometric
estimate of the exact theoretical aggregate, for
comparison with the index numbers, by using
generalized method of moments (GMM) estima-
tion of the parameters of the Euler equations
under rational expectations. We do the GMM
estimation both under risk aversion and under
the imposition of risk neutrality to investigate
sensitivity of our conclusions to risk aversion.

Flexibility; Regularity and WEak
Separability

In empirical applications, there are two widely
used approaches to testing for the weak separa-
bility condition that is necessary for economic
aggregation: the nonparametric, nonstochastic
approach based upon revealed preference and
the statistical, parametric approach.22 Since we
are working from within a parametric specifica.
tion, the conventional parametric approach to
testing the hypothesis is to-be preferred. In fact,
we shall see that weak separability will be a
stridtiy nested null hypothesis within our para-
metric specification, and, hence, conventional
statistical testing is available immediately. In ad-
dition, the nonparametric approach, at its cur-
rent state of development, is nonstochastic and,
hence, has unknown power.

‘9See Barnett (1987).
20Without linear homogeneity of Ye. the exact aggregate

would become the distance function, rather than y0, and
would reduce to y0, only under linear homogeneity of y0.
We do not pursue that generalization in this study, but see
Barnett (1980) for details.

21The Divisia monetary aggregate index was introduced by
Barnett (1978, 1980). The simple-sum index is the tradition-
al monetary index acquired by simply adding up the com-

ponent quantities without weights. The CE index is the cur-
rency equivalence aggregate, originated by Rotemberg
(1991) and Rotemberg, Driscoll and Poterba (1991). For an
alternative interpretation of the CE index as an economic
monetary stock index connected with the Divisia service
flow, see Barnett (1991).

2lSee Swofford and Whitney (1987).
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Restrictive parametric specifications can bias
inferences. As a result, flexible functional forms
have been developed and are widely used in
current studies. A flexible functional form,
by definition, has enough free parameters to
approximate locally to the second-order any
arbitrary function.23 However, using flexible
functional forms creates a new problem. These
models, unlike earlier, more restrictive models,
may not globally satisfy the regularity conditions
of economic theory including the monotonicity
and curvature conditions. It would be desirable
to be able to impose global theoretical regularity
on these models, but most of the models in the
class of flexible functional forms lose their flexi-
bility property, when regularity is imposed.~~We
use a model that permits imposition of regulari-
ty without compromise of flexibility.

While flexibility and regularity are desirable in
any neoclassical empirical study, weak separabil-
ity in some blocking of the goods is also needed
to permit aggregation over the goods in that block,
We again are presented with the risk of losing
flexibility by imposing a restriction, and in fact
imposing weak separability on many flexible
functional forms greatly damages the specifica-
tions’ flexibility. For example, imposing weak
separability on the translog function does great
damage to its flexibility.~’Because of the difficul-
ties in imposing regularity and separability simul-
taneously without damage to flexibility parametric
tests of weak separability have been slow to ap-
pear and have been applied only to the static,
perfect certainty case in which duality theory is
available. In our case of dynamic uncertainty
very little duality theory is currently available.

In this section, we develop an approach that
permits testing and imposing blockwise weak
separability within a globally regular and locally
flexible transformation function that is arising
from a dynamic, stochastic choice problem. Our
approach uses Diewert and Wales’ (1991) sym-

metric generalized McFadden functional form to
specify the technology of the firm.~°In the dis-
cussion to follow, we first specify the model’s
form under the null hypothesis of weak separa-
bility in outputs. We then provide the more
general form of the model that remains valid
without the imposition of weak separability

Using the notations defined previously if y is
weakly separable from x, then

Q(jsx)=H(y0 (y),x).

We further assume that the transformation
function is linearly homogenous. Instead of
specifying the form of the full transformation
function Q directly and thereafter imposing
weak separability in y, we impose weak separa-
bility directly by specifying H(y0,x) and y,, (y)
separately. We acquire our weakly separable
form for Q by substituting y0 (y) into H(y0,x).
Since our specifications of y

0
(y) and H(y0,x) are

both flexible, it follows that our specification of
Q is flexible, subject to the separability
restriction.

We specify H to be the symmetric generalized
McFadden functional form

(22) H(y,,x) = aj0+a’x + j~’,,x’] A / a’x,

with a’x O, where a0, a’=(a an), and A
consist of parameters to be estimated. The
matrix A is (n+1)x(n+1) and symmetric. The
vector u’=(a,,..,, a,) is a fixed vector of non-
negatvie constants.2’ The division by a’x in 22
makes H linearly homogeneous in y0 and x-

lb conform with the partitioning of the vector
(y0,x’), we partition the matrix A as

A = CA,, AizI
A,, A

where A,, is a scalar, A,, is a ixn row vector,

‘3The flexibility here is sometimes called Diewert-flexible or
second-order flexible. See Diewert (1971). The flexibility ap-
plies only locally. However, Gallant (1981, 1982) introduced
the Fourier semi-nonparametric functional form, which can
provide global flexibility asymptotically. Barnett, Geweke
and Wolfe (1991) have developed the alternative seminon-
parametric asymptotically ideal model (AIM), which is
globally flexible asymptotically and has advantages in
terms of regularity.

245ee Gallant and Golub (1984), Lau (1978) and Diewert and
Wales (1927). However, if we can choose a model whose
regularity region contains the data, then the regularity will
be satisfied without imposing additional restrictions.

“See Blackorby, Primont and Russell (1977). Denny and
Fuss (1977) propose a partial solution to avoid destroying

flexibility. Their approach is to impose weak separability
conditions at a point. However, local weak separability is
not sufficient for the existence of a global aggregator
function.

‘6Diewert and Wales (1987) alternatively also developed the
generalized Barnett model. Although we have not used
that model in this study, the generalized Barnett model has
been applied to the analogous perfect-certainty case by
Barnett and Hahm (1994). Regarding the merits of the
generalized Barnett model in testing for weak separability,
also see Blackorby, Schworm and Fisher (1986).

