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1 INTRODUCTION
Macroeconomic variables, such as inflation and interest rates, have been important objects 

of investigation in economics. A common assumption in economic models is that agents 
(households, firms, and governments) have rational expectations (RE) about these variables 
and thus accurately forecast the dynamics of the variables. An alternative approach limits 
the forecasting ability of the agents: They learn from the history of the variables. The central 
question of a learning model is whether the agents learn to behave over time in such a manner 
that the economy converges to the RE equilibrium in the long run. Thus, the convergence 
property of learning dynamics has been a key issue. Early examples that examine convergence 
to a RE equilibrium include Bray (1982), Bray and Savin (1986), Lucas (1986), Marcet and 
Sargent (1989a), and Woodford (1990).

We revisit the convergence issue using a simple two-period overlapping generations 
model of inflation—Example 1 in Bullard (1994). Ours is an endowment economy where 
money is the only store of value and monetary policy follows a constant money growth rule. 

We show in a simple monetary model that the learning dynamics do not converge to the rational 
expectations monetary steady state. We then show it is necessary to restrict the learning rule to 
obtain convergence. We derive an upper bound on the gain parameter in the learning rule, based on 
economic fundamentals in the monetary model, such that gain parameters above the upper bound 
would imply that the learning dynamics would diverge from the rational expectations monetary 
steady state. (JEL C60, D84)

Federal Reserve Bank of St. Louis Review, Third Quarter 2021, 103(3), pp. 351-65. 
https://doi.org/10.20955/r.103.351-65

YiLi Chien is a research officer and economist at the Federal Reserve Bank of St. Louis. In-Koo Cho is a professor of economics at Emory University 
and Hayang Univerity and a research fellow at the Federal Reserve Bank of St. Louis. B. Ravikumar is a senior vice president, the deputy director 
of research, and an economist at the Federal Reserve Bank of St. Louis. The authors are grateful for helpful conversations with James Bullard, 
George Evans, Thomas J. Sargent, and participants of “Learning Week” at the Federal Reserve Bank of St. Louis in 2017. Financial support from 
the National Science Foundation is gratefully acknowledged. 

© 2021, Federal Reserve Bank of St. Louis. The views expressed in this article are those of the author(s) and do not necessarily reflect the views of 
the Federal Reserve System, the Board of Governors, or the regional Federal Reserve Banks. Articles may be reprinted, reproduced, published, 
distributed, displayed, and transmitted in their entirety if copyright notice, author name(s), and full citation are included. Abstracts, synopses, 
and other derivative works may be made only with prior written permission of the Federal Reserve Bank of St. Louis.

Federal Reserve Bank of St. Louis REVIEW	 Third Quarter 2021      351

https://research.stlouisfed.org/econ/chien/sel/
https://research.stlouisfed.org/econ/cho/jp/
https://research.stlouisfed.org/econ/ravikumar/sel/


Chien, Cho, Ravikumar

352      Third Quarter 2021	 Federal Reserve Bank of St. Louis REVIEW

When we do not impose RE, agents forecast inflation (or, equivalently, the rate of return on 
money) using a learning rule that is a convex combination of past expected inflation and actual 
inflation (a constant-gain algorithm), so the data on inflation affects learning. Based on the 
forecast, they choose consumption and real balances. These choices, in turn, affect the path 
of prices and generate feedback from learning to actual inflation. Other examples of such 
feedback include Bray (1982) on prices, Marcet and Sargent (1989b) on hyperinflation, and 
Evans and Honkapohja (1995) on business cycles.

Our results are as follows. First, we show numerically that, for some parameter configura-
tions and initial conditions, the dynamic system produces cycles, nonmonotonic convergence, 
and a nonzero forecast error in the limit; that is, agents never learn the actual inflation. These 
simulation results show that the learning dynamics do not necessarily converge to the RE 
monetary steady state. (Besides the economic fundamentals such as endowments, preferences, 
and money growth, our simulations require initial conditions and one parameter of the learn-
ing rule—the constant gain or the weight that the learning rule places on the difference between 
actual and expected inflations, i.e., the forecast error.)

Second, we show that the gain parameter affects the convergence properties of the learning 
rule. We demonstrate that the convergence region around the monetary steady state varies with 
the gain. So, for some values of the gain parameter, the dynamic system monotonically con-
verges to the steady state, while for other values it displays cycles. We derive a necessary condi-
tion that the gain has to satisfy in order to guarantee convergence to the monetary steady state. 
This condition depends on economic fundamentals. Alternative learning rules with a different 
information set break the dependence of the convergence property on the gain parameter.

Section 2 describes the learning model of Bray (1982). Section 3 sets up the learning 
model of Bullard (1994) and derives the difference equation that drives the learning dynamics. 
Section 4 provides simulation results that show nonconvergence and illustrate the dependence 
of convergence on the gain parameter in the learning rule. Section 5 contains concluding 
remarks.

2 A LEARNING MODEL OF PRICES
In this section, we present a version of the learning model of Bray (1992). This model has 

two equations. The first is a forecasting equation that describes the learning rule of an agent, 
and the second is an equation that describes the actual law of motion of the economic variable 
of interest, price pt. The main purpose here is to illustrate the convergence property of the 
learning rule.

The agent forecasts the next period’s price as the sample average of past prices  
pt,pt–1,…, p1, so the data affects the learning rule. Let pe

t+1 denote the time-t forecast of next 
period’s price: 

(1)	
pt+1
e =1

t
pt + pt−1 +L+ p1[ ]

=1
t
pt +

t −1
t

pt
e .
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The evolution of pe
t , or the forecasting equation, could then be expressed as 

(2)	 pt+1
e = pt

e + 1
t
pt − pt

e( ).
In (2), the gain function—the weight placed by the learning rule on the forecast error—is 1

t
. 

The learning rule is thus a decreasing-gain algorithm.
The law of motion of actual price pt is assumed to be 

(3)	 pt =A−Bpt
e ,

where A,B > 0 are parameters of the model. In (3), the realized price is influenced by the agent’s 
forecast. Thus, the learning model has two-way feedback.

Under RE, pt = pe
t . Equation (3) then implies pt = A/(B + 1); that is, the price remains 

constant.
The learning equilibrium, however, is a solution to the system (2) and (3). Substituting 

for pt from (3) into (2), we get the learning dynamics 

(4)	 pt+1
e = pt

e + 1
t
A− B+1( )pt

e( ).
It is easy to see from (4) that as t → ∞, the price forecast converges to a constant. In the long 
run, the change in forecasts is zero and pe

t  converges to A/(B + 1), the RE equilibrium.
Some remarks are in order at this stage. Most learning models in macroeconomics create 

forecasts using least-squares estimation, which is a generalized form of the sample average 
of past observations; see, for instance, Evans and Honkapohja (2001) for examples of least-
squares learning. By the strong law of large numbers we know that the sample average in the 
forecasting equation (1) eventually converges to the population mean. However, as we obtain 

more data over time, the weight 
1
t

 on the forecast error decreases and the speed of convergence 

to the population mean decreases. One could speed up the convergence with a discounted 
average: 

(5)	 pt+1
e = pt

e +γ pt − pt
e( ),

where γ  (0,1). The learning rule (5) is a constant-gain algorithm. This algorithm ensures 
that the speed of convergence remains the same over time, but the downside is the accuracy: 
Instead of the strong law of large numbers, that is, convergence in probability, we obtain weak 
convergence of the forecast to the population mean as t → ∞. Note, however, that both algo-
rithms imply convergence to the population mean. The learning literature, for the most part, 
treats the gain as a free parameter that the modeler can choose, without altering the conver-
gence properties of the algorithm. See, for instance, Sargent (1999). In the next section, we 
use a constant-gain learning algorithm to illustrate that the gain parameter does indeed affect 
the limit properties of the learning rule.
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3 A LEARNING MODEL OF INFLATION
The setup below is a constant-gain version of Example 1 in Bullard (1994). Consider an 

overlapping generations endowment economy where each generation lives two periods (young 
and old). We denote the generation born in period t as generation t. Each agent in generation  
t = 0,1,2,… has a logarithmic utility function with no discounting: 

	 Ut = lnc1,t + lnc2,t ,

where ci,t is consumption of the generation-t agent in i = 1,2 period of the agent’s life. Each 
generation-t agent is endowed with 2 and 2λ, λ  (0,1), units of perishable consumption goods 
when young and old, respectively. The population size of each generation is normalized to 1.

