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A Methodological Approach to
Chaos: Are Economists Missing

the Point?

“A very slight cause which escapes our notice determines a considerable
effect which we cannot fail to see, and then we say that this effect is

due to chance.”

.HERE 1S INCREASING interest among econ-
omists in a new field of study that may offer
an alternative explanation for the seemingly
random behavior of many economic variables.
This research, which originated in the physical
and biclogical sciences, concerns a phenomenon
called deterministic chaos.!

Contrary to the common usage of the word,
chaos in this context describes the behavior of a
variable over time which appears to follow no
apparent pattern but in fact is completely deter-
ministic, that is, each value of the variable over
time can be predicted exactly. In fact, one
“chaologist” describes chaos as “. . . lawless
behavior governed entirely by law.”?

To demonstrate the difficulty in determining
whether a variable is random or chaotic, figures
1a and 1b show two time series of a variable;
one series is a random variable, whose actual
value cannot be known with certainty, and the
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other is a chaotic variable, whose value can be
predicted with certainty. Even the most prac-
ticed observer, however, would have difficulty
determining which of these series, if any, is not
random. As a result, most economists would
model or estimate both time series as random
processes. The chaotic series is described by a
very simple deterministic equation and identified
later in this paper.

Often, behavior that cannot be explained by
standard theories and modeling techniques is at-
tributed to random forces, even when there is
no theoretical reason to do so. This paper argues
that economists are perhaps not using the ap-
propriate types of models and empirical techni-
ques to explain the behavior of some economic
variables and that the choice of methodology
needs to be more closely examined.

The study of chaos is a recent phenomenon in
the biological and physical sciences and is just

1The terms “deterministic chaos'” and ‘"‘chaos’ are used in-
terchangeably here, although deterministic chaos is the
more precise description.

2Stewart (1989), page 17.
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now beginning to be applied to economics. Un-
fortunately, many of the empirical tests for
chaos are imprecise and, because of mathemati-
cal constraints, the theoretical models used to
generate chaos are generally limited to systems
with only one or two explanatory variables.
Both of these factors restrict the usefulness of
applying chaos to economic systems. Neverthe-
less, the theory of deterministic chaos has at-
tracted a great deal of attention, both in the
popular press and in academic circles. The dis-
cussion that follows attempts to clarify some of
the issues and suggests some ways to incorporate
chaos into economics.

This article first reviews how economic vart
ables typically are modeled by describing and
evaluating several techniques of economic model-
ing using a simple model of output and popula-
tion growth.? Next, chaos is defined and its pro-
perties demonstrated. The advantages and pit-
falls of applying the theories of chaos to eco-
nomics are then discussed and illustrated.

ECONOMIC MODELING

There are many different ways to build
economic models. Four such possibilities are ex-
amined here for the case in which all variables
are completely deterministic.* The types of mod-
els examined here are static linear, static non-
linear, dynamic linear and dynamic nonlinear. A
further distinction, which proves to be signifi-
cant, is also drawn between discrete and contin-
uous time dynamic models. A simple model of
output, where labor is the only input, is used to
illustrate each approach to modeling as well as
the restrictiveness of many common modeling
technigues, In addition, focusing on economic
modeling allows us to show that chaotic dynam-
ics can only arise in certain types of models
that have often been excluded, a priori, by
econormists.

Begtie Madels

The simplest type of economic model is a
static linear model, in which variables do not

change over time and are related in a propor-
tionate manner. Consider, for example, the
following simple production function, which has
only labor as an input:

(Y = AN A > 0,

where Y is output, which is completely consumed
by workers {there is no saving or investment}, N
is labor employed and A is the productivity
parameter. This equation states that output is
puositively related 1o the amount of labor em-
ployed. Given the value of A and the labor sup-
ply, the exact value of output can be determined.

This type of model is highly restrictive; any
change in labor changes output by a constant
percentage. Hence, the production function ex-
hibits constant returns to scale.

Allowing the model to be nonlinear (that is,
not necessarily proportionate} provides a more
general model in which equation 1 is a special
case. An example of a nonlinear production
function is given by:

(Z)Y = AN® A >0 0> 0.