“We use the term “fixed constants” to designate constants
that the researchers can select a priori and treat as cons-
tants during estimation.
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A,, is an oxi column vector, and A an nxn (29) yjy) = fry + ~ y’By/jJ’y,
symmetric matrix. Since A is symmetric, it fol-
lows that A,, =A’31. with the parameters satisfying

Let (y,~x*) 0be the point about which the (30) p’,~= 1,

functional form is locally flexible. That point is
selected by the researcher in advance, in a man- (31) y; = fryt,
ner analogous to the selection of the point
about which a ‘Taylor series is expanded. Since

and
the transformation function is assumed to be
linearly homogeneous, the specification in the
above form is not parsimonious, and hence, we (32) Byt = 0,,,,
further can restrict the model without losing the
local flexibility property.28 We therefore impose where b’=(b3~ibm)~and the mxm symmetric

matrix B consists of parameters to be estimated,
(23) a’xt = 1, (~‘ff~,’’I~m~is a fixed vector of nonnegative

constants, and y#o is the point at which local
(24) A,,y’ +A,,xt = 0, flexibility of equation 29 is maintained.
and Substituting 29 into 28, we get
(25) A,y,~+Axt = 0,,,

(33) Qlly,x) = H(y0(y),x)
where 0,, is an n-dimensional vector of zeros.
Under 23, 24 and 25, it can be verified that
the number of free parameters in equation 22 = a0 (h’y+~(fl’yY’y’By)+a’x
equals the minimum number of free parameters
needed to maintain flexibility. +1 (a’xY’x’Ax

2
Solving 24 and 25 for A,, and A,,, we have

(26) A, = _Axt/y,,~ ~(ya’xY’x~’Ax4h’y+1 (f3’yY’y’By)

and +1 ~

(27) A,, = x*~Axt/y:z. 2

Substituting 26 and 27 into 22 yields +1 (f3’yY~y’By)’,

(28) H(y,~x)= a,,y0+a’,x + ~ (a’,xi’x’Ax

which is a flexible functional form for Q(yx)
— (afx)~’x*~Ax(y,/y) and satisfies weak separability in outputs.

+ A (&xr’x*~Ax*(y,/y,~)’. Neoclassical curvature conditions require
2 0

1y,x) and y0(y) to be convex functions, and neo-
classical monotonicity requires SQ/dy 0 and

Diewert and Wales (1987) have proved that 50/5~<~ Diewert and Wales (1987), theorem
H(y,,,x), defined by equation 28, is flexible at (10) have shown that H(y0,x), defined by 28, and
(y,~xt). y0(y), defined by 29, are globally convex if and

In a similar way we define y,,(y) to be only if A and B are positive semidefinite.

“A flexible functional form is parsimonious if it has the mini-
mum number of parameters needed to maintain flexibility.
Diewert and Wales (1988) have acquired the minimum
number of parameters needed to provide a second-order
approximation to an arbitrary function. If a specification for
an arbitrary function with n variables is flexible, it must
have at least 1+n+n(n+l)/2 independent parameters. In our
case, the linear homogeneity imposes 1+n extra con-
straints on the first and second derivatives of H, so the
minimum number of parameters needed to acquire flexibili-
ty is reduced by 1+n.
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For Q(yx) to be convex, we further need

~ SH(y0x) ~

Sy,

If 34 holds, then Q(j~x)is globally convex in
~x), when H(y,,,x) is convex in (y,,,x) and y,,(y) is
convex in j’.”

If the unconstrained estimates of A and B are
not positive semidefinite symmetric matrices,
positive semidefiniteness can be imposed with-
out destroying flexibility by the substitution

(35) A = qq’

and

(36) B = uu~

where q is a lower triangular n x n matrix and u
is a lower triangular mxm matrix.’°In estima-
tion, we replace A and B by lower triangular
matrixes qq’ and uu~so that the function 33 is
globally convex if 34 is true.

Monotonicity restrictions are difficult to im-
pose globally However, we can impose local
monotonicity with simple restrictions. Differen-
tiating 33 with respect to (35x), we get

(37) ~ = a,~Eb+1 (2(fl’y)’Uy—Q3’yY’fly’By)]
Sy 2

and

— (y~atx)’x*~Ax[b.i.i(2(/3’y)’By

2

—(j3’y12/3y’By)] + ~

[b4 (2(fl’y)’By—(13’y)2/3y’By)]

(b’y4 (fJ’yY’y’By)

(38) 1

= a+~[2(a’x)’A,v—(a’xi’ax’Ax]
— [(y a!xi’Ax* — (y,~aFx)’yax* ‘Ax]

(fry+1- (fi’yY’y’By)

—~ (y~za1x)2y*2ax’Axt(b’y

(40) SQ
a

Applying the method of squaring technique,
we impose on 39 and 40 the monotonicity
conditions”

(41) SO(y*x*) = ;b O

Equation 41 assures that the monotonicity condi-
tions are satisfied locally at ~yt,xt).

We have shown that the functional form de-
fined by equation 33 and restricted to satisfy
equations 23, 30-32, 34-36 and 41 is flexible,
locally monotone, and globally convex, provided
that the assumed weakly separable structure is
true. Although we do not impose global ,nonoto-
nicity we do check and confirm that monotonic-
ity is satisfied at each observation within our
data. In the following discussion, we will define
a more general flexible functional form that
does not require weak separability.

The number of independent parameters in
equation 33 is

n(n+1) m(m-1)
(42) 1+n+

We know that the minimum number of param-
eters required to maintain flexibility for a linear-
ly homogeneous function with n+rn variables is

(n+m) (n+m-i-1)(43) 1+n+m+ ____________ — (1+n+m).

Subtracting 42 from 43, we get n(m—1), which is
the number of additional parameters that must
be introduced into equation 33 to acquire

“See Diewert and Wales (1991) for the proof.
“See Lau (1978) and Diewert and Wales (1987).
“See Lau (1978).

If we evaluate these derivatives at (y~xt), we
have

(39) SQ
—=a bSy 0

and

and ~?~c2(y*,x*)= a 0.
Sx
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a flexible functional form for a general transfor-
mation function. Let

(44) Q(y,x) = H~y,,(y),x)+c’y+y’cx/(y’y+A’x),

where y and A are vectots of nonnegative fixed
constants, the vector c’ = (c,, ... ,c,) and the m xn
matrix C are new parameters to be estimated,
and the division by y’y+A’x makes Q linearly
homogeneous. Because of the linear homogenei-
ty property, we have more free parameters than
needed for flexibility and, hence, we can im-
pose the following additional restrictions
without losing local flexibility:

(45) .y~y*+Af;~~*=1,

(46) ifyt=0,

where q and u are lower triangular matrices in-
troduced for reasons described above, and v is
an unrestricted mxn matrix. Then V20(y*,x*) is
a positive semidefinite symmetric matrix.32

Using 50-52, we rewrite 47, 48 and 32 as

(53) y*Iv=0~,

(54) v(q’x”) = 0,,,,

and

(55) u’yt = 0.

The function defined by 44 and satisfying
23, 30-31, 45-46 and 50-55 is a flexible function-
al form for a general transformation function at
(y~x*).In addition, local convexity is satisfied.

(47) y8’C=O’,,

and

We now turn to imposing local monotonicity
Differentiating 44 with respect to (y,x) and
evaluating at (y~xt),we have

(48) Cxt
= 0,,,,

where (y~x*)is the point at which local flexibil-
ity is maintained. Under equations 45-48, the
number of new free parameters added into 44
is exactly equal to n(m—1). Diewert and Wales
(1991) have proved that the function 44 is a
flexible functional form at (y~,xt)for a general
nonseparable transformation function.

Global convexity is difficult to impose in this
case. However, we can derive the restrictions for
local convexity at ly’~xt).Deriving the Hes-
sian matrix of 44 and evaluating at (y~~x*),we
have

(49) V’Q(y’~x~)=

a0B+bb’xt’Axt /V0t1 C_bx*~44y~
C_Ax*bP/y~ A

If VZQ(y*,x*) is positive semidefinite, then
Q~~x*)is convex at (y~x*).Let

(50) A = qqc

(51) C = vqc

and

(52) B = a;’[vv’+uu’],

(57) Sc)
— = a.
Sx

As above, we use the method of squaring to
impose nonnegativity on 56 and nonpositivity on
57. The estimated results then satisfy local
monotonicity.

Comparing 33 with 44, we see that weak
separability of outputs in 44 is equivalent to:

(58) 110x = Om and Vmx,,= °,,,x,

Note that under the null hypothesis, H0, equa-
tion 44 reduces to 33. Hence, y is weakly
separable from x if and only if H,, is true.

We have dcrived two flexible functional forms
with appropriate regularity properties. One
structure holds in the general case and the
other under the null hypothesis of weak sep-
arability. We now are prepared to test weak
separability and to estimate the parameters of
the transformation function. The basic tool is
Hansen and Singleton’s generalized method of
moments (GMM) estimator.

“See Lau (1978) and Diewert and Wales (1991).

(56) SQ

= a,,b + C

and
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Substituting the functional form given by
either 33 or 44 into the Euler equations 16 and
17, we obtain our structural model, which con-
sists of a system of integral equations. A closed
form solution to such Euler equations rarely ex-
ists. However, GMM permits estimating non-
linear rational expectations models defined in
terms of Euler equations. Hansen (1982) has
proved that under very weak conditions, the
GMM estimates are consistent and asymptotically
normally distributed.3’

In the GMM framework, there are two methods
of testing hypotheses.” The first approach ap-
plies Hansen’s asymptotic x’ statistic to test for
no overidentifying restrictions. We impose the
weak separability restrictions 58 on the flexible
functional form 44, estimate the restricted sys-
tem, and then run Hansen’s test for no overiden-
tifying restrictions. Since 44 reduces to 33 after
imposing the weak separability restrictions, we
can substitute equation 33 itself directly into the
Euler equations to impose the null for testing. If
the test of no overidentifying restrictions is re-
jected, then the restrictions imposed under the
null hypothesis are rejected, where in our case
the null is the weakly separable structure im-
posed on the transformation function.

‘rhe second approach to hypothesis testing
with GMM is based on the asymptotically nor-
mal distribution of the GMM parameter estima-
tors. Let U be the vector of parameters to be
estimated in equation 44. Then the GMM esti-
mator U has an asymptotically normal distribu-
tion with mean U and covariance matrix E.

Let -r be an [n(rn—1)lxl vector which contains
all n(m —1) independent parameters in the vector
C and the matrix v The hypothesis of weak
separability can be rewritten now as T=0 or
equivalently as a set of linear restrictions of the
form

(59) SU=-r=0,

where S is an [n(m—1)]x[(n+m+1)/21 matrix
whose elements are all zeros and ones.

From the known asymptotic distribution of 0,
we have

(60) V’~(50—56) ~

where ‘F is the number of observations. Under
the null hypothesis, H0: SO = 0, we have

+ ~ N(0,SES’J,

where + = SB. We obtain the following x’
statistic

(61) 0 = (½+)‘[S>S’f’ (‘j~+)

= Ti’Es~Si~’+ ~

Although E is unknown, we can replace it by a
consistent estimate without changing the asymp-
totic results. The test is one sided, with the null
of separability rejected if 0 is large.

EMPIRICAL APPLICATION

Barnett and Hahm (1994), and Hancock (1985,
1987, 1991) have analyzed monetary service
production by the banking industry in detail,
under the assumptions of perfect certainty and
neoclassical joint production. The balance sheet
of a bank consists of fund-providing functions
and fund-using functions. The fund-providing
functions include demand deposits, time
deposits and nondeposit funds.” The fund-using
functions include investment, real estate mort-
gage loans, installment loans, credit card loans
and industrial loans. In our theoretical model,
the sources of funds are the firm’s borrowed
funds, and the uses of funds are the firm’s port-
folio. ‘The total available funds on the balance
sheet are total assets minus premises and other
assets.

On the average, demand deposits and time
deposits account for over 85 percent of total
available funds. The equity capital included in
the non-deposit funds can be treated as a fixed
facto,- that does not enter the variable profit

“Hansen (1982), Hansen and Singleton (1982), and Newey
and West (1987) provide a detailed discussion of GMM
estimation.

‘4See Mackinlay and Richardson (1991).
“Demand deposits consist of checking accounts, official

checks, money orders, treasury tax accounts and loan ac-
counts. Time deposits consist of regular savings, money
market deposit accounts, other time accounts, retirement
accounts, and certificates of deposit under $100,000. Non-

deposit funds consist of equity capital, federal funds pur-
chased, borrowed money, capital notes and debentures,
time deposits of $100,000 and over, other money market
instruments, and other liabilities.
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function.” For these reasons, we only choose
demand deposits and time deposits as borrowed
funds in our model. ‘Turning to inputs, excess
reset-yes are total cash balances minus required
reserves. Other real resource inputs are labor,
materials and capital.’~Capital is treated as
fixed, and we include only variable factors in

the transformation function. An obvious direc-
tion for possible future extension of this
research would be the incorporation of some or
all capital as variable factors to produce infer-
ences applicable to a longer run perspective
than that implicit in our definition of variable
and fixed factors.

Using equations 16 and 17, the Euler equa-
tions are

(62) F,

(1—k,,) - (1+h,,)

SQ/Sn ii
~ SQ/SC’1 (1—~-ir,4,+d) ]=O,

(63) F,

- (1+h,,)

SQ/ST It
+R, ~] ~ }=o,

(64) F ‘[PR SQ/SE,
‘SQ/SC

and

(65)

—(1+R}w,,]

E, [~fl SQ/SM,
SQ/SC,

—(1+R)w,,] ~ +i)+d)~’}=0,

where B, is demand deposits, T, is time deposits,
L, is labor input, M, is materials input, and w,,
and iv,, are the prices of labor and materials
respectively.

Using the notations in section three, we can
write

y’=W,,T,) and x’=(C,,L,,M,).

If the weakly separable structure of the trans-
formation function is true, then equation 33 is
the transformation function. As discussed in sec-
tion three, the weak separability hypothesis can
be tested by applying Hansen’s x’ statistic.

‘Fhe derivatives of Q with respect to its argu-
ments are given by equations 37 and 38. The
fixed constants and the center of the local ap-
proximation need to be selected before estima-
tion. We choose

7 =1, yt’=U,l), and xt’=(l,t,l)

as the center of approximation. lb locate that
center within the interior of the observations,
we rescale the data about the midpoint obser-
vation

(66) ~=x~ / ?~ V i=1, 2, 3 and

;;~=y~/y V 1=1, 2,

where t~represents the midpoint observation.”
We correspondingly rescale each price by mul-
tiplication by the midpoint observation. That
rescaling of prices keeps dollar expenditures on
each good unaffected by the rescaling of its
quantity.

We select the fixed nonnegative constants a,
and /3, such that

(67) a,. =

and
I—’

(68) /3, = ~J/~[~

V 1=1, 2, 3

V i=1, 2,

where ~ and ‘ are the sample means of ~ and ~
respectively. Note that a, and /3, satisfy equations
23 and 30, as is tequired. With our data sam-

“See Barnett (1987). Equity capital includes preferred and
common stocks, surplus, undivided profits and reserves,
and valuation reserves.

~ includes managerial labor and nonmanagerial labor.
Materials include stationery, printing and supplies, tele-
phone, telegraph, postage, freight and delivery.

“The data point at which all quantities are set to unity can
be arbitrary.
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pIe, we find a,=0.33, a,=0.35, a,=0.32, (3,=0.58,
and /3, = 0.42.

Before estimating the independent parameters,
we need only impose the inequality restrictions.
Equation 31 implies b, = i—b,, and the monoto-
nicity condition (41) requires b, 0. Hence, it
also follows that b,. 1. Combining these condi-
tions, we can replace b, and b, by

(69) b, = sin’R) and b, = cos’(E,)

and estimate ~. Since Qlly,x)=0, we also normal-
ize a,,=1.

The monotonicity condition 41 requires
a, 0, which we impose by replacing a, by
—~ V 1=1,2,3, where a, V 1=1,2,3, are the new
parameters to be estimated. The convexity con-
ditions are imposed by replacing A and B by
the lower triangular matrices qq’ and uu’
respectively where q and u are

q,,0 0

ii = ci,, q,,, 0

‘b1 q,, q,,

and

LI = [ti~10
U,, U,,

Equation 32 implies

(70) [a,, o 1 lu,, uJ Ni = Io]
Eu,, u,,J to u,,J tiJ 101

Solving 70, we get u,, = —u,, and u,, = 0. Sub-
stituting them into equation 36, we have

(71) B = u:,[~ ~.

The above discussion identifies all the in-
dependent parameters to be estimated in the
specification of the transformation function.
They are F,, u,1, the lower triangular matrix q,
and the vector

The primary data source is the Federal Reserve’s
Functional Cost Analysis (FCA).” We got our
data from the Federal Reserve Bank of St. Louis.
The data used are the National Average FCA
Report, which contains annual data from t966
to 1990. Hence, there are a total of 25 observa-
tions in our annual data. Monthly data is not
available from the FCA. From the FCA, we ac-
quired banks’ portfolio rate of return, the net
interest rates on demand deposits and time
deposits, and the nominal quantity of demand
deposits, time deposits and cash balances.~°The
prices and quantities of labor and materials are
aggregate producer prices and quantity indexes
from the data in the FCA Report and the Survey
of Current Business.” The required reserve ratio
is from the Federal Reserve Bulletin. The implicit
price deflator is the implicit GNP deflator from
the Citibank data base. We deflate the nominal
dollar balances of all financial goods to convert
them into real balances.

EMPIRIC.AL.RESUUI/S

We use the GMM estimator in the TSP main-
frame version (version 4.2) to estimate our
model. In the disturbances we allow for condi-
tional heteroskedasticity and second-order
moving average serial correlation. Using the
spectral density kernels in TSP, our estimated
results are robust to heteroskedasticity, auto-
correlation and positive semidefinite weighting
matrix. To use the GMM method, instrumental
variables must be selected. We choose as instru-
ments the constant, the federal funds rate, the
discount window rate, the composite bond rate
(maturities over 10 years), the holding cost of
demand deposits and time deposits, the lagged
banks’ portfolio rate of return, excess cash
reserves, and capital. In estimation, we replace It
by It’ to impose nonnegativity of the resulting
It’. ‘that nonnegativity is needed for regularity
in the definition of the HARA class.

The GMM parameter estimates, subject to
imposition of weak separability of outputs from
inputs, are reported in ‘Table 1. All three para-
meters in the utility function are statistically

“The Functional Cost Analysis program is a cooperative
venture between the Federal Reserve Banks and the par-
ticipating banks. This program is designed to assist a par-
ticipating bank in increasing overall bank earnings as well
as to improve the operational efficiency of each bank
function.

‘°Thenet interest rate equals the interest paid minus service
charges earned plus FDIC insurance premiums paid.