Fiat money is the only store of value. The government finances its expenses by issuing fiat 
money, which affects the price level every period and therefore the inflation rate. Monetary 
policy is described by an exogenous constant growth rate of money: 

(6)	 Mt =θMt−1 ,θ ∈ 1,λ−1( ).
The timing is as follows. In each period, the old agents enter with the nominal balances 

from the previous period. The young agents make their consumption and saving decisions. 
The government purchases goods by injecting money. Finally, consumption takes place based 
on realized prices at the end of the period.

Our focus here is on the monetary steady state. Under RE, we show that there is a unique 
monetary steady state. We then examine a learning model’s convergence properties.

3.1 Rational Expectations

Given the deterministic setup, agents of each generation know the entire sequence of prices 
under RE. Given the prices in t and t+1, the lifetime budget constraint of a generation-t agent is 

(7)	 c1,t +
pt+1
pt

c2,t ≤ 2+ 2λ
pt+1
pt

.

The problem of generation t is 

	
c1,t ,c2,t{ }
max lnc1,t + lnc2,t

subject to (7). Combining the first-order conditions with respect to c1,t and c2,t , we get 
c1,t
c2,t

= pt+1
pt

. Together with (7), the first-order conditions imply the optimal (interior) choices are 

	 c1,t =1+λ
pt+1
pt

and c2,t =
pt
pt+1

+λ .

Therefore, the saving of generation t is 2− c1,t =1−λ
pt+1
pt

. Since fiat money is the only store of 

value, the saving must be in the form of real money balances: 

	 Mt

pt
=1−λ pt+1

pt
.
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Note that the prices in t and t+1 affect the agent’s optimal choices of consumption and real 

balances only through the ratio pt+1
pt

.

Let Πt+1 ≡
pt+1
pt

 denote the actual inflation rate between periods t and t+1. Then, the 

demand for real balances can be written as 

	 Mt

pt
=1−λΠt+1.

Note that if inflation exceeds 1
λ

, the real rate of return on money, pt
pt+1

, is “too low” and the 

young agent would like to borrow, not save. However, in a two-period overlapping generations 

setup, this is impossible. Thus, for inflation rates greater than or equal to 1
λ

, the young agent 

would just consume his endowment. Hence, for money to be held (i.e., for real balances to be 

positive) the inflation rate must be less than 1
λ

. Thus, 

(8) 	 Mt

pt
=max 0,1−λΠt+1( ).

Monetary policy (6) implies 

	 Mt

pt
Πt =θ

Mt−1

pt−1
.

The asset market clearing condition implies that money supplied in each period must equal 
money demand in that period. We can substitute money demand into the above equation 
and get 

	 max 0,1−λΠt+1( )Πt =θmax 0,1−λΠt( ).

Thus, the law of motion for the inflation rate is 

(9)	 max 0,1−λΠt+1( )=θ max 0,1−λΠt( )
Πt

.

Given perfect foresight, a RE equilibrium is a sequence of quantities and prices—

c1,t ,c2,t−1 ,
Mt

pt
, pt ,Πt from t = 0,1,…,∞—such that agents in each generation choose consump-

tion and real balances optimally, the asset market clears in every period, and the evolution of 
inflation satisfies equation (9). (Recall that in Section 2, the RE equilibrium is unique.)

Equation (9) clearly admits two steady states Πt = Πt +1 =Π*: Either Π* = θ or Π* = 1
λ

, where 

θ is the monetary steady state. It is easy to see that for Πt <
1
λ

, the real balances are positive, 
so equation (9) can be simplified as 

	 Πt+1 =θ +
1
λ
− θ

λ
⎛
⎝⎜

⎞
⎠⎟
1
Πt

,
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and the mapping from Πt to Πt +1 is increasing and concave. Furthermore, around θ, the 
slope is greater than 1, so the monetary steady state is unstable.

3.2 Learning

Suppose that instead of perfect foresight on prices, generation-t agents have to make their 
optimal choices according to their expectation of pt +1. In other words, 

	 Mt

pt
=1−λ pt+1

e

pt
,

where the superscript e denotes expected value. Let Πt+1
e ≡ pt+1

e

pt
 denote the expected inflation 

rate between periods t and t+1. Again, if expected inflation exceeds 1
λ

, then the expected real 

return on money is too low and the young agents will not hold any money. Thus, similar to (8), 
the demand for real balances under learning is 

(10)	 Mt

pt
=max 0,1−λΠt+1

e( ).