If @ = 1, this model is identical io the one
shown in equation 1. By not restricting o to
equal one, however, this model can be used to
examine the case in which output can vary
disproportionately with respect to changes in
labor. This is illustrated in figure 2, which
shows the relationship between output and labor
for different values of « (for simplicity, A = 1}.
Notice that if « is between zero and one, the
production function exhibits decreasing returns
to scale (that is, output increases less than pro-
portionately with respect to a change in labor);
if a is greater than one, production is character-
ized by increasing returns to scale {output in-
creases more than proportionately with respect
to an increase in labor). Empirical tests of actual
production relationships can be performed to
determine if o is actually different from or
equal to one.

SThere is a growing body of theoretical literature incor-
porating chaos into many different types of economic
models. These models include Benhabib and Day (1981},
Deneckere and Pelikan (1986}, Grandmont {1885), De
Grauwe and Vansanten (1990), Kelsey {(1888), Day and
Shafer (1985) and Stutzer (1980). For surveys of the
theoretical literature, see Kelsey (1988) and Baumol and
Benhabib (1989).

4There is also a burgeoning field in stochastic {random)
modeling, which incorporates the assumption of random-

ness used in econometric models into the theoretical litera-
ture. Recent papers also lock at the properties of chaos in
the presence of a random component [see, for example,
Kelsey (1988)]. For simplicity, this paper focuses only on
purely deterministic systems.
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Figure 2
Linear vs. Nonlinear Production

Functions
Y = AN?
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One disadvantage of these static models is that
they can be used to describe the relationship
between output and employment only if the
labor force or population remains constant over
time.® Suppose instead that we want to examine
the behavior of output over time as it is related
to a continuously changing labor force. A stan-
dard equation borrowed from Haavelmo (1954),
used to describe the growth of the labor force
where that growth is dependent on the level of
output, is given by:

(3) NN = C —DN(t/Y) € > 0, D > 0,

where C and D are constants, and a dot over a
variable means the change in the variable with
respect to a very small change in time. This
type of equation is called a differential equation.

Equation 3 states that the percentage rate of
change of the labor force [N(t/N(t)], where time
is continuously changing, equals the difference
between the rate of birth, C, and the rate of
death, given by DN{)/Y(t), where N{)/Y(t) is the
number of individuals who have to subsist on
each good at time t.

Using the linear production function given in
equation 1 and substituting it into equation 3
provides a linear specification of the percentage
change in the population:

4) N(t/N(t) = C-D/A.

Notice that when the production function is
linear the rate of death, D/A, is constant.

Solving equation 4 yields the following solu-
tion for the population:

{5) Nit) = Kelc-Diak,
where K is an arbitrary constant.®

This solution has the property that, unless the
rate of birth (C} is exactly equal to the rate of
death (D/A)—in which case the population will
equal K—the population will either rise exponen-
tially or fall to zero. This result is highly restric-
tive, however, because the likelihood of either
the two rates being identical or the population
increasing infinitely is, in reality, very small. In
other words if C # /A, the system is unstable.”
Unfortunately, in models of other types of eco-
nomic variables, results that greatly restrict the
possible values of the parameters of the models
are not uncommon. In addition, because of the
complexity of many economic models, the im-
plications of restricting the value of the parame-
ters 1o determine the solution or to ensure a

5For expositional ease, the terms “population” and “labor
force” are used interchangeably.

SEquation 4 is solved by the variable separable method of
solving differential equations found in most calcuius books.
K is the constant of integration, which can be determined
by choosing an initial condition.

7In fact, stability is an important issue which is frequently
ignored or abstracted from in economics. Stability is impor-
tant because, for example, an unstable equilibrium is not a
sustainable equilibrium. Stability is also important in the
choice between linear and nonlinear models. Linear models

have three possible cases: stable converging dynamics
{such as when C = D/A in the model above), unstable
dynamics (when C # D/A) and cyclical dynamics, which is
the least common of the three. In nonlinear modets, how-
ever, cyclical dynamics are far more common, and ex-
ploding dynamics may not occur. Thus, it is also important
to consider the desirable and realistic stability properties
when choosing & model. Obviously the nonlinear case is
more general and the most realistic for variables that ex-
hibit cyclical variation. For the purpose of this paper,
however, the issue of stability is ignored.




stable solution are not always as obvious as in
the population growth model. Because linear dif-
ferential equations are far simpler to solve than
nonlinear differential equations, and because
their solutions are more often stable and easier
o interpret, however, they are used in econom-
ic models more often than may be appropriate.