4’See Barnett and Hahm (1994) for a detailed discussion
about the aggregation of labor and material.
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Table 1

GMM Estimates Using the HARA Utility Function with Weak
Separability in Outputs Imposed
Parameter Estimate Standard error f-Statistic

h 0.003 0.122 0.024
p -1 2330 25.625 0.09 1
d 0.001 0 044 0.012

1.090 0 165 6.602
58382 0.201 290459
0232 0418 0.555

q,. 0186 0.078 2372
q21 0418 0 106 3.931
q,1 0105 0.048 2178

0.477 0 101 4.725
0120 0 162 0.743
aiic 0.505 0.230
0323 0.035 9.117

a? 0.436 0058 7523
0.280 0.038 7.448

insignificant at the 5 percent level. As a result
of the very low precision of those three para-
meter estimates, it is clear that we have in-
troduced risk aversion in a manner incorporating
too many parameters for the available sample
size. Hence, we need to restrict HARA to one of
its less deeply parameterized special cases. As
observed in the second section, the HARA class
reduces to the popular power (CRRA isoelastic)
utility function. We now test whether that popu-
lar special case is accepted.

Equation (61) in the third section provides a
statistic to test that a set of parameters is jointly
equal to zeros. When the set of parameters in-
cludes only one element, the x’ test statistic 0,
given by equation (61), equals the number of ob-
servations multiplied by the square of the
t-statistic of that parameter. We calculated that
0=0.0033, while the critical value is 6.635 at
the one percent significance level. Hence, we
cannot reject d=0, and the power utility func-
tion is accepted. We reestimate the model using
that specification.

‘Tb impose the inequality restriction 0 < p < i,

which is sufficient for regularity of the power
utility function special case, we replace p by
sin’(~)and estimate ~. In addition, to prevent the
implausible possibility of a negative subjective
rate of time discount, we replace ~zby ji’ and
estimate ~L42 The estimated results, subject to
imposition of weak separability of outputs from
inputs, are reported in ‘Table 2.” All parameters
are significantly different from zero at the 5
percent level except for ~i, u,,, and q,,. Monoto-
nicity is necessarily satisfied at (y’, xt), since
local monotonicity was imposed at that point.
We use the estimated parameters to determine
whether monotonicity is satisfied elsewhere in
the sample. Substituting the estimated param-
eters into equations 37 and 38, we find that
SQ/Sy>0 and SQ/Sx<o everywhere in the
sample. Hence, no violations of monotonicity oc-
curred within the sample. Regarding curvature,
we have imposed global convexity on H(y0,x) and
y0(y). lb verify global convexity of Q(y,x), we
must check equation 34 at each data point.

42Actually only the upper bound imposed on p is required by
theory. Hence, if we had found that the lower bound im-
plied by our substitution was binding, we would have
switched to the more sophisticated substitution of 2—cosh
@) in place of p. But in practice our estimate of p was
strictly positive, so we did not have to resort to the in-
troduction of hyperbolic functions. Furthermore, our imposi-
tion of nonnegativity on ~, was equally as harmless, since
no corner solutions were acquired on that inequality res-
triction either. In fact, in the HARA case, we did not im-
pose nonnegativity on ,~at all, since we got nonnegativity

from our estimates without the need to impose it, and in
retrospect it is evident that we could have done the same
in the power utility case.

“The instrumental variables are the constant, the federal
funds rate, the discount window rate, the composite bond
rate (over 10 years), the three-month T-bill rate, the yields
on demand deposits and time deposits, the lagged bank’s
portfolio rate of return, and capital.
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Table 2
GMM Estimates Using the Power Utility Function with Weak
Separability in Outputs Imposed
Parameter Estimate Standard error f-Statistic

—524.629 9.410 —55.754
ji 0351 0187 1877

60692 0.019 3122.720
u1 0171 0.283 0.605

0.240 0.050 4.821
0.461 0.077 5.980
0.103 0.016 5.908

q22 0418 0.047 8.958
0093 0029 3147

—0.025 0412 —0.062
a 0.330 0031 10.762

0482 0045 10.607
0.217 0020 10.836

Differentiating H(y,,y) with respect to y0, we get

(72) OH(y~x)= a
0

_(atx)’y*T Ax/y

+(a~xY’x*/Ax*~v/w*2

where j’
0

is given by equation 29. Substituting
the estimated parameters into equation 72, we
find that QH(y,,x)I&y,>o at every data point.
Convexity of C) is satisfied throughout the
sample.

The weak separability hypothesis is tested by
using Hansen’s x’ test for no overidentifying
restrictions. His test statistic is

CD =

where T is the number of observations, Q is the
value of the objective function, e is the number
of orthogonal conditions, and f is the number of
parameters estimated.’~The calculated statistic
is 27.6, while the critical value is 41.64 at the 1
percent significance level. We cannot reject the
weak separability hypothesis. Hence, the exis-
tence of a theoretical monetary aggregate over
the outputs produced by banks is accepted.

Substituting the parameter estimate of t~.from
‘Table 2 into equation 69, we obtain b, = 0.76
and b, = 0.24. The estimated theoretical ag-
gregate then is acquired by substituting the esti-

mated parameters and fixed constants into equa-
tion 29 to get

1 i.17’W —T)’(74) y0(D,,T,)=0.76D,+0.24T,-i-— I ‘

2 t.58D,+o.42T,

It is important to recognize that this aggregator
function should not be used for forecasting or
simulation outside the region of the data, and
hence its usefulness is limited to research within
the sample. While we have confirmed monoto-
nicity within the region of the data, this aggre-
gator function is not globally regular for all
possible nonnegative values of the variables out-
side that region.

Having our econometrically estimated theoreti-
cal supply-side monetary aggregate, we now pro-
ceed to investigate whether any of the well
known nonparametric statistical index numbers
can track the estimated exact aggregate ade-
quately By converting from ~ back to p and
then computing the degree of relative risk aver-
sion, 1— p, we find that the degree of relative
risk aversion is t— .07=93. Since risk neutrality
occurs only for zero values of relative risk aver-
sion, we do not have risk neutrality But there is
no currently available theory regarding the
tracking ability of nonparametric statistical in-
dex numbers when risk aversion exists. Hence,
our only method of investigating the tracking

“The value of the objective function is defined as
Q = g,(9)’W,g,(’6), where g,(6) is the sample mean of the
moment conditions and WN is the weighting matrix that
defines the metric in making gN (8) close to zero in the
GMM estimation procedure.
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ability of the more easily computed nonparamet-
nc statistical indexes is to estimate the exact in-
dex econometrically as we just have done, and
compare its behavior with that of the statistical
index numbers.