As in Section 3.1, using the money supply at time t, we get Mt

pt
Πt =θ

Mt−1

pt−1
. Substituting 

for money demand in this equation, we get the asset market clearing condition: 

	 max 0,1−λΠt+1
e( ) pt

pt−1
=θmax 0,1−λΠt

e( ).
The above relationship, in turn, yields the law of motion for inflation under learning: 

(11)	 Πt =θ
max 0,1−λΠt

e( )
max 0,1−λΠt+1

e( ) .

Note that unlike in Section 3.1, the actual inflation in the case of learning is influenced by the 
inflation forecast in period t –1 as well as the forecast in period t. What remains to be specified 
is how agents forecast inflation.

Suppose agents at time t form their expectations as follows: 

(12)	 Πt+1
e =Πt

e +γ Πt−1 −Πt
e⎡⎣ ⎤⎦ ,

where the gain γ  (0,1) is a constant.1 Equation (12) is the counterpart to learning rule (5) 
in Section 2.

When the agents forecast the inflation Πe
t+1 they do not know the price pt and, hence, do 

not know the actual inflation Πt. Lack of knowledge of pt does not affect the demand for real 
balances, since equation (10) implies that the demand depends on the ratio of prices. 

Using equation (11) to substitute for Πt–1 in the constant-gain learning rule, we get the 
law of motion for expected inflation Πe

t+1 under learning: 
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(13) 	 Πt+1
e =Πt

e +γ θ
max 0,1−λΠt−1

e( )
max 0,1−λΠt

e( ) −Πt
e

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

(14) 	                       =Πt
e +γ θ

max 0,1−λΠt
e +λΔΠt

e( )
max 0,1−λΠt

e( ) −Πt
e

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
,

where ΔΠe
t   Πe

t  – Πe
t–1.

A learning equilibrium is a sequence of quantities, prices, and forecasts—

c1,t ,c2,t−1 ,
Mt

pt
, pt ,Πt+1

e  from t = 0,1,…,∞—such that agents in each generation choose consump-

tion and real balances optimally based on their forecast of inflation, the asset market clears in 
every period, and the two-way feedback from expected inflation to actual inflation satisfies 
equation (14).

Remark 1. For equation (14) to describe a learning equilibrium, we have to impose an additional 

restriction that Πt+1
e < 1

λ
. If any element in the sequence of Πe

t ’s exceeds 
1
λ , then (14) cannot be 

used to recover future expected inflations. 

Several features of equation (14) are worth noting. First, (14) has a steady state:  
Π*e

t –1 = Πt
*e = Π*e

t +1 = Π*e = θ. Second, when the steady-state expected inflation equals θ, equa-
tion (11) implies actual inflation is also equal to θ. Third, equation (14) is a second-order non-
linear difference equation, which is not tractable. Second-order difference equations are common 
in other models in the learning literature. See, for instance, Marcet and Sargent (1989b); 
Bullard (1991); Bullard (1994); Evans, Honkapohja, and Marimon (2001); Marcet and Nicolini 
(2003); Adam, Marcet, and Nicolini (2016); and Adam, Marcet, and Beutel (2017). As we 
illustrate in the appendix, second-order nonlinear difference equations are not germane to 
the monetary model described here; a change in the information set and the learning rule 
results in a first-order difference equation.

4 RESULTS
In this section, we first simulate the dynamics of expected inflation in (14) and examine 

its convergence properties. We then show the dependence of the convergence property on 
the gain parameter. For some values of the gain parameter, the learning dynamics converge 
to the RE monetary steady state and for others the convergence does not occur.

4.1 Numerical Results

In the numerical exercises below, we simulate (14) for different values of γ  (0,1). We 

set the monetary steady state θ = 1.01; we set 1
λ
=1.1, so the assumptions λ < 1 and θ < 1

λ
 are 

satisfied. Since (14) is a second-order difference equation, we need two initial conditions to 
simulate the dynamics. We set them to be the same: Πe

0 = Πe
1 = π. We explore the dynamic 

properties by altering γ and π.
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1.0100

1.0102

1.0104

1.0106

1.0108
Nonmonotonic convergence
Monotonic convergence

Figure 1
Convergence to the Monetary Steady State

NOTE: The x-axis is t and the y-axis is Πe
t+1. The parameters are θ = 1.01 and 

1
λ

 = 1.1. The initial conditions are 

Πe
0 = Πe

1 = π = 1.009. For nonmonotonic convergence, γ = 0.085 and for monotonic convergence γ = 0.055. 