Combining the nonlinear production function
given by equation 2 with the description of
population growth given in equation 3 provides
a less restrictive model of population growth:

(6) N(tVN{t) = C — DNit)' ""/A,

Unlike equation 4, equation 6 allows the labor
force to vary more or less as the current labor
force changes. Unfortunately, the price of the
generality provided by such nonlinear differen-
tial equations is that most either cannot be solved
or have solutions so complex the results cannot
be interpreted. Not surprisingly, economists
often avoid these types of models.

The model used here, however, was chosen for
fts tractability and can be solved for the value of
labor at any time t.* All that is necessary for a
stable solution is that the production function ex-
hibits decreasing returns to scale {0 < a < 1).
Regardless of the value of the other parameters,
if o is between zero and one, the population
will reach a stable equilibrium level. Hence, in
contrast to the dynamic linear model discussed
previously, the results of this model are more
realistic and provide a more general description
of population and output growth.

One problem with using continuous time
models in economics is that data are available
only in distinct intervals (daily, weekly, monthly,
etc.). One approach typically taken by econom-
ists, therefore, is to convert these continuous
time models into discrete time models. Discrete

dynamic models are called difference equations;
they measure time in distinct intervals rather
than the differential equations used above, which
measure time continuously. Equation 6 can be
transformed into a difference equation by let-
ting the rate of change of N (previously given
by N) equal the difference between the value of
N at time t and t + 1. Thus, equation 6 becomes

(7) (N, —-NJN, = C - DINJY),
where Y, = AN,

Combining these equations and simplifying the
resuit yields:

(8) N,,, = N, l{1+0C) - DN %A,

which, following Stutzer (1980), can be rewritlen
using a change of variables as

@ X, = kx0-x"9,

where k = 1 + C°

The models shown in equations 8 and 9 de-
scribe the most general specification of popula-
tion and output growth given the assumptions
made above. Behavior is not restricted to being
linear, nor is population or output restricted to
remaining constant over time. On the other
hand, as noted earlier, these more general
models often cannot be solved or have solutions
without any eccnomic interpretation. Neverthe-
less, unless there are theoretical reasons for
assuming relationships are static or linear,
dynamic nonlinear models, which provide the
most general specification of behavior, should at
least be considered in economic analysis, Al-
though generality for its own sake is not a de-
sirable goal, using a more general model would
be appropriate when simpler models have solu-
tions that are highly unrealistic or when param-
eters have to be restricted beyond reason (as in
the model presented here). In addition, if eco-
nomists want to test their models and results
empirically, then these variables should he
modeled in the form in which they are esti-
mated—discrete form.1? As it turns out, these
types of nonlinear dynamic models can exhibit
chaos.

aFor the selution and discussion of this model, see
Haavelmo {1954), pp. 24-29.

sAllowing N, = [A(1+CyD]/u-= X, only changes the scale
of the population and has no effect on the general charac-
teristics of the solution. For further discussion of this pro-
cedure and the solution, see Stutzer (1980).

1eAlthough the model given by equation 6 is stable in con-
tinuous time, it is not necessarily stable in discrete time

since in discrete time this model can generate chaotic

dynamics for certain parameter values. Differential equa-
tions can also exhibit chaos, although only in more com-
plicated models. This is discussed in greater detail later.
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The possibility that chaos exists in economic
variables has strong implications for the way in
which economics is modeled. For example, some
variables that appear to be random processes,
like one of the variables shown in figure 1,
might in fact not be random at all; instead it
might be completely explained using the ap-
propriate deterministic model. This section
demonstrates the properties of chaos, using a
simple model.

In the most general sense, the term chaos is
used to describe the behavior of a variable over
time that appears random but, in fact, is deter-
ministic; more precisely, given the initial value
of the variable, all future values of the variable
can be calculated with exact precision.’* In con-
trast, the value of a random variable can never
be predicted with certainty.