In this paper, we compare the estimated theo-
retical aggregate with the Divisia, simple-sum
and CE indexes. Rotemberg, Driscoll and Poterba
(1991) have found that the growth rate of the
CE index is very volatile with monthly data.
Hence, they have proposed (see their footnote
11) a method of smoothing that index’s growth
rates by replacing the index’s weights by 13-
month, centered moving averages. Since we are
using annual data, there already is a form of
smoothing implicit in the data construction.
Nevertheless, in addition to computing the annu-
al contemporaneous CE index, we compute the
smoothed index in accordance with the method
selected by Rotemberg, Driscoll and Poterba.

lb parallel the 13-month centered moving-
average smoothing as closely as possible with
annual data, we use a three-year centered mov-
ing average. In a sense, our results with uns-
moothed annual data slightly undersmooths
relative to Rotemberg, Driscoll and Poterba’s
method, while the three-year centered moving
average oversmooths relative to Rotemberg, Dris-
coil and Poterba’s method. Nevertheless, as we
shall see, the CE index’s growth rate remains too
volatile. A centered moving average is not de-
fined at the start and end of a sample. Hence, a
special method is needed to phase in the cen-
tered moving average at the start of the sample
and phase it out at the end of the period. For
that purpose, we use the procedure advocated
by Rotemberg, Driscoil and Poterba. Figure 1
contains plots of the levels of all those ag-
gregates. Figure 2 contains plots of their growth
rates. We also separately plot the growth rate of
each of the four statistical index numbers (sim-
ple sum, Divisia, unsmoothed CE and smoothed
CE), with the growth rate of the estimated theo-
retical path superimposed. These plots are given
in Figures 3, 4, 5 and 6.

While no econometric estimation is needed to
compute the Divisia index, it is important on the
supply side to incorporate the required reserves
implicit tax into the user cost formula, when
computing the Divisia output index. The user-
cost formula is needed to compute the prices of
monetary services, since the Divisia quantity in-
dex is a function of prices as well as quantities.
On that subject, also see Barnett and Hahm

(1994), Barnett, Hinich and Weber (1986), Han-
cock (1985, 1987, 1991) and Barnett (1987), who
derive and supply the user cost of supplied
monetary services, when required reserves yield
no interest. The resulting real user-cost price
for account type i is

(1—k.) H —r.

1+R,

k.B
(76) = 0~,—

1+11,

where r, is the own rate of return defined in
footnote 8, and where

=

(77) °~ 1 + B,

The nominal user cost is P, 0~.The second
term on the right-hand side of equation 76 is
the discounted implicit tax on banks resulting
from the nonpayment of interest on required
reserves. Equation 77 is the same form as the
user-cost price paid on the demand side by
depositors, where B, is the benchmark yield on
a pure investment asset producing no services
other than its own yield, so that equation 77 is
the discounted foregone interest given up by the
depositor in return for the services provided by
asset type i.

Clearly the Divisia index tracks the theoretical
aggregate more accurately than any of the other
two indexes. The smoothed and unsmoothed CE
index’s level paths are almost identical to each
other, as shown in Figure 1, despite the im-
provement in the performance of the CE index’s
growth rate plot after smoothing. Before 1972,
the Divisia and estimated theoretical index are
almost identical. After 1972, a small gap opens
between them.

The CE index almost always underestimates
the theoretical aggregate throughtout the sample
period, with the gap growing to be larger after
1980. The simple-sum index always overesti-
mates the theoretical aggregate, with the gap
growing to be large and remaining large after
only a few years. In terms of levels, the tracking
error of the CE index is smaller than that of the
simple-sum index, especially early in the same
period. However, the CE index is much more
volatile than the theoretical aggregate, especially
from 1979 to 1983. Comparing Figures 5 and 6,
we see that the CE index with smoothed
weights is less volatile than the unsmoothed in-
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Figure 1
Levels of Five Monetary Aggregates (parameters of theoretical
monetary aggregate estimated with risk aversion permitted)
ii
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Figure 2
Growth Rates of Five Monetary Aggregates (parameters
of theoretical monetary aggregate estimated with risk
aversion permitted)
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Figure 3
Growth Rates of Theoretical Monetary Aggregate and Divisia
Index (with risk aversion permitted)
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Growth Rates of Theoretical Monetary Aggregate and
Simple-Sum Index (with risk aversion permitted)
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Figure 5

Growth Rates of Theoretical Monetary Aggregate and CE Index
(with risk aversion permitted)
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Figure 6
Growth Rates of Theoretical Monetary Aggregate
CE Index (with risk aversion permitted)
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Table 3
GMM Estimates with Weak Separability in Outputs and Risk
Neutrality Imposed
Parameter Estimate Standard error t-Statistic

61 82 0.005 11968.80
u. 0.27 0019 1431
q.- 018 0.005 32.78
q21 0.38 0022 17.01

0.07 0.007 1014
0.44 0.023 19.09
0.11 0063 1.66

q33 a16 0.132 1 25
0.33 0.002 16274
050 0003 16439
023 0006 3650

dex, but the volatility still remains larger than
that of the estimated theoretical index. We could
experiment with even more smoothing of the
CE index than is advocated by Rotemberg, Dris-
coll, and Poterba, but we feel that further ex-
perimentation in that direction would produce
an index having dynamics determined more by
the ad hoc method of smoothing than by the
theory that produces the index. Furthermore,
we suspect that smoothing adequate to fix the
index between 1979 and 1983 would oversmooth
elsewhere. Hence, it seems that there is no way
that the CE index can track the growth rates
adequately throughout the sample.

In short, as a measure of the level of the
money stock, the simple-sum index performs
most poorly, while in terms of growth rates, the
CE index performs most poorly. In both cases,
the Divisia index performs best. These results
are in the accordance with index number the-
ory although most of that theory is available in
rigorous form only under the assumption of
perfect certainty. Our weak separability test sup-
ports the existence of an inside-money output
aggregate in banking, and our plots support the
use of the Divisia index as the best currently
available statistical index for tracking that out-
put aggregate.

For comparison purposes, we repeat the above
estimation and testing in the special case of risk
neutrality. The Euler equations, 62-65, under
risk neutrality become~’

11(1—k )—r B 00./3D
(78) E{P ‘ “ “-i-P ‘ I] = 0,

‘1+11, 30/ac,

(79) 11{p~1kzI)rZ~~pB, 00/aT, =
1+11, ‘1+11, 30/0C,

B 30/3L
(80) UP,—’— aoiac~—w,,} = 0,

and

B 30/dM
(81)E[P ‘ ‘ —w] = o.‘l+B, 30./ac,

The parameter estimates acquired from GMM
estimation under risk neutrality, with weak
separability in outputs imposed, are in table
346 Substituting the parameter estimate of ~ in
the risk-neutrality case into equations 69, we
obtain b,=0.777 and b2=0.223. The estimated
theoretical aggregate then is acquired by sub-
stituting the estimated parameters and fixed
constants into equation 29 to get

(82) y,JD,,T,) = 0.777D,+O.223T,

~-_ [.275W
1
_T~) -2 t.58D,+0.427

The value of the weak separability test statistic,
equation 73, is 9.25, while the critical value is
21.666 at the 1 percent significance level. We
cannot reject the weak separability hypothesis
and, hence, the existence of a theoretical mone-

45ln producing equations 80 and 81 as special cases of
the corresponding risk-averse Euler equations, recall foot-
note 14.

~The instrumental variables are the constant, the discount
rate, the lagged banks’ portfolio rate of return, excess cash
reserves and capital.
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tary aggregate over the outputs produced by
banks again is accepted. Furthermore, monoto-
nicity and convexity again are accepted through-
out the region of the data.

Figures 7-12 provide the risk-neutral plots
analogous to those in Figures 1-6 under risk
aversion. Imposing risk neutrality produced
negligible gain in tracking ability for any of the
indexes. Hence, at least with this data, risk aver-
sion does not seriously compromise index num-
ber theory

¶1711E RE(II.JL.XI1)RY ‘WEDGE

Although the imposition of risk neutrality did

not improve the tracking ability of any of our
indexes, the risk-neutral special case does permit
especially simple graphical illustration of
equilibrium phenomena through the use of
separating hyperplanes. In particular, with risk
neutrality and complete contingent claims mar-
kets, each consumer maximizes utility and each
firm maximizes profits conditionally upon any
fixed, realized contingency (i.e., state). Hence,
perfect certainty methods of graphical illustra-
tion are available in the risk neutral case, with
the understanding that the illustration is condi-
tional upon the realization of all contingencies.

If no regulatory wedge exists between the de-
mand and supply side, a hyperplane separates
tastes from technology. But in the case of com-
mercial banks, a regulatory wedge does indeed
exist. This conclusion follows from the observa-
tion in footnote 8 that an implicit tax is imposed
upon banks through the existence of non-
interest bearing required reserves. Hence,
the user cost price received by banks for the
production of monetary services differs from
the user cost price paid by depositors for the
consumption of those services. The difference is
the implicit tax -

The formulas for the user cost prices on each
side of the market for produced monetary serv-
ices was derived by Barnett (1978, 1980, t987)
and computed by Barnett, Hinich and Weber
(1986). The result is most easily illustrated in the
case of an economy with one consumer, who
consumes all of the economy’s monetary serv-
ices, one financial intermediary, which produces
all of the economy’s monetary services, and two
monetary assets. Equilibrium in the monetary
sector of the economy at a fixed contingent
state is illustrated in Figure 13, when no reserve

requirements exist. Money market equilibrium
at a fixed contingent state, when one or both of
the monetary assets is subject to reserve re-
quirements, is illustrated in Figure 14.

In Figure 13, equilibrium is produced by the
familiar separating hyperplane. The separating
hyperplane simultaneously supports an indiffer-
ence curve from below and a production possi-
bility curve from above. The axes represent
quantities of each of the two monetary assets
demanded and supplied. Equilibrium in the two
markets exists at the mutual tangency of the
separating hyperplane, the indifference curve,
and the production possibility curve at a given
optimal level of factor use. In equilibrium, the
quantities demanded of each asset are equal to
the quantities supplied at the equilibrium point

= (y~,,y~)- In addition, the gradient vector
to the separating hyperplane produces the
equilibrium user-cost prices. The vector of user-
cost prices paid by the consumer, O~,are equal,
in equilibrium, to the vector of user-cost prices
received by the financial intermediary, ¶ The
user cost price of asset type i is defined by
equation 77 above.

With factor employment assumed to be set in
advance at its optimum, xt, the optimum level
of aggregate monetary service production, y ~, is
defined to be the solution for y~to the equation
H(y’~x)= 0, where y~=y(y) and where O(j~x)=
H(y*,x) = H(y0(yLx), as e&plained in the sub-
section above. Hence, Figure 13 is drawn condi-
tionally upon that fixed setting of y~,so that the
production possibility surface is the set

y0(y,,y2) =yt}-

However, the situation is very different, when
required reserves exist. In that case, two differ-
ent supporting hyperplanes exist in equilibrium.
One supporting hyperplane exists for the finan-
cial intermediary, and another exists for the
consumer. In Figure 14, the line with gradient
equal to the consumer’s monetary-asset user-cost
prices, 4~,is the consumer’s supporting hyper-
plane and it is his budget constraint in equilibri-
um. That line is tangent to the displayed
indifference curve in equilibrium. The financial
intermediary’s supporting hyperplane has gra-
dient equal to the financial intermediary’s user-
cost prices, ‘~. That hyperplane is the financial
intermediary’s iso-revenue line, which is tangent
to the firm’s production possibility curve at the
equilibrium point. While the user-cost price paid
by the consumer for the services of asset type i

FED ER-A L RESERVS SANK OF St LOUiS
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Figure 7
Levels of Five Monetary Aggregates (parameters of theoretical
monetary aggregate estimated with imposed risk neutrality)

0-9 -

0.8 -

0.7 -

0.6 -

0.5 -

0,4 -

0,3 -

0.2 -

0.1 -

Figure 8
Growth Rates of Five Monetary Aggregates (parameters
of theoretical monetary aggregate estimated subject
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Figure 9
Growth Rates of Theoretical Monetary Aggregate and Divisia
Index (with imposed risk neutrality)

Growth Rates of Theoretical Monetary Aggregate and
Simple-Sum Index (with imposed risk neutrality)
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Figure 11

Growth Rates of Theoretical Monetary Aggregate and CE Index
(with imposed risk neutrality)
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Figure 13
Equilibrium with No Required Reserves
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Figure 14
Equilibrium with Required Reserves
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is still defined by equation 77, the user-cost
price received by the bank for producing those
services now is defined by equation 75, which
does not equal equation 77 unless no required
reserves exist.

The equilibrium point is the point y at which
the two supporting hyperplanes intersect, and
the angle between them is the regulatory wedge
produced by the implicit reserve requirement tax
paid by the financial intermediary in the form
of foregone interest on required reserves. At the
equilibrium point both markets are cleared, and
the consumer is maximizing utility subject to
the displayed budget constraint, while the finan-
cial intermediary is maximizing revenue subject
to the displayed production possibility curve.

rfijf, EDRORS-iN~FHE-VA.Ri/%B.LE-S

EL OR LEM

This same figure also can be used to illustrate
the magnitude of the errors-in-the-variables
problem produced by the use of the simple-
sum index as a measure of the flow of mone-
tary services. Figure 15 illustrates the range of
the error on the demand side, while Figure 16
does the same on the supply side. The same il-
lustration could be produced on the supply side
by replacing the two indifference curves that
are convex to the origin with two production
possibility curves, that are concave to the origin.
The conclusion would be the same.

In both figures, the hyperplane represents the

set

A = {(y,,y): y1+y~= M,j,

where is the measured level of the simple-
sum index, while A is the set of possible values
of the monetary asset component quantities
(y,,y

2
) that are consistent with the measured

level of the simple-sum index.

For any such measurement on the simple-sum
index, the value of the demand-side monetary
service flow received by asset holders could be
anywhere within the set

(83) {u(y,,y): (y1,y)EA}.

The range of that set is the gap between the
utility levels at which the two indifference
curves are drawn in Figure 15. Clearly, the
upper indifference curve is the one which inter-
sects the hyperplane A at the highest possible
utility level, while the lower indifference curve
is the one which intersects the hyperplane A at
the lowest possible utility level. We see that
magnitude of the errors-in-the-variables problem
in that illustration, when measured by the range
of the set (83), is ~ The same conclu-
sion is produced on the supply side from Figure
16, but with set 83 replaced by47

{y,(y
1
,y~): (y,,y,)EA}.

The simple-sum monetary aggregates produce
a disturbingly large and entirely unnecessary
errors-in-the-variables problem. Figures 15 and
16 illustrate the reason. Figures 1-12 illustrate
the effect, under circumstances that are most
favorable to the simple-sum aggregates: a low
level of aggregation over assets having similar
yields. With broader aggregation over assets
having very different own rates of return, in-
cluding currency with a zero rate of return, the
continued use of simple-sum monetary ag-
gregates by central banks becomes even more
difficult to comprehend. The days when all
monetary components had zero-own rates of
return are long gone.

In this paper, we develop a theoretical model
of monetary service production by financial
firms. Earlier models either have permitted risk,
but with minimal connection with neoclassical
economic theory or have made full use of neo-
classical production theory but under the as-
sumption of perfect certainty. The latter case
has been developed extensively by Barnett
(1987), Barnett and Hahm (1994), and Hancock
(1985, 1987, 1991). We extend that latter fully
neoclassical production approach to the case of
risk aversion, subject to Diewert and Wales’s
symmetric generalized McFadden technology.
Our approach permits risk aversion without
compromising second-order flexibility or neo-

47The magnitude of the gap, Mms, — Mmm, may differ, when a
regulatory wedge is produced by required reserves, but the
difference between the conclusions on the demand and
supply side is not likely to be large. If the errors-in-the-
variables problem is large on one side of the market it is
likely to be approximately as large on the other side of the
market. See Barnett, Hinich and Weber (1986) for relevant
empirical evidence.
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Figure 15
Demand Side Errors-in-Variables

ViFigure 16

Supply Side Errors-in-Variables
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classical regularity of the specification. This
is true with or without the imposition of
global blockwise weak separability which
we therefore are able to test and to impose,
when accepted. Using the resulting Euler equa-
tions, we explore exact output aggregation in
this paper.

Although applicable to all financial intermedi-
aries, we apply our approach only to the bank-
ing industry While it is possible to impose
regularity in curvature conditions upon the
generalized McFadden specification, monotonicity
can be imposed only locally without damaging
the models flexibility. Diewert and Wales’s alter-
native specification, called the generalized Bar-
nett model, is globally regular both in terms of
curvature and monotonicity and hence, that
model was used by Barnett and Hahm (1994) in
the perfect certainty case. However, in the cur-
rent paper, using the generalized McFadden
model, the estimated parameters satisfy the neo-
classical monotonicity and convexity conditions
for all observations, even though only convexity
was imposed globally. Hence, we doubt that our
conclusions would have been much different if
we had used the generalized Barnett model in
producing our estimated Euler equations, The
hypothesis that bank’s outputs are weakly
separable from inputs is accepted. Hence, the
existence of an exact supply-side theoretical
monetary aggregate is accepted for banks. The
resulting output aggregate is the banking indus-
try’s contribution to the economy’s inside money
services.

While our theory provides a means of eco-
nometrically estimating the exact supply-side
monetary aggregate, no theory currently is avail-
able to support the use of a nonparametric
statistical index number as an approximation to
the parametrically estimated exact aggregate.
Considering the complexities of the GMM esti-
mation involved in producing the estimated
exact aggregate, a nonparametric statistical
index would, in practice, be much easier to
compute and use. We compute the currently
most popular of those indexes and find that at
least for our sample, the Divisia index tracks the
estimated theoretical index more accurately than
the others. This conclusion holds regardless of
whether or not we impose risk neutral-
ity during estimation of the exact theoretical
aggregate. Risk aversion does not appear to
produce appreciable degradation of the tracking
ability of the IJivisia index with our data.

We believe that the approach developed in this
paper could be used to investigate technological
change in banking, economies of scale and
scope in banking, value added in banking and
its connection with inside money creation, and
the transmission mechanism of monetary policy
We have in fact taken a first step in the direc-
tion of producing one of those extensions: We
have derived and supplied the Euler equations
with learning by doing technological change in-
cluded in technology. A longer-run framework
for the theory also could be productive. Jn par-
ticular, some of the factors excluded from the
variable cost function as fixed factors could be
incorporated among the variable factors. Bank
capital is one such example. Incorporating capi-
tal among the variable factors could permit in-
tegration of the model with economic growth
theory in which capital evolves endogenously in
accordance with a law of motion. In short, this
is just a start in a direction that we expect will
be very productive for researchers interested in
the role of financial institutions in the economy
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