Market Power and Asset Contractibility
in Dynamic Insurance Contracts

Alexander K. Karaivanov and Fernando M. Martin

The authors study the roles of asset contractibility, market power, and rate of return differentials in
dynamic insurance when the contracting parties have limited commitment. They define, characterize,
and compute Markov-perfect risk-sharing contracts with bargaining. These contracts significantly
improve consumption smoothing and welfare relative to self-insurance through savings. Incorporating
savings decisions into the contract (asset contractibility) implies sizable gains for both the insurers
and the insured. The size and distribution of these gains depend critically on the insurers’ market
power. Finally, a rate of return advantage for insurers destroys surplus and is thus harmful to both
contracting parties. (JEL D11, E21)
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1 INTRODUCTION

Households face fluctuations in their incomes but desire stable consumption. Prime
examples of shocks to income are variations in labor status and changes in health. Maintaining
savings in liquid and low-risk assets—for instance, in the form of government bonds or sav-
ings accounts—allows households to mitigate the impact of negative income shocks on their
standard of living. Similarly, positive income shocks provide the opportunity to accumulate
savings to use in bad times. However, savings are an imperfect way to insure against idiosyn-
cratic shocks: For instance, the return on a deposit does not increase because the depositor is
laid off or sick. Hence, a natural way to complement self-insurance through savings is to con-
tract with an insurer (private or government-run) willing to absorb an agent’s individual risk.
In a perfect world, the parties would sign a long-term contract that maximizes the surplus
generated by the relationship and fully specifies the time paths of consumption and savings
of the insured for all possible combinations of future income states.

In practice, however, economic actors often cannot commit or are legally barred from
committing to a long-term contract. For example, consider typical labor, housing, and per-
sonal or property insurance contracts: Costless renegotiation or switching providers is always
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possible, although sometimes only at fixed time intervals. In addition, while insurers are
frequently aware of an agent’s net worth or assets, they may or may not have the ability to
control private asset accumulation. The latter ability, however, can be key to the interplay
between self-insurance and market- or government-provided third-party insurance (e.g.,
Arnott and Stiglitz, 1991). As an example, government social security schemes (old-age insur-
ance) usually have both voluntary and controlled/forced savings components. Various mix-
tures of components exist around the world.

We study the above issues and trade-offs in a multiperiod risk-sharing setting that fea-
tures a risk-neutral insurer and a risk-averse agent endowed with a stochastic income technol-
ogy and the ability to save at a fixed rate of return. We assume that the parties cannot commit
to a long-term contract: Both the agent and the insurer can commit only to one-period risk-
sharing contracts. In this setting, we show that there are still large gains from third-party insur-
ance and the ability to incorporate the agent’s savings decisions into the insurance contract.

Specifically, we model the interaction between the agent and insurer by assuming that
they periodically bargain over the terms of the contract. Formally, we do so by adopting the
solution concept of a Markov-perfect equilibrium (MPE), as in Maskin and Tirole (2001).
This solution captures our notion of limited commitment, since contract terms are a function
of only payoff-relevant variables (in our setting, the agent’s assets and the income realization)
and the idea that bygones are bygones. That is, the past does not matter beyond its effect on
the current state.

We find that the agent’s asset holdings are a key feature of Markov-perfect insurance
contracts, as the assets determine the agent’s endogenous outside option. Given that feature,
we analyze the role of asset/savings contractibility by comparing the case of “contractible
assets” (when the insurer can fully control the agent’s savings decisions) with the case of “non-
contractible assets” (when the agent can privately decide on the amount of his savings, even
though the asset holdings are observed by the insurer). In many situations, governments,
insurance companies, banks, and so on may have information about agents’ assets but, for
legal or other reasons, are unable to directly control agents’ savings choices. In other situa-
tions—for example, social security—the opposite is true.

We show that asset contractibility affects the insurance contract terms and the degree of
achievable risk-sharing compared with self-insurance, except in the limit when insurance
markets are perfectly competitive (free entry). Intuitively, whenever the insurer has market
power (not necessarily monopoly power) and thus can generate positive profits from insur-
ing the agent, private asset accumulation provides the agent with an instrument to “counter”
the insurer by controlling his future outside option. Essentially, larger savings by the agent
today imply a larger outside option tomorrow since the agent would be better able to self-
insure. On the insurer’s side, however, a larger outside option for the insured implies lower
profits. We show that this misalignment of incentives between the contracting parties, which
originates in the commitment problem, causes a welfare loss to both sides when the agent’s
assets are non-contractible.

Numerically, we assess the degree to which the presence of third-party insurance improves
agents’ welfare beyond that achievable on their own through savings. We show that the wel-
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fare gains for the poorest agents (zero assets) can be as high as 4.5 percent of their autarky
consumption per period. This number is significantly larger than the cost of business cycle
fluctuations (about 0.1 percent), a common benchmark for welfare calculations in macro-
economic applications. In terms of the role of asset contractibility, the largest welfare loss if
agents’ savings are non-contractible is about 0.4 percent of autarky consumption per period.

We also find that the market power of insurance providers significantly affects the welfare
gains that agents derive in Markov-perfect insurance contracts and, to a lesser extent, the
welfare losses when agents’ assets are non-contractible. The welfare gains from third-party
insurance are strictly decreasing in the insurers’ market power, whereas the welfare costs of
asset non-contractibility peak at an intermediate value of market power, somewhere between
the monopolistic insurer case and perfectly competitive insurance markets.

Finally, our numerical results suggest that both the insured and the insurer are better off
if there is no return on assets differential between them. A higher intertemporal return—or,
equivalently, discount rate—for the insurer relative to the insured reduces the total surplus
that can be generated in the risk-sharing relation. Furthermore, differences in the parties’ rates
of return on assets amplify the distortions in the time profiles of consumption and savings
(relative to the equal return benchmark) that arise from the limited commitment friction.

Our article builds on and extends in several dimensions our previous analysis (Karaivanov
and Martin, 2015). In that article, we introduced the idea of Markov-perfect insurance con-
tracts and showed that limited commitment on the insurer’s side is restrictive only when he
has a rate of return advantage over agents with sufficiently large asset holdings. The limited
commitment friction makes assets carried by agents essential in an MPE, as they cannot be
replaced with promises of future transfers. In contrast, if the insurer and the insured have
equal rates of return on carrying assets over time, we showed that Markov-perfect insurance
contracts result in an equivalent consumption time path as a long-term contract to which only
the insurer can commit because assets and promised utility are then interchangeable. While
we retain the basic idea of Markov-perfect insurance, our analysis here differs in two impor-
tant aspects. