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_AOMMERCIAL BANKS PLAY a vital role in the
economy for two reasons: they provide a major
source of financial intermediation and their check-
able deposit Habilities represent the bulk of the
nation’s money stock. Evaluating their overall
performance and monitoring their financial condi-
tion is important to depositors, owners, potential
investors, managers and, of course, regulators.

Currently, financial ratios are often used to
measure the overall financial soundness of a bank
and the quality of its management. Bank regu-
lators, for example, use financial ratios to help
evaluale a bank’s performance as part of the
CAMEL system.* Evaluating the economic perfor-
mance of banks, however, is a complicated
process. Often a number of criteria such as

profits, liquidity, asset quality, attitude toward
risk, and management strategies must be consi-
dered. The changing nature of the banking
industry has made such evaluations even more
difficult, increasing the need for more flexible
alternative forms of financial analysis.

This paper describes a particular methodology
called Data Envelopment Analysis (DEA), that has
been used previously to analyze the relative effi-
ciencies of industrial firms, universities, hospitals,
military operations, baseball players and, more
recently, commercial banks.? The use of DEA is
demonstrated by evaluating the management of
60 Missouri commercial banks for the period from
1984 to 1990.2

1For more details, see Bocker (1983), Korobow (1983) and
Putnam (1983}.

2The name DEA is attributed to Charnes, Cooper and Rhodes
(1878}, for the development of DEA, see Charnes, et al.(1985)
and Charnes, et al. (1978); for some applications of DEA, see
Banker, et al. {1984), Charnes, et ai. (1990) and Sherman and
Gold (1985).

3Although there is vast literature analyzing competition and
performance in the U.S. banking industry (e.g., Gilbert (1984),

Ehlen (1983), Korobow {1983), Putnam (1983), Wali {1983)
and Watro (1889)}, actual banking efficiency has received
limited attention. Recently, a few publications have used DEA
or a similar approach to study the technical and scale efficien-
cies of commerciat banks (e.g., Sherman and Gold (1985),
Charnes et al. (1990}, Rangan et al, (1988), Aly et al. (1990),
and Elyasiani and Mehdian (1990)}.




DEA represents a mathematical programming
methodology that can be applied to assess the effi-
ciency of a variety of institutions using a variety of
data. This section provides an intuitive explana-
tion of the DEA approach. A formal mathematical
presentation of DEA is described in appendix A; a
slightly different nonparametric approach is
described in appendix B.

DEA is based on a concept of efficiency that is
widely used in engineering and the natural
sciences. Engineering efficiency is defined as the
ratio of the amount of work performed by a
machine to the amount of energy consumed in the
process. Since machines must be operated
according to the law of conservation of energy,
their efficiency ratios are always less than or equal
to unity.

This concept of engineering efficiency is not
immediately applicable to economic production
because the value of output is expected to exceed
the value of inputs due 1o the “value added” in
production. Nevertheless, under certain circum-
stances, an economic efficiency standard—similar
to the engineering standard—can be defined and
used to compare the relative efficiencies of
economic entities, For example, a firm can be said
to be efficient relative to another if it produces
either the same level of output with fewer inputs
or mare cutput with the same or fewer inputs. A
single firm is considered “technically efficient” if it
cannot increase any output or reduce any input
without reducing other outputs or increasing
other inputs.* Consequently, this concept of tech-
nical efficiency is similar to the engineering
concepi. The somewhat broader concept of
“economic efficiency,” on the other hand, is
achieved when firms find the combination of
inputs that enable them to produce the desired
level of output ai minimum cost.?

The discussion of the DEA approach will be
undertaken in the context of technical efficiency
in the microeconomic theory of production. In
microeconomics, the production possibility set
consists of the feasible input and output combina-
tions that arise from available production tech-
nology. The production function (or production
transformation as it is called in the case of multiple
outputs} is a mathematical expression for a
process that transforms inputs into output. In so
doing, it defines the frontier of the production
possibility set. For example, consider the well-
known Cobb-Douglas production function:

(1) Y = AKSLG-®)

where Y is the maximum output for given quanti-
ties of two inputs: capital (K} and labor {L). Even if
all firms produce the same good (Y) with the same
technology defined by equation 1, they may still
use different combinations of labor and capital to
produce different levels of output. Nonetheless, all
firms whose input-output combinations lie on the
surface {frontier} of the production relationship
defined by equation 1 are said to be technologi-
cally efficient. Similarly, firms with input-output
combinations located inside the frontier are tech-
nologically inefficient.

DEA provides a similar notion of efficiency. The
principal difference is that the DEA production
frontier is not determined by some specific equa-
tion like that shown in equation 1; instead, it is
generated from the actual data for the evaluated
firms (which in DEA terminology are typically
called decision-making units or DMUs).® Conse-
quently, the DEA efficiency score for a specific
firm is not defined by an absclute standard like
equation 1. Rather, it is defined relative to the other
firms under consideration. And, similar to engi-
neering efficiency measures, DEA establishes a
“benchmark” efficiency score of unity that no
individual firm’s score can exceed. Consequently,
efficient firms receive efficiency scores of unity,
while inefficient firms receive DEA scores of less
than unity.

4See Koopmans {1951),

5This is also named “aliocative efficiency” because a profit
maximizing firm must ailocate its resources such that the
technical rate of substitution is equal to the ratio of the prices
of the resources. Theoretical considerations of aliocative effi-
ciency can be found in the articles by Banker (1984) and
Banker and Maindiratta {1988}.

81t is common to estimate production functions using regres-
sion analysis. When cross-section data are used, the esti-

mated production function represents the average behavior of
firms in the sample. Hence, the estimated production function
depends upon the data for both efficient and inefficient firms.
By imposing suitable constraints, these statisticai procedures
can be modified to orient the estimates toward frontiers. In
this manner, the frontier of the preduction set can be esti-
mated economaetrically.
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In microeconomic analysis, efficient production
is defined by technological relationships with the
assumption that firms are operated efficiently.
Whether or not firms have access to the same
technology, it is assumed that they operate on the
frontier of their relevant production possibilities
set; hence, they are technically efficient by defini-
tion. As a result, much of microeconomic theory
ignores issues concerning technological ineffi.
ciencies.

DEA assumes that all firms face the same
unspecified technology which defines their
production possibilities set. The objective of DEA
is to determine which firms operate on their effi-
ciency frontier and which firms do not. That is,
DEA partitions the inputs and outputs of all firms
into efficient and inefficient combinations. The
efficient input-output combinations yield an
implicit production frontier against which each
firm's input and output combination is evaluated.
If the firm’s input-output combination lies on the
DEA frontier, the firm might be considered effi-
cient; if the firm's input-output combination lies
inside the DEA frontier, the firm is considered
inefficient.

An advantage of DEA is that it uses actual
sample data to derive the efficiency frontier
against which each firm in the sample can be
evaluated.” As a result, no explicit functional form
for the production function has to be specified in
advance. Instead, the production frontier is gener-
ated by a mathematical programming algorithm’
which also calculates the optimal DEA efficiency
score for each firm.

To illustrate the relationship between DEA and
economic production in its simplest form,
consider the example shown in figure 1, in which
firms use a single input te preduce a single output.
In this example, there are six firms whose inputs
are denoted as x, and whose outputs are denoted

asy; 1 = 1,2,...,6); their input-output combinations
are labeled by Fy(s =1,2,...,6). While the produc-
tion frontier is generated by the input-output
combinations for the firms labeled F,, F;, ¥; and Fg,
the efficient portion of the production frontier is
shown by the connected line segments. F, and F,
are clearly DEA inefficient because they lie inside
the frontier; Fg is DEA inefficient because the
same output can be produced with less input.

“Facets” are an important concept used to
evaluate a firm's efficiency in DEA. The efficiency
measure in DEA Is concerned with whether a firm
can increase its oulput using the same inputs or
produce the same output with fewer inputs.
Consequently, only part of the entire efficiency
frontier is relevant when evaluating the efficiency
of a specific firm. The relevant portion of the effi-
ciency frontier is called a facet. For example, in
figure 1, only the facet from F, to F, is relevant for
evaluating the efficiency of the firm designated by
F,. Similarly, only the facet from F; to F, is used to
evaluate the firm denoted by F,.8

The use of facets with DEA enables analysts to
identify inefficient firms and, through comparison
with efficient firms on relevant facets, to suggest
ways in which the inefficient firms might improve
their performance. As illustrated in figure 1, F,
can become efficient by rising to some point on
the F,-F; facet. In particular, it could move to A by
simply using less input, to B by producing more
output or to C by both reducing input and
increasing output. Of course, in this example, the
analysis is obvious and the recommendation
trivial, In more complicated, multiple input-
multiple output cases, however, the appropriate
efficiency recommendations would be muich more
difficult to discover without the DEA
methodology.?

TDEA has two theoretical properties that are especially use-
ful for its implementation. One is that the DEA model is
mathematically refated to a multi-objective aptimization
problem in which ali inputs and outputs are defined as
multiple objectives such that all inputs are minimized and
all outputs are maximized simultanecusly under the tech-
nology constraints. Thus, DEA-efficient DMUs represent
Pareto optimat solutions o the muilti-objective optimization
problem, while the Pareto optimal solution does not neces-
sarily imply DEA efficiency.

Another important property is that DEA efficiency scores
are independent of the units in which inputs and cutputs
are measured, as long as these units are the same for all
DMUs. These characteristics make the DEA methodology
highly flexible. The only constraint set originaily in the
CCR model is that the values of inputs and outputs must
be strictly positive.

This constraint, however, has been abandoned in the new
additive DEA formuiation. As a consequence, the additive
DEA model is used to compute reservation prices for new
and disappearing commuodities in the construction of price
indexas by Lovelt and Zieschang {1990).

8n a muitiple dimensional space, the efficiency frontier
forms a polyhedron. in geometry, a portion of the surface
of a polyhedron is cailed a facet; this is why the same
term is used in DEA. These facets have important implica-
tions in empirical studies, such as identification of compe-
titors and strategic greups in an industry. See Day, Lewin,
Salazar and Li (1989).

SFor aliernative measures of efficiency, see appendix B.
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Figure 1
Production Frontier and Efficiency Subset
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Input X

In addition to measuring technological effi-
ciency, DEA also provides information about scale
efficiencies in production. Because the measure of
scale efficiency in DEA analysis varies from model
to model, care must be exercised. The scale effi-
ciency measured for the DEA model used in this
study, however, corresponds fairly closely to the
microeconomic definition of economics of scale in
the classical theory of production.

To illustrate, consider the F,-F, facet in figure 2.
Firms located on this facet exhibit increasing
returns to scale because a proportionate rise in
their input and output places them inside the
production frontier. A proportionate decrease in
their input and output is impossible because it
would move them outside of the frontier. This is
illustrated by a ray from the origin that passes
through the F,-F; facet at I,

Firms located on the F,;-F, facet exhibit
decreasing returns to scale because a propor-

tionate decrease in their input and output places
them inside the production frontier. A propor-
tionate increase in their input and output is impos-
sibie because it would move them outside of the
frontier.

Constant returns to scale occur if all propor-
tionate increases or decreases in inputs and
outputs move the firm either along or above the
production frontier. In figure 2, for example, F;
exhibits constant returns to scale because propor-
tionate increases or decreases would place it
outside the production frontier.

Since the facets are generated by efficient firms,
the scale efficiency of these firms is determined by
the properties of their particular facet. Scale effi-
ciencies for inefficient firms are determined by
their respective reference facets as well. Thus, F,
and ¥, in figure 1 exhibit increasing and
decreasing returns to scale, respectively.
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While the discussion of JEA in the context of
technological efficiency of production is useful for
illustrative purposes, it is far too narrow and
limiting. DEA is frequently applied {0 questions
and data that transcend the narrow focus of tech-
nical efficiency in production. For example, DEA is
frequently applied to financial data when
addressing questions of economic efficiency. In
this regard, its application is somewhat more
problematic. For example, when firms face
different marginal costs of production due to
regional or local wage differentials, one firm may
appear inefficient relative to another. Given the
potential differences in relative costs that a firm
may face, however, it might be equally efficient.
Ahternatively, differences that appear to be due to
economic inefficiencies may in fact be due to cost
differences directly attributable to the non-
homegeneity of products. Because of problems
like these, DEA must be applied judiciously.
irialvais
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To this point, the discussion of DEA has been
concerned with evaluating the relative efficiency
of different firms at the same time, Those who use
DEA, however, frequently employ a type of sensi-
tivity analysis called “window analysis.” The
performance of one firm or its reference firms

10See Fare, Grosskopf and Lovell {1885). Different DEA
models employ different measures of scale efficiency. See
appendixes A and B for detaiis.




£3

L

Figure 2
An lliustration of Scale Efficiencies
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may be particularly "good” or “bad” at a given time
because of factors that are external to the firm’s
relative efficiency. In addition, the number of
firms that can be analyzed using the DEA modelis
virtually unlimited. Therefore, data on firms in
different periods can be incorporated into the
analysis by simply treating them as if they
represent different firms. In this way, a given firm
at a given time can compare its performance at
different times and with the performance of other
firms at the same and at different times. Through
a sequence of such “windows,” the sensitivity of a
firm’s efficiency score can be derived for a partic-
ular year according to changing conditions and a
changing set of reference firms. »* A firm that is
DEA efficient in a given year, regardless of the
windeow, is likely to be truly efficient relative to
other firms. Conversely, a firm that is only DEA
efficient in a particular window may be efficient
solely because of extraneous circumstances.

In addition, window analysis provides some
evidence of the short-run evolution of efficiency

for a firm over time. Of course, comparisons of
DEA efficiency scores over extended periods may
be misleading (or worsel because of significant
changes in technology and the underlying
economic structure.

ATOBANEING:
LN OF 90 MISSOURS
ERLUIAL BARRE

To demonstrate DEA's use, it is applied to
evaluate relative efficiency in banking. Financial
data for 60 of the largest Missouri commercial
banks for 1984 (determined by their total assets in
1990} are used. Initially, the relative efficiency of
these banks is examined using two alternative
DEA models: the CCR model and the additive DEA
maodel. A discussion of these alternative DEA
models appears in appendix A. In extending the
discussion and analysis, however, we focus solely
on the CCR model.

Measuring Inpuls and Culpuis

Perhaps the most important step in using DEA to
examine the relative efficiency of any type of firm
is the selection of appropriate inputs and outputs.
This is partially true for banks because there is
considerable disagreement over the appropriate
inputs and outputs for banks. Previous applica-
tions of DEA to banks generally have adopted one
of two approaches to justify their choice of inputs
and outputs.?

The first “intermediary approach” views banks
as financial intermediaries whose primary busi-
ness is to borrow funds from depositors and lened
those funds to others for profit. In these studies,
the banks’ outputs are loans {(measured in dollars)
and their inputs are the various costs of these
funds (including interest expense, labor, capital
and operating costs).

A second approach views banks as institutions
that use capital and labor to produce loans and
deposit account services. In these studies, the
banks' outputs are their accounts and transac-
tions, while their inputs are their labor, capital
and operating costs; the banks’ interest expenses
are excluded in these studies.

1This is called "panel data analysis’ in econometrics.

125ome studies have adopted the simple rule that if it
produces revenue, it is an output; if it requires a net ex-
penditure, it is an input. For example, see Hancock (1989).
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Our analysis of 60 Missouri banks uses a variant
of the intermediary approach. The banks’ outputs
are interest income {IC), non-interest income {NIC}
and total loans (TL). Interest income includes
interest and fee income on loans, income from
lease-financing receivables, interest and dividend
income on securities, and other income. Non-
interest income includes service charges on
deposit accounts, income from fiduciary activities
and other non-interest income. Total loans consist
of loans and leases net of unearned income. These
outputs represent the banks’ revenues and major
business activities.

The banks’ inputs are interest expenses {IE),
non-interest expenses {NIE), transaction deposits
{TD}, and non-transaction deposits (NTD)}. Interest
expenses include expenses for federal funds and
the purchase and sale of securities, and the inter-
est on demand notes and other borrowed money.
Non-interest expenses include salaries, expenses
associated with premises and fixed assets, taxes
and other expenses. Bank deposits are disaggre-
gated into transaction and non-transaction depos-
its because they have different turnover and cost
structures. These inputs represent measures for
the banks’ labor, capital and operating costs. De-
posits and funds purchased {measured by their
interest expense} are the source of loanable funds
to be invested in assets,*?

The DEA scores and returns to scale measures
resulting from applying the CCR and additive DEA
models are presented in table 1.2 Although the
overall results are similar across the two models,
there are minor differences in the individual effi-
ciency scores that may provide information about
the relative efficiency of these banks.

The two models differ fundamentally in their
definition of the efficiency frontier. In particular,
the CCR model assumes constant returns to scale,
while the additive mode! allows for the possibility
of constant (C), increasing (D) or decreasing (D)

returns. Because of this, banks that are efficient in
the CCR model must also be efficient in the addi-
tive model. As table 1 illustrates for our Missouri
banks, the converse, however, is not true.

The overall etficiency score is composed of
“pure” technical and “scale” efticiencies. In the
CCR model, a firm which is technologically effi-
cient also uses the maost efficient scale of opera-
tion. In the additive model, however, the score
represents only “pure” technical efficiency. By
comparing the results of the CCR and additive
models, we can see that while five of our Missouri
banks were technologically efficient, they were
not operating at the most efticient scale of opera-
tion. The reader is cautioned, however, that this
analysis excludes a number of factors (such as
demographic characteristics of the markets in
which thev operate) that may he important in
determining the most economically efficient scale
of operation.

Since the efficiency scores are defined differ-
ently in the CCR and the additive DEA models, it is
not possible to generate a measure of scale ineffi-
ciency using the resulis in table 1. Nevertheless,
the fact that the efficiency scores from the two
models are quite similar suggests that the scale
inefficiency is not a major source of overall ineffi-
ciency for these banks. It appears that the ineffi-
cient banks simply used too many inputs or
produced too few outpuis rather than chose the
incorrect scale for production.**

An fliustration of the use of DEA analysis can be
obtained by considering the data for the bank
with the lowest efficiency score, bank 53. The
results for this bank are summarized in table 2.
The reference banks making up the facet to which
bank 59 is compared and “lambda,” a measure of
the relative importance of each reference bank in
the facet, are given. The table shows that three
reference banks compose the facet for bank 59.
Banks 51 and 39 play the major role and the other
bank is relatively unimportant.

13This is controversial, however. Some researchers specify
deposiis as outpuis, arguing that treating deposits as inputs
makes banks that depend on purchased money fook artifi-
cially efficient (see Berg et al., 1890).

14The results from solving the DEA moedel also include informa-
tion about DEA scale efficiencies, the efficient projection on
the efficiency frontier, slack variables s,* and s,~ and the dual
variables u.and v,. The “dual” variables represent “shadow
prices” for each input and output. Thatis, they represent the

marginal effects of the input and output variables on the
bank’s DEA efficiency score. See appendix A for details.

155imifar results of insignificant scale-inefficiency of U.S. banks
have been reported by Aly et al, (1990).
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The value measure in the first column in the
lower half of the table gives the value of the
outputs and the inputs for bank 59 in 1984. The
second column gives the value measure that bank
59 would have to achieve in order to be DEA effi-
cient. The difference between these numbers is
presented in the third column.'® Bank 59 should
increase its total loans by 143 percent and its non-
interest income by 6 percent. Bank 59 should
reduce its four inputs by 26.6 percent of interest
expenses and by 24 percent of the other inputs.

‘Table 2 also presents a measure for bank 59
denoted as the “dual,” This measure is important
because the ratio of the duals for outputs and
inputs shows the tradeoff of increments or decre-
ments in inputs and outputs to DEA efficiency.
This is with the assumption that the bank is free to
vary all of its inputs and outputs. The fact that the
dual for NIE is large relative to the others suggests
that the biggest efficiency gains for bank 59 will
come from decreasing non-interest expenses. A
stmilar analysis can be conducted for each ineffi-

18ln the case of outputs, this difference is a measure of
“slack.” In the case of inpuis, however, the slack variable
is more complicated.
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cient bank to determine its reference banks and
the way in which it can become DEA efficient.

The available data cover a seven-vear span from
1984 through 1990. A three-year period was
chosen to allow five windows. The windows and
the periods they cover are as follows:

window 1 1984 1985 1986

window 2 1985 1986 1987

window 3 1986 1987 1988

window 4 1887 1988 1989
window 5 1388 1989 1990

In each window, the number of banks is tripled
because each bank at a different year is treated as
an independent firm. Repeating the procedure
discussed above for each window, information
about the evolutions of DEA efficiencies of every
bank during the seven-year period was obtained.
Table 3 lists the DEA scores of three banks by year
in each window. The average of the 15 DEA effi-
ciency scores is presented in the column denoted
“mean.” The column labeled GD indicates the
greatest difference in a bank’s DEA scores in the
same year but in different windows. The column
labeled TGD denotes the greatest differenceina
hank's DEA scores for the entire period.

A bank can receive a different DEA efficiency
score for the same year in different windows. This
variation in the DEA scores of each bank reflects
both the performance of that bank over time as

well as that of other banks. The distribution of
banks by their average efficiency over the five
windows is presented in table 4.

Bank 48 was the only one that was efficient for
every vear in every window over the 1984-30
period. Its average efficiency of 1.00 indicates that
bank 48 was a superb bank in the sample DEA
evaluation.

Bank 41, on the other hand, began in the first
window with scores of 0.84 in 1984, 0.85 in 1985
and 0.89 in 1986. In the second window, bank 41
had scores of 0.86 in 1985, 0.90in 1986 and 0.94 in

1987. Although all of its efficiency scores fluctu-




- Five-year average

- of banks

ated slightly in the other three windows, they
tended to increase. With a gradual improvement
in its DEA efficiency over the seven years, bank 41
was almost fully efficient in the last year, with a
DEA score of 0.98. However, its average-efficiency
score of 0.92 does not put it among the top 13
banks for the period.

In cantrast to the banks previously discussed,
hank 59 displayed relatively erratic and inefficient
behavior over the entire seven-year period. Iis
average DEA score of 0.68 was the lowest of the
60 Missouri banks analyzed.

The window analysis enables us to identify the
hest and the worst banks in a relative sense, as
well as the most stable and most variable banks in
terms of their seven-year average DEA scores.

The DEA methodology discussed in this article
has the potential to provide crucial information
about banks’ financial conditions and management
performance for the benefit of bank regulators,
managers and bank stock investors. The DEA
framework is extremely general, permitting
multiple criteria for evaluation purposes.
Moreover, DEA requires only data on the quantity
of inputs and outputs; no price data are necessary.
This is especially appealing in the analysis of
banking because of the difficulties inherent in
defining and measuring the prices of banks’ inputs
and outputs.

In addition, the DEA method is highly flexible. In
particular, the selection of inputs and outputs has

considerably fewer limitations than alternative
econometric approaches. Nevertheless, if the anal-
vsis is to be useful, care must be exercised in the
selection of inputs and outputs.

Ahn, T., A. Charnes, and W. W. Cooper. ““Some Statistical and
DEA Evaluations of Relative Efficiencies of Public and
Private Institutions of Higher Learning,” Socio-Economic
Planning Sciences, Vol. 22, No. 6, 1888, pp. 259-69.

. “Efficiency Characterizations in Different DEA
Models,” Socie-Economic Planning Sciences, Vol.22, No. 6,
1988, pp. 253-57.

Aly, Hassan Y., Richard Grabowski, Carl Pasurka, and Nanda
Rangan. ‘‘Technical, Scale, and Allocative Efficiencies in
U.8. Banking: An Empirical investigation,’” Review of
Economics and Statistics (May 1930}, pp. 211-18.

Amel, D., and L. Froeb. ‘Do Firms Differ Much?’’ Finance &
Economics Discussion Series, Federal Reserve Board, #87
August 1989,

Banker, Rajiv D. “Estimating Most Preductive Scale Size Using
Data Envelopment Analysis,”” European Journal of Opera-
tional Research 217 {1984}, pp. 35-40.

Banker, RajivD., A. Charnes and W. W. Cooper. “'"Models for
Estimating Technical and Scale Efficiencies,” Management
Science, Vol. 30, (1984), pp. 1078-92.

Banker, RajivD., R. F. Conrad and R. P. Strauss.” A Compara-
tive Appiication of DEA and Translog Methods: An liustrative
Study of Hospital Production,” Management Science Vol. 36
(1986), pp. 30-34,

Banker, Rajiv D., and Ajay Maindiratta. “‘Nonparametric Anal-
ysis of Technical and Allocative Efficiencies in Production,”
Econometrica {November 1988), pp. 1315-32.

Berg, 8. A., F. R. Forsund, and E. S. Jansen. "Deregulation and
Productivity Growth in Norwegian Banrking 1980-1988: A
Non-parametric Frontier Approach,” (Bank of Norway, 1990).

Booker, Irene O. “'Tracking Banks from Afar: A Risk Monitoring
System,”’ Federal Reserve Bank of Atlarta Economic Review
(November 1983), pp. 36-41.

Bovenzi, John F., James A. Marine, and Frank E. McFadden.
“Commercial Bank Failure Prediction Models,” Federal
Reserve Bank of Atlanta Economic Review (November 1983},
op. 14-28.

Chamnes, A., W. W. Cooper, B. Golany, L. Seiford and J. Stutz.
"Foundations of Data Envelopment Analysis for Pareto-
Koopmans Efficient Empirical Production Functions,”
Journal of Econometrics (November 1985}, pp. 91-107.

Charnes, A., W. W. Cooper, Z. M. Huang and D.B. Sun. *'Poly-
hedral Cone-Ratio DEA Models with An llfustrative Applica-
tien To Large Commercial Banks,” Journal of Econometrics
{October/November 1990), pp. 73-31.

Charnes, A., W. W. Cooper and E. Rhodes. “Measuring Effi-
ciency of Decision Making Units,”” European Journal of Oper-
ational Research Vol. 1 {1978), pp. 429-44.

Bay, D. L., A Y. Lewin, R. J. Salazar, and H. Li. Strategic
Leaders inthe U.&. Brewing Industry: A Longitudinal Anal-
ysis of Outliers,” presenied at the conference on New Uses
of DEA, Austin, Texas, September 27-29, 1989.

Ehlen, James G. Jr. “A Review of Bank Capital and its
Adequacy,” Federal Reserve Bank of Atlanta Economic
Review (November 1883), pp. 54-60.




Elyasiani, Elyas, and Seyed M. Mehdian. *'A Nonparametric
Approach to Measurement of Efficiency and Technological
Change: The Case of Large U1.8. Commercial Banks,”
Journal of Financial Services Research (July 1980),
pp. 157-68.

Fare, Bolf, Shawna Grosskepf, and C. A. K. Lovell. The Meas-
urement of Efficiency of Production (Kluwer-Nijhoif, 1985).

Fare, Rolf, and W. Munsaker. "Notigns of Efficiency and Their
Reference Sets,” Management Science Vol. 32 (February
1986), pp. 237-43.

Gilbert, R. Alton. "Bank Market Structure and Competition, A
Survey,” Journal of Money, Credit, and Banking (November
1684, Part 2), pp. 817-45,

Grosskepf, Shawna. “The Role of the Reference Technology in
Measuring Productive Efficiency,”’ The Economic Journai
(June 1986}, pp. 499-513.

Hancock, Diana. “Bank Profitability, Dereguiation, and the
Production of Financial Services,”” Research Working Paper
89-18, Federal Reserve Bank of Kansas City (December
1989).

Koopmans, T.C. “An Analysis of Production as an Efficient
Combination of Activities,” in T. C. Koopmans, ed., Activity
Analysis of Production and Alfocation, Cowles Commission
for Research in Economics, Monograph No. 13 (John Wiley
and Sons, Inc., 1951).

Korobow, Lecn, and David P. Stuhr, *'The Relevance of Peer
Groups in Early Warning Analysis,” Federal Reserve Bank of
Atlanta Econormic Review (November 1983), pp. 27-34,

Lovell, C. A. K., and K. D. Zieschang. **A DEA Approach 1o the
Problem of New and Disappearing Commodities in the
Construction of Price Indexes,” presented at the Sixth World

The most important characteristics of the DEA
methodology can be presented with the CCR Ratio
Model. Consider a general situation where n deci-
sion making units, DMUs, convert the same m
inputs into the same s outputs. The quantities of
these outputs can be different for each DMU. In
more precise notation, the j-th DMU uses a

m-dimensional input vector, x; (i = 1,2,....m), to
produce an s-dimensional cutput vector, y;

fr = 1,2,.., s). The particular DMU being evaluated
is identified by subscript O; all others are denoted
by subscript j. The following optimization problem
is formed for each DMU:

a1

Maxh, = Z uy,/ 2 vx,
r=1 P=1

subject to the constraints:
m

; uwy,/ Z vxy <L u >0V

r=1 i=1

=0

fori=12,..,mr=12,,8i=12..n

Congress of the Econometric Society, Barcelona, Spain,
August 21-28, 1990,

Noonan, John H., and Susan Kay Fetner. “*Capital and Capital
Standards,” Federai Reserve Bank of Atlanta Economic
Review (November 1983), pp.50-53.

Putnam, Barren H. ** Concepts of Financlal Monitoring,”
Federal Reserve Bank of Atianta Econoniic Review
{(November 1983}, pp. 6-13.

Rangan, Nanda, Richard Grabowski, Hassan Y. Aly, and Carl
Pasurka. "'The Technical Efficiency of U.S. Banks,”
Economics Letters Vol. 28, No. 2 (1988), pp. 169.75.

Sherman, H. David, and Franklin Goid. ‘Bank Branch Oper-
ating Efficiency: Evaiuation with Data Envelopment Anal-
ysis,” Journal of Banking and Finance (June 1985}, pp.
297-315.

Thrali, R. M. “Overview and Recent Development in DEA: The
Mathematical Programming Approach,”’ paper presented at
iC2 Institute, Conference Proceedings, University of Texas at
Austin, October 1989,

Wall, L. “"Why Are Some Banks More Profitable Than Others?”’
Working Paper Series No. 12, Federal Reserve Bank of
Atlanta (November 1983).

Watro, Paul R, ''"Have the Characteristics of High-Earning
Banks Changed? Evidence From Chio,” Economic Commen-
tary, Federal Reserve Bank of Cleveland (September 1,
1989).

Whalen, Gary. “Concentration and Profitability in Nen-MSA
Banking Markets,” Federal Reserve Bank of Cleveland
Economic Review {1: 1987}, pp. 2-9.

Zukhovitskiy, 8. 1., and L. . Avdeyeva. Linear and Convex
Programming (W.B. Saunders Company, 1966).

where the output weights denoted by u,

{r = 1,2,...,8) and the input weights denoted by v,
{i = 1.2,...,m} are required to be non-negative
e, u,v,=0forr=1,2,.,8i=12 ., m.

The “virtual output” is the sum{ 2 u.y) and the
r=1
m

“virtual input” is the sum ( £ vx). The objective
je=1

function is defined by h,, that is, the ratio of
virtual output to virtual input. The solution is a set
of optimal input and output weights. The
maximum of the objective function is the DEA effi-
ciency score assigned to DMU,. The first set of
inequality constraints guarantees that the effi-
ciency ratios of other DMUs {computed by using
the same weights u, and v} are not greater than
unity. The remaining inequality constraints simply
require all input and output weights to be positive.
Since every DMU can be DMU,, this optimization
problem is well-defined for every DMU. Because
the weights (v, u,) and the observations of inputs
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and outputs (x;, v} are all positive and the con-
straints must be satistied by DMU,, the maximum
value of h, can only be a positive number less than
or equal to unity, If the efficiency score h, = 1,
DM, satisfies the necessary condition to be DEA
efficient; otherwise, it is DEA inefficient.

The above problem cannot be solved as stated
because of difficuities associated with nonlinear
{fractional} mathematical programmming. Charnes
and Cooper, however, have developed a mathe-
matical transformation (the so-called "CC transfor-
mationt”) which converts the above nonlinear
programming problem into a linear one. Existing
duality theory and simplex algorithms in linear
programming are used to solve the transformed
problem.”

For a linear programming problem, there exists
a pair of expressions which are “dual” to each
other. The CCR ratio model is farmed by problem
1 and problem 2 below:

Problem 1:

Minh, = 8, ~e( % 87+ Z 5%
ju=i r=1

subject to

1]
B, X — 3’.} X;A - 87 =0,

T Vuh =8t =y h =057 =2 0,87

i=1

>0

fori=1,.,mr=1,,8}j=1.,1m
Problem 2:
Max ¥, = s He¥a

r=1

subject to

fori=1,.,mr=1.,s8i=1.,n

As before, the subscript 0 represents the DMU
being evaluated, x; denotes input i, y,, denotes
output r of DMU, and w, and v, represent the
weights for outputs and inputs, respectively. An
arbitrarily small positive number, ¢, is introduced

to ensure that all of the observed inputs and
outputs have positive values or shadow prices and
that the optimal value h, is not affected by the
values assigned to the so-called “slack variables”
(st ors;).2

The main conclusions from the CCR model are
summarized as follows:

1. The optimal values of 83, s, and A via
problem 1 must be positive. The following inequal-
ities should then be satisfied:

13}

= z Xij }‘i’
j=1

n
Yo & 2 Yy }Lg and Qesxica
=1

He

forr=1,..,8i=1,..,m.

2. Technical efficiency will be achieved if, and
only if, all of the following conditions are satisfied:

6,=1ands® = 0,57 =0
fori =1,.,m;r = 1,.,s.

The condition 8, = 1 ensures that DM, is located
on the production frontier; the conditions s% = 0
and 57 = 0 exclude situations such as ¥, in figure 1
of the text.

3. The constant returns to scale condition for

j=1

DMU, occursif X A = 1, otherwise, Z A, > 1
j=1

I
implies decreasing returns to scale; £ A, < 1
j=1
implies increasing returns to scale,

4. An adjustment can bhe made in order to move
(or project) inefficient DMU, onto the efficiency
frontier. The projection {x", ¥7) in the CCR model is
formed by the following formulas;

Xin. = gﬂxiﬂ -

87 i=1,..,m

»

Vo = ¥p + 87 =1, .85

The differences (x,, — x,'), 1 = 1,.., m, represent
amounts of inputs to be reduced; iy, — v,

r = 1,.,8 represent the amounts of outputs to be
increased in order to move DMU, onto the effi-
ciency frontier. Hence, these differences can
provide diagnostic information about the ineffi-
ciency of DMU,.

1This also opens the way for many different DEA modeis
which are refined, more flexiple or more convenient for
computaticns. These DEA models (BCC model, additive
DEA model, cone ratio DEA model, CCW model) and their
mathematical characteristics are beyond this paper.

zFor the e-Method, see Zukhovitskiy et al, (1966), pp. 46-51.
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5. Problem 1 is defined as the “primal” problem
while problem 2 is the “dual.” The dual variables
have the economic interpretation of “shadow
prices.” The value of v, indicates the marginal
effect of input x,, on the DEA efficiency score. The
value of p, indicates the marginal effect of output
¥, on the DEA efficiency score. A comparison of
these dual variables provides information on the
relative importance of inputs and outputs in the
DEA evaluation.

6. In the CCR model, problem 1 (or problem 2) is
solved for each DMU. Theoretically, there is no
limitation on how many DMUSs can enter the DEA
model. Hence, the DEA model can perform an effi-
ciency diagnosis for many DMUs.

Why is this approach referred to as data
envelopment analysis? The two inequalities in
conclusion 1,

A,

FETY

1
and 8,x, > % XA
fet

1§

n
Vo = 2 b

j=1
forr=1,..,8i=1,..,m

are constraints to be satisfied for the optimal solu-
tion, The first inequality implies that the output of
DMU, should not exceed the linear combination of
all observed output y,; thus, the optimal solutions
will create a hyperplane to envelop the output of
DMU, from above. Similarly, the second constraint
can be interpreted such that the optimal solutions
create another hyperplane which envelops the
input of DMU, from below. Since both outputs
and inputs of the DMU evaluated are enveloped
from above and below, the name DEA exactly
matches the geometric interpretation of the
procedure.

To see how this works, assume that there isa
group of DMUs that produces the same outputs
using the same inputs, but in varying amounts. In
ranking their efficiencies of DMUs, DEA assigns
weights to the outputs and inputs of each DMU.
These weights are neither predetermined nor
based on prior information or preferences of the
decision makers. Instead, each DMU receives a set
of “optimal” weights that are determined by
solving the above mathematical programming
problem. This procedure generates a DEA effi-
ciency score for the DMU evaluated based on the
solution value for the input and output weights.
A set of constraints guarantees that no DMU,
including the one evaluated, can obtain an effi-

ciency score that exceeds unity. In this way, DEA
derives a measure of the relative efficiency rating
for each DMU in the cases of multiple input and
output.

Among DEA models, the additive model has
been important in applications. The additive
model can be formalized as the following two
problems, which are dual to each other 3

Problem 3:

m 5

Max Z 57/ Xol + = 577 |yl
i= re=l
subject to

n i
Xp — 2 X A; -87 =0, ,z ¥y )Lj — 8% ® Vo,

j=1 j=1

2 A=1,420s 20,5, >0,

i=1

fori=1,.,mr=1,.,58]j=1,.n

Problem 4
5 n:
Min E.] WYy + E:] ViXy + Uy

subject to:

m

5

E; MYy t § VX + U, 20,
v = 1/ Exiolf pe< 1/ !ymii
fori=1.,mr=1,,8]= 1.,

Compared with the CCR model, the additive
model has introduced another constraint

T
2 A = 1andanew variable u,. The new
=1

constraint in problem 3 ensures that the efficiency
frontier is constructed by the convex combina-
tions of original data points rather than a convex
cone as in the CCR model. The new variable u, in
problem 4 is used to identify returns to scale. The
other variables in the additive model have
interpretations similar to the CCR model.

In addition, there is a difference in the way the
additive model and the CCR ratio model locate the
efficient reference point on the facet. In figure
A.1, an output isoquant consisis of input combina-
tions for five firms (F,, F,. F,, F,and F,} in the case
of one-output {y) and two-input (x, and x,). Point F,
represents an inefficient DMU which uses more of
x,and x, to produce the same amount of output as

3See Charnes et al. (1985}
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Figure A1
The Difference Between CCR and Additive DEA Models

Input X,

its efficient reference DMUSs, F, and F,. By the CCR
ratio model, the efficiency score is determined via
a value h,, which can be interpreted in terms of
the ray from the origin to F;. That is, h, is ex-
pressed by the length of the ray from the origin

In measuring and evaluating technical and scale
efficiencies there are two basic approaches: the
DEA technique developed by Charnes, Cooper and
others in operations research and the approach
developed by Farrell, Fare and Grosskopf, among
others, in economics.® The latter approach is
based upon a set of axioms on production tech-
nology to define the concept of efficiency. Some
connections of the two approaches have been
investigated by Banker, Charnes and Cooper
(1984} and by Fare and Hunsaker (1586).

to the intersection point B divided by the length
from the origin to F.. In the additive model,
however, the reference efficient point on facet
F,-F;is denoted by A, which is determined by
maximizing the sum of the slacks, s, +s,. Geometri-
cally, the slack variables are expressed by the
horizontal line starting from F,and the vertical
line extending to the facet F,-F,. Point A is selected
such that the sum of the lengths of the horizontal
and vertical lines are maximized. The DEA effi-
ciency score in the additive model that we used is
computed by the following formula:

8

A2 X+ 2 ¥+ )3 2s5).

ret 1 =1

where xj, and y;, are corresponding inputs and
outputs of the efficient reference point, such as
point A.

The DEA scale efficiency in the additive model is
identified by a variable u,, in problem 4 in accor-
dance with the following criteria:

Ifu, = 0, DMU, has constant returns to scale;
otherwise,

u, > 0implies decreasing returns to scale;
u, < 0implies increasing returns to scale.

The value of variable u, is part of an optimal solu-
tion of the additive model and is produced by the
computer code such that facet rate = —u,,.

e
i’i‘%\}
saf

Both approaches share the characteristics that
there is no need to specify a production function
or cost function and to estimate the parameters.
Therefore, they are nonparametric, nonstochastic
techniques that can be used to construct a
multiproduct frontier relative to which the effi-
ciency measures of the entities in the sample are
calculated, Because the frontier in these
approaches is generated by data and all observa-
tions are enveloped by the frontier, both
approaches can be viewed as Data Envelopment

1See Fare and Hunsaker (1986); Fare, Grosskopf and
Lovell (1985).
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Analysis. In this appendix, some of the differences
and similarities among the CCR and the additive
models and the Farrell or Russell models are
discussed.

The choice of efficiency reference on the rele-
vant frontier is a major difference among these
DEA models. In the Farrell or Russell models,
three measures of technical efficiency can be
defined: input, output and graph efficiency
easures.

Using the input efficiency measure, the ob-
served gutput vector is fixed and the search for
efficient reference is constrained to proportion-
ally reducing inputs until the efficient frontier is
reached. The “ratio of contraction,” as it is called,
is the ratio of the particular input to be efficient to
the current level of inputs {in the Farrell input
moedel).

Using the output efficiency measure, the ob-
served input vector is fixed and the outputs pro-
portionally expanded until the efficient frontier is
reached. The “stretch ratio” of the output, as it is
called, is the ratio of efficient output to the current
level of output (in the Farrell output model).

For the graph efficiency measure, both input
and output vectors are varied. Inputs are reduced
and outputs are expanded, both proportionally,
with the input ratio reciprocal to the output ratio.

In the case of figure 1 in the text, A is the refer-
ence point for the input efficiency measure, Bis
the reference point for the output efficiency
measure and C might be the reference point for
the graph efficiency measure. These three effi-
ciency measures can be classified as radial
because proportional changes of inputs and/or
outputs are used in defining them.

To tllustrate the input efficiency measure, ray
OF, in figure 1 of the text is used to represent the
optimal scale that would be generated by long-run
competitive equilibrium. The overall input effi-
ciency measure is defined with respect to the ray
OF,, while the input pure technical efficiency is
defined with respect to the line segment connect-
ing F,, F, and F,. The measure of input overall
technical efficiency, KD/KF,, can be decomposed
into the measure of pure technical input efficiency
given by the ratio KA/KF, and the measure of input
scale efficiency given by the ratio KD/KA. When

the scale efficiency equals unity, the constant re-
turns to scale occur; otherwise non-increasing or
varying returns to scale hold.

It is clear from these examples that, in general,
these radial efficiency measures will be different.
Moreover, there is nothing to guarantee that a
firm that is output efficient by this measure is also
input efficient or vice versa. For example, the firm
denoted by F, in figure 1 of the text is output effi-
cient by the output efficiency measure, but is not
input efficient (see Fare, Grosskopf and Lovell
(1985)). However, the Farrell input efficiency
measure is reciprocal to the Farrell output effi-
ciency measure, if and only if, the technology is
homogeneous degree one. Because this condition
is satisfied by constant returns to scale tech-
nology, the Farrell input and output efficiency
measures are “identical” in this case. For models
with other technologies, simple relationships
between input and output efficiency measures do
not hold.

An improvement of the Farrell or Russell models
over the others is the use of non-radial efficiency
measures. The use of proportional changes of
inputs and/or outputs in searching for efficient
reference is abandoned.

Moreover, different piecewise linear technology
can be accommaodated in both Farrell and Russell
muodels to meet the needs of various users. For
example, to measure scale efficiency we can use
constant refurns to scale, non-increasing returns
to scale or varying returns to scale technoiogies.
These technology constraints can be easily imposed
by corresponding restrictions on the “intensity
parameters” in the Farrell or Russell models,

in the CCR or additive DEA model discussed in
appendix A, however, only one efficiency measure
is defined: the CCR model uses the radial measure
of efficiency while the additive model uses the
non-radial measure.

Geometrically, the efficiency frontier with cons-
tant returns to scale technology is a convex cone,
but it is a convex hull in cases of both non-increas-
ing and varying returns to scale. In general, these
constraints on technology form a chain such that
one efficiency frontier is enveloped by another.
Consequently, the associated efficiency measures
are campatible and nested.?

25ee Grosskopf (1986).




As is presented in appendix A, the CCR model
has a convex cone efficiency frontier that implies
technology with constant returns to scale. The
additive model uses a convex hull as its efficiency
frontier that is associated with the varying returns
to scale. Even though the efficiency frontier of the
additive model is enveloped by the efficiency
frontier of the CCR model, the efficiency scores
given by both models are not compatible because
one uses a radial measure white the other uses a
non-radial measure. The efficiency ratio of the
CCB model is identical to the Farrell input effi-
ciency measure {or reciprocal output efficiency
measure) with constant returns to scale technol-
ogy. Although both additive and Russell models
detine non-radial efficiency measures, the defini-
tions are not identical. Hence, the efficiency mea-
sures given by these models are not compatible.

With our 1984 data of 60 Missouri commercial
banks, we used the Farrell model with input and
output efficiency measures and different tech-
nology constraints. The overall technical efficien-
cies and scale efficiencies are presented in table
B.1. The reported results are based upon the input
measure of efficiency.

Comparing table B.1 with table 1 in the text, we
can see that the CCR model and the Farrell input
model give identical technical efficiency measures
and classification of returns to scale. Farrell input
scale efficiency measures in table B.1 indicate that
the scale inefficiency was not a major source of
technical inefficiency in this group of banks. For a
few of the banks in the sample, however, the scale
inefficiency might be a problem.