More formally, a function is chaotic if, for
certain parameter values, the following two con-
ditions hold: First, the function never reaches
the same point twice under any defined interval
of time. In this case, the function is said to ex-
hibit aperiodic behavior. Second, the time path
is sensitive to changes in the initial condition, so
that a small change in the value of the initial
condition will greatly alter the time path of the
function.*?

Chaos only arises in certain types of nonlinear
dynamic systems, although not all nonlinear dy-
namic equations are chaotic. Moreover, equa-
tions that can be characterized as chaotic need
not exhibit chaos for all parameter values. Rath-
er, functions that can exhibit chaos will do so
only for certain parameter values. This is ex-
plained by example below.

The properties of chaos can be demonstrated
using a simple mathematical equation, called the
logistic growth equation. While this model has
no particular economic interpretation, it is the

Figure 3
The Logistic Growth Curve For
Various Values of k

Xea = kX (1 - Xy)

S
=
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0.0
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simplest model that exhibits chaos and provides
reasonably interpretable graphical results. This
equation is given by:

10 X, = kX1-X),0< X, < 1,0 <k < 4.

t+ |
Equation 10 describes the time path of a vari-
able, X (which for expositional purposes is called
a population), that is a function of its previous
value and a parameter k. To demonstrate chaotic
behavior in this simple framework, the value of
X can only take on values between zero and one.
The value of k, the only parameter in the equa-
tion, is called the “tuning” parameter; it deter-
mines the steepness of the function. Figure 3
shows the function given in equation 10 for
various values of k. Increases in the popula-
tion below X increase future values of X more
than proportionately. Past this point, the popula-
tion begins to decrease.*® For larger values of k,

1*For simplicity, only single-variable equations are discussed.
Although chaos exists in multivariate economic systems,
tests for chaos in these systems are just beginning to be
developed, and the mathematics of such systems are ex-
tremetly complex.

12There are many different characterizations of deterministic
chaos, but they all include the one used here. For more
rigorous definitions and discussion of the different defini-

tions, see Li and Yorke {1975), Brock and Dechert {1988}
and Meiese and Transue (1986}. For a good mathematical
description of chaos and the mathematical tools used in
the theory of chaos, see Devaney (1989).

HThis behavior is similar to that of a total product curve
where, once the marginal product becomes negative, fur-
ther increases in an input decreases output.
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Figure 4

A Stable Time Path for a
Logistic Growth Curve

Xip = 3 X (1 - Xy)
t=1 to 500

XO — 20

the absolute value of the rate of change of X is
larger.

For certain values of the tuning parameter
(k < 3), the system is stable; this means the
popuiation will reach some sustainable steady-
state value which differs from X.

Figure 4 illustrates how the time path for X, ,,
is solved graphicaily. The parabola represents
equation 10 when k is equal to three; all values
of X, and X,,, must lie on this curve. The 45-
degree line depicts the points where X,,, = X,,

which is required for a steady-state equilibrium.
In this example the initial value (when t = 0) is
.20. To determine the value of X, draw a line
between the initial value (X)) and the parabola
(line segment X B). To find the value of X,, set
X, = X, by drawing a line from point B to the
45-degree line (point C). Then draw a straight
line from point C to the parabola. This is the
value of X, (point D). This process, called itera-
tion, can be used to determine as many subse-
quent values of X as is desired, once the initial
value is determined.’* As we can see in figure 4,

14Notice that X |, which must always lie on the parabola,
can be either above the 45-degree line (as in point D) or
below it (as in point F). For precision, the equation is
solved numerically and then graphed.
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the population appears to be converging to a
steady-state equilibrium value at 2/3 (X").

If the value of k increases past three, how-
ever, the equilibrium point becomes unstable
and the time path exhibits a two-period cycle,
where the variable alternates between two
values. Further increases in k produce a four-
period cycle (that is, the time path repeats the
same sequence of numbers every fifth iteration),
then an eight-period cycle, and so on, with the
periodicity increasing by 2" (n = 1,2,3, .. ). If k
increases past a certain point called the “point
of accumulation” (for this function, it occurs at
k = 3.5700), the time path enters into a region
in which the function can exhibit chaos.’ In the
chaotic region (3.57 < k < 4 for this function),
there can be both an infinite number of periodic
cycles and an infinite number of initial condi-
tions that produce an aperiodic time path.® Us-
ing this simple example, we can demonstrate
some of the properties of chaos in graphical
form.

Properifies of {Chaos

An example of aperiodic behavior is seen in
figure 5. The first 500 iterations are shown in
this figure {that is, t = 1, 2, . . . 500), and no
single point is ever reached twice.*” In fact, no
matter how many times this equation is iterated,
X, never has the same value twice.’® If the data
are plotted as a time series, it would look similar
to figure 1a, the chaotic series in figure 1, and
one might conclude that the data are generated
by a random process, such as figure 1b, because
they follow no obvious pattern. This is not the
case here; the data in figure la and figure 5
were generated from models without a random
component and therefore are completely
deterministic.

The other characteristic of a chaotic function
is that its time path is sensitive to the choice of
initial values, An exampie of how changing the

Figure 5
A Logistic Growth Curve
Exhibiting Chaos

Xpq = 3.82840 X (1 ~ X¢)
Xo = .0101 t=1 to 500

X1
1.0 4

0.5 1

initial condition can affect the time path is
shown in figure 6. In this figure, the values of
X, are plotted against time, as in figure 1. This
diagram demonstrates how changing the initial
value, X,, at the fourth decimal place (from
.0101 to .0100) causes the time paths generated
by equation 10 to deviate substantially from
each other.® Although not all sections of the
time path differ as dramatically as the one
shown here, figure 5 graphically demonstrates
that the choice of an initial condition or, for
forecasting purposes, the choice of a time inter-
val (that is, determining where to start the sam-
ple), can greatly alter the results. In fact, despite

#This process of increasingly complex periodicity is called
bifurcation and is discussed in most papers on chaos. For
a nontechnical discussion of bifurcation, see Gleick (1987)
and Stewart (1989). For a more analytical treatment of
bifurcation, see May (1976) and Baumol and Benhabib
(1988). A more rigorous discussion of the relationship be-
tween biurcation and chaos is given in Li and Yorke
{1975},

18Notice that not every initial condition gives rise to an
aperiodic time path.

17This property is unlikely 1o be found in actual data, how-
ever, because of rounding. Although theoretically, aperiod-

icity is required for chaos, tests for chaos in actual data
take a different approach, thus avoiding the problem.

18The time path can avoid having repeat values because the
number of possible points between zero and one is infinite,

9Although it sometimes looks like the function is pericdic,
this appearance is a result of the lack of precision of the
printer and the scale of the graph. In fact, there are no
periodic points in this function.
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Figure 6

A Segment of the Time Trend Showing Sensitivity

to Initial Conditions
X1=3.82840 X, (1 - Xy)
Xo=.0101 ¥,=.0108

X¢
1.0

0.8k

0.6}

0.4

0.2

seemingly trivial differences in the initial condi-
tions, the time path produced by one initial value
will not necessarily be similar to the time path
generated by a marginally different initial value.
In general, the two time paths that arise from the
different initial values will have periods during
which they are arbitrarily close together and
periods during which they deviate substantially.

Chaotic functions also exhibit sensitivity to
very small changes in the parameter values. A
third- or fourth-order change in the value of a
parameter can alter the time path from stable
to chactic or vice versa.

Sensitivity to changes in the parameter values
is illustrated in figure 7. Here, a fifth-order
change in the value of the tuning parameter
from 3.82840 to 3.82844) produces not only a
substantiaily different time path from the one in
figure 3, but also one that exhibits periodic
rather than chaotic behavior.?

[ U ¥ SR U & S .
Are Affraciors Biranse:

Another feature often found in chaos,
although neither necessary or sufficient for
chaos, is a strange attractor.” The properties of
attractors and strange attractors are best illus-

20Recall that when a function is in a chaotic region (that is,
when the parameters are such that the function can ex-
hibit chaos), there can be both periodic and aperiodic time
paths.

2The only examples of chaos without the presence of a
strange altractor are found in certain types of dissipative
systems.




Figure 7

A Logistic Growth Curve With
Periodic Points

Xi =3.82844 X, (1 - Xy)

Xp = .0101 t=1 to 500

X1
1.0 §

0.5 1

0.0

trated by example. In a stable system, the time
path converges to an equilibrium point {(for ex-
ampte, X” in figure 4). The equilibrium point is
also called the attractor, because the time path
is “attracted” to the equilibrium point. Another
possibility is that the time path has two attract-
ors, and the system oscillates between them,
never remaining at one equilibrium point. This
is found in predator/prey population models,
where the population grows until it is so large
it begins to die off and then shrinks to a level
so small it begins to grow again.