0 50 100 150 200 250
1.0085

1.0090

1.0095

1.0100

1.0105

1.0110

1.0115
Πt

e

Πt

Figure 2
Agents Don’t Learn the Actual Inflation

NOTE: The x-axis is t and the y-axis is Πe
t for expected inflation and Πt for actual inflation. The parameters are γ = 0.0891,

θ = 1.01, and 
1
λ

 = 1.1. The initial conditions are Πe
0 = Πe

1 = π = 1.009. 
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Nonmonotonic Convergence. For γ = 0.0850 and for the initial condition π = 1.009, the tra-
jectory of Πe

t converges to RE monetary steady state θ nonmonotonically. It follows a damped-
oscillation path as shown in Figure 1. For γ = 0.055, the convergence is monotonic starting 
from the same initial conditions.

Instability. For γ = 0.0891 and the same value of π, the expected-inflation trajectory settles 
to a stable orbit; see Figure 2.

Agents Never Learn the Actual Inflation. Figure 2 also illustrates the actual inflation, which 
settles down to a different stable orbit; that is, the agents never learn the actual inflation.

In sum, the learning dynamics neither display convergence to the RE monetary steady 
state nor exhibit zero forecast errors in the long run. In the next section, we examine the role 
of the gain parameter γ in convergence to the monetary steady state. If the convergence is 
attained, then the forecast errors will automatically go to zero in the long run since, as noted 
earlier, if expected inflation equals θ, then actual inflation equals θ as well. We show that if 
the gain parameter exceeds a critical value, then the learning dynamics do not converge to 
the RE monetary steady state.

4.2 Convergence Depends on the Gain Parameter

In this section, we focus on the local neighborhood around θ to illustrate the dependence 
of convergence properties of the learning dynamics (14) on γ. To begin, rewrite (14) as 

	 ΔΠt+1
e =γ θ 1−λΠt

e +λΔΠt
e

1−λΠt
e −Πt

e⎡

⎣
⎢

⎤

⎦
⎥.

Note that this rewritten equation does not have the max operator in (14), since we are exam-
ining the dynamic system locally around θ. For the dynamics to converge to θ, both ΔΠe

t+1 
and ΔΠe

t  have to converge to zero. Suppose we start from the initial conditions Πe
t–1 = Πe

t  ≠ θ. 
Then, ΔΠe

t  = 0, so ΔΠe
t+1 = γ[θ – Πe

t ]. Clearly, ΔΠe
t+1 ≠ 0 in the neighborhood of θ. So, the ini-

tial condition ΔΠe
t  = 0 does not guarantee ΔΠe

t+1 = 0 unless we start exactly at the monetary 
steady state. (Note the reverse as well: Setting ΔΠe

t+1 = 0 does not guarantee ΔΠe
t  = 0 unless 

Πe
t+1 = Πe

t  = θ.) Figure 3 illustrates this point for the case where the expected inflation converges 
to θ nonmonotonically, and Figure 4 illustrates it for the case where the expected inflation 
converges to θ monotonically.

To examine the conditions under which both ΔΠe
t  and ΔΠe

t+1 go to zero, we transform 
the second-order difference equation into two first-order equations. Define 

	 zt ≡
1
γ

Πt
e −Πt−1

e( ).

We can then write (14) as a system of first-order difference equations in Πe
t  and zt : 

	 Πt+1
e =Πt

e +γ θ 1−λΠt
e +λγ zt

1−λΠt
e −Πt

e⎡

⎣
⎢

⎤

⎦
⎥ ,

zt+1 = zt + θ 1−λΠt
e +λγ zt

1−λΠt
e −Πt

e − zt
⎡

⎣
⎢

⎤

⎦
⎥.
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Πt+1
e =Πt

e +γ θ 1−λΠt
e +λγ zt

1−λΠt
e −Πt

e⎡

⎣
⎢

⎤

⎦
⎥ ,

zt+1 = zt + θ 1−λΠt
e +λγ zt

1−λΠt
e −Πt

e − zt
⎡

⎣
⎢

⎤

⎦
⎥.

Or, 

	
ΔΠt+1

e =γ θ 1−λΠt
e +λγ zt

1−λΠt
e −Πt

e⎡

⎣
⎢

⎤

⎦
⎥ ,

Δzt+1 = θ 1−λΠt
e +λγ zt

1−λΠt
e −Πt

e − zt
⎡

⎣
⎢

⎤

⎦
⎥.

In the above first-order system, the first equation is of order γ, while the second is of order 1. 
For small γ, z evolves faster than Πe, so z arrives at the stable point before Πe does.

To analyze the dynamics of this vector, (Πe
t , zt), continuous-time methods for Markov 

chains are useful. The first-order system can be written as 

(15)	 &Πe =γ θ 1−λΠe +λγ z
1−λΠe −Πe⎡

⎣
⎢

⎤

⎦
⎥

0 50 100 150
1.000

1.005

1.010

1.015

1.020

0 50 100 150
–4

–2

0

2

4
×10–3

Πt
e

ΔΠt
e

ΔΠt
e
+1

A.

B.

Figure 3
Expected Inflation Converges to the Monetary Steady State Nonmonotonically

NOTE: For Panel A, the x-axis is t and the y-axis is Πe
t for expected inflation between periods t and t+ 1. For Panel B, the 

x-axis t and the y-axis is ΔΠe
t = Πe

t = Πe
t–1 and ΔΠe

t+1 = Πe
t+1 = Πe

t . The parameters are γ = 0.085, θ = 1.01, and 
1
λ

 = 1.1. The 

initial conditions are Πe
0 = Πe

1 = π = 1.0. 
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(16)	 &z = θ 1−λΠe +λγ z
1−λΠe −Πe⎡

⎣
⎢

⎤

⎦
⎥− z

or, more concisely, 

	
&Πe

&z

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
=Ψ Πe

z

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

⎛

⎝
⎜

⎞

⎠
⎟ .

If Π*e = θ is a stable point of the learning dynamics, then Π
. e = 0 and z. = 0. It is easy to see 

	 Ψ 0
0

⎡

⎣
⎢

⎤

⎦
⎥

⎛

⎝⎜
⎞

⎠⎟
=0.

To account for the difference in speeds noted earlier, we solve the system sequentially by 

first holding Πe < 1
λ

 fixed and solving (16) for z. = 0 to derive a relationship between z and Πe. 

We then use this relationship to derive a condition for Π
. e = 0 using (15). This sequential 

0 5 10 15 20 25 30
1.000

1.005

1.010

0 5 10 15 20 25 30
0

0. 5

1.0

Πt
e

ΔΠt
e

ΔΠt
e
+1

×10–3
B.

A.

Figure 4
Expected Inflation Converges to the Monetary Steady State Monotonically

NOTE: For Panel A, the x-axis is t and the y-axis is Πe
t for expected inflation between periods t and t+ 1. For Panel B, the 

x-axis t and the y-axis is ΔΠe
t = Πe

t = Πe
t–1 and ΔΠe

t+1 = Πe
t+1 = Πe

t . The parameters are γ = 0.055, θ = 1.01, and 
1
λ

 = 1.1. The 

initial conditions are Πe
0 = Πe

1 = π = 1.0. 



Chien, Cho, Ravikumar

362      Third Quarter 2021	 Federal Reserve Bank of St. Louis REVIEW

approach yields the familiar result that for γ close to 0, Πe → θ as t → ∞. This result, however, 
does not answer how “small” γ should be in simulations to guarantee convergence to RE.

We answer the question partially by examining local stability of the first-order system 
around (Πe,z) = (θ,0). Consider the Hessian of the right-hand sides of (15) and (16): 

	
−θγ 2 λ 2z

(1−λΠe )2
−γ λθγ 2

1−λΠe

−θγ λ 2z
(1−λΠe )2

−1 λθγ
1−λΠe −1

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

.

At (Πe,z) = (θ,0), the above matrix becomes 

	
−γ λθγ 2

1−λθ

−1 λθγ
1−λθ

−1

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

.

The eigenvalues for the dynamic system, denoted by μ, then solve 

	 µ2 + 1+γ − λθγ
1−λθ

⎛
⎝⎜

⎞
⎠⎟ µ +γ =0.

The two eigenvalues have negative real parts if and only if 

	 − 1+γ − λθγ
1−λθ

⎛
⎝⎜

⎞
⎠⎟ <0;

that is, 

	

1
γ
>−1+ λθ

1−λθ

=−1+ θ
1
λ
−θ

.

In our numerical simulations, θ = 1.01 and 
1
λ  = 1.1 so that the right-hand side equals 10.22. 

Thus, starting from an initial condition in the local neighborhood of θ, if γ is greater than 
0.0978, then the learning dynamics will not converge to the RE monetary steady state. This is 
a sufficient condition for lack of convergence. In practice, the dynamics may not converge for 
some γ less than 0.0978, as demonstrated in Figure 2.

Approximation. One could adopt a different approach to study the local behavior of (14) 
around θ by using a first-order difference equation to approximate (14), as in Evan, Honkapohja, 
and Marimom (2001), for instance: 

(17)	 Πt+1
e =Πt

e +γ θ −Πt
e⎡⎣ ⎤⎦.
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This requires only one initial condition. It is easy to see that as t → ∞, the expected inflation 
Πe

t  → θ, independent of γ. Thus, the first-order approximation could mistakenly suggest con-
vergence to the RE monetary steady state even when the learning dynamics in (14) imply 
nonconvergence. Figure 5 illustrates the result.

To summarize, for the learning dynamics to converge to the RE monetary steady state, 
the learning rule has to be tightly parameterized based on economic fundamentals.

5 CONCLUDING REMARKS
We used a simple overlapping generations model to study whether the learning dynamics 

converge to the RE monetary steady state. We showed via numerical experiments that the 
learning dynamics can produce cycles and display paths where agents never learn the actual 
inflation. To guarantee the convergence to RE, the learning rule has to be tightly parameterized 
based on economic fundamentals. We show that the gain parameter used in the learning rule 
affects whether the learning dynamics converge to the RE monetary steady state.

An alternative is to consider learning rules with different information sets. One such 
learning rule is described in the appendix. Such rules result in learning dynamics that are 
described by a first-order difference equation. For first-order difference equations, Kushner 
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0.99
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1.04
Learning dynamics
Approximation

Πt
e

Πt
e
+1

Figure 5
Current and Future Expected Inflations: Learning Dynamics Versus Local Approximation

NOTE: The parameters are γ = 0.14, θ = 1.01, and 
1
λ

 = 1.1. For the learning dynamics, Πe
t–1 = 1.011. 
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and Yin (1997) demonstrate that the asymptotic properties of the learning algorithm are deter-
mined by the mathematical properties of the forecast error, not by the decreasing- or constant-
gain functions. Thus, such learning rules can be used to study convergence to the RE monetary 
steady state without restricting the gain parameter. n

APPENDIX: LEARNING RULE USING CURRENT PRICE
Recall that in the learning rule (12), agents in period t do not use the current price pt to 

forecast the inflation Πe
t+1. That is, they are forecasting the ratio pt+1

e

pt
, but it is assumed that 

they do not know the denominator pt. So, the actual inflation, Πt, is not part of the learning 
rule (12).

Constant-Gain Learning Rule 

Consider an alternative information set and the associated learning rule that uses the 
current price pt : 

(18)	 Πt+1
e =Πt

e +γ Πt −Πt
e⎡⎣ ⎤⎦.

The change in the learning rule affects the forecast of inflation, but not the feedback from 
expected inflation to actual inflation. That is, equation (11) continues to hold.

Using equation (11) to substitute for Πt in the learning rule above, we get the law of motion 
for expected inflation Πe

t+1 under learning: 

	

Πt+1
e =Πt

e +γ θ
max 0,1−λΠt

e( )
max 0,1−λΠt+1

e( ) −Πt
e

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

=Πt
e +γ θ

max 0,1−λΠt+1
e +λΔΠt+1

e( )
max 0,1−λΠt+1

e( ) −Πt
e

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
,

where ΔΠe
t+1  Πe

t+1 – Πe
t.

The law of motion implies a steady-state Π*e = θ, and when expected inflation reaches θ, 
so does actual inflation. Furthermore, the law of motion is just a first-order difference equation.
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NOTES
1	 In Chien, Cho, and Ravikumar (2020), we demonstrate that the decreasing-gain learning rule in Bullard (1994), 

where the gain is a least-squares forecast based on past prices, takes a similar form as the constant-gain rule (12).
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