A “strange attractor” is the name given to the
case where there is a region, rather than a
finite set of points, that attracts the time path
of the variable. That is, after some number of
iterations, which varies depending on the func-
tion, the time path of the variable is completely
contained in this region {the strange attractor).
Thus, even though the path is aperiodic and

i i SR

Figure 8
The Strange Attractor for a
Chaotic Function

Xt,,l = 3.8284¢0 Xt(‘l — xt)
Xg = .0101 t=1 to 1500

X
1.0

0.5

0.0

therefore never reaches an equilibrium in the
standard sense, it also never leaves the strange
atiractor and therefore is not unstable (for ex-
ample, never goes to positive or negative infini-
ty). An example of this is shown in figure 8§,
which takes the same numerical example as in
figure 5, but iterates it 1500 rather than 500
times. In this picture, the values of X are still
contained in the same area as in figure 5, but
the distribution of points is becoming denser.
The bounded region (shown by the dotted line
in figure 8} is the strange attractor for this
function. If the function is iterated further, the
area within the bounded region would appear
to be a solid block, although the function weuid
never have the same value twice. In fact, the
existence of a strange atiractor is an important
way to distinguish between a random and
chaotic time path.??

2Ancther definition of a strange attractor is an attractor with
fractal dimension. In fact, if a strange attractor exists, the
variable has fractal dimension. Random variables have in-
finite dimension, however. As a resull, tests for dimension
are one of the main ways data are tested to determine if

they are chaotic. For the purpose of this paper, however,
the issue of fractals and fractal dimension will be ignored.
For a discussion of these topics, see Mandelbrot {1983}
and Gleick (1987).
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Although economists are beginning to incor-
porate chaos into their economic and econo-
metric models, there has been little discussion
of the ways in which chaotic dynamics are use-
ful or realistic for economic medels. Clearly,
chaos holds considerable appeal for economists
who are looking for a deterministic explanation
of the apparent randomness in economic vari-
ables. Economists frequently assume randomness
when they are unable to explain the behavior of
an economic variable empirically. The presence
of an alternative explanation, chaos, will require
themn to consider more carefully the rationale
behind their assumptions.

One problem with incorporating chaos into
economics is that, while economists can either
postulate an equation and test it for the presence
of chaos or, alternatively, see if the data them-
selves are chaotic, it is especially difficult to
identify the correct functional form that charac-
terizes the data. The choice of a functional form
is always a problem in economics, but, as pre-
viously discussed, it is particularly difficult to
model nonlinear dynamics. This problem is ex-
acerbated because, as a result of the mathemat-
ics required, the study of nonlinear dynamics
has, until recently, been relatively limited in
general and largely ignored in economics.??

Even when it is possible to estimate nonlinear
dynamic equations, the models themselves often
cannot be solved analyvtically. Without explicit
solutions to these models, their usefulness is ex-
tremely limited. Obviously, the difficulty of de-
termining the “true” underlying model from a
data series is a problem whether or not chaos
exists. The “discovery” of chaos, however, has
focused much more attention on this problem,
especially if the data are nonlinear.
Eegnonic Modeling and Chaos

The study of chaos emphasizes the impor-
tance of rigorously medeling the dynamics of a
system rather than merely taking a static model
{(like equations 1 and 2} and adding time sub-

scripts and an error term. Although these sim-
pler models may be more likely to have solutions
with explicit results that can be tested empirical-
ly, the dynamics that arise may not capture the
behavior of the variable of interest. The richness
of a model may be found in explaining the be-
havior of a variable over time as much as in the
direct, time-independent {or time-constant) rela-
tionship between the variables.

In addition, the study of deterministic chaos il-
lustrates some of the pitfalls of first differen-
cing a dynamic model 10 convert it 1o discrete
time, as was done in the model of population
growth presented above. This practice is com-
mon in economics because data are only
available in discrete intervals.

As is shown in Stutzer (1980} and demon-
strated here, there are first-order differential
equation models (such as equation 6) which con-
verge to a steady-state equilibrium that are cha-
otic when expressed in discrete time {(equation
9). Thus, the dynamic properties of the discrete
analog of a differential equation cannot be as-
sumed to be the same. In fact, it has been
shown that, although chaos can arise in first-
order difference equations, it can only arise in
third-order or higher differential equations.2* As
a resuli, an economist must be careful about
either converting a continuous time dynamic
model into a discrete model] (such as converting
equation 6 into equation 7), or taking a static
model and simply adding a time subscript,
rather than postulating a model that is dynamic
(in either discrete or continuous time) and esti-
mating or solving it in that form. The choice of
the appropriate type of model should depend on
the economic variables being described rather
than analytical convenience. This issue is partic-
ularly important if a continuous-time dynamic
model is estimated in discrete time using the
steady-state equilibrium properties of the
continuous-time sohition. The discrete-time equa-
tion that is being estimated may not reach a
steady state at all, or the solution could differ
qualitatively from that found in the continuous-
time version of the model.

23For recent work in nonlfinear dynamics, see Grandmont
(1887).

24The *‘order” of an equation refers, for a differential equa-
tion, 1o the highest powsr attained by the derivative and,
for a difference equation, the highest degree of differen-
cing. For a more complete discussion, see Chiang (1984).
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Fronomeirics and {haos

The study of deterministic chaos also offers
several lessons for econometricians. i forecast-
ing is a goal of economic modeling, inappropriate
modeling techniques in the presence of chaos
become more costly. If the data are chaotic,

forecasting is close to impossible since a small
error in the value of the initial condition can
lead to highly inaccurate predictions (see, for
example, figure 6). Similarly, an error in any
parameter value can also produce incorrect fore-
casts (see figures 5 and 7). Thus, it is important
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to realize the lmitations of economic forecasts
in the presence of chaotic variables.

Chaos does not have to be present in the data
to find the sort of fluctuating behavior (although
without any clearly defined periodicity) that is
often found in economic data. Nonlinear non-
chaotic models often can generate time paths
that appear random, and testing for nonlineari-
ties is the likely next step for future research in
this area. In fact, empirical economists are be-
ginning to test for both nonlinearities and chaos
in economic data (see insert on page 47). As a
result, more work needs to be done in under-
standing nonlinear estimation so that economic
models can describe a greater variety of be-
havior and be more accurate as well. In addi-
tion, the existence of chaos suggests that econo-
mists might want to try nonlinear specifications
of a variable before resorting to modeling it as a
random variable. This in turn will help to im-
prove the quality of economic forecasts in the
presence of nonlinear variables.

In addition, the use of a random component
in estimation does not necessarily imply that the
variable itself is random, but rather that other
relevant variables might be excluded from the
regression. Although each of these other vari
ables could have a small influence on the system
by itself, the total effect of these excluded vari-
ables could be substantial. Given both the diffi-
culty in detecting what these missing variables
might be and data limitations, such a complex
system might best be approximated by a random
variable, even if there is no true randomness in
the variable being estimated. In fact, some argue
{see, for example, Kelsey, 1988} that, since eco-
nomic models do not include such {(chaotic) phe-
nomena as weather and other hiological factors
which can influence economic variables, it
“seems inevitable that we will have random
terms in our equations.”?®

The study of deterministic chaos and its subse-
quent application to economics has opened a
new realm of possibilities for economists trying
to explain cyclical or erratic behavior in eco-
nomic variables. As discussed above, chaos has
implications for both theoretical modeling and
empirical applications in economics. By illustrat-

ing explicitly how restrictive the assumption of
linearity can be, the study of chaos emphasizes
the importance of allowing for the possibility of
nonlinear behavior. The use of chaos in econom-
ics also has offered new explanations for behav-
ior that, until recently, has been able to be ex-
plained only by random forces.

The techniques that have arisen from the
study of chaos in the physical and biological
sciences are in their infancy. As these techni-
ques become more refined, and economists be-
come better trained in working with these types
of models, their ability to explain the behavior
of variables such as exchange rates, business
cycles and stock prices is likely to improve.
That possibility alone is sufficient reason for
economisis to take a closer look at deterministic
chaos in particular and nonlinear dynamics in
general.
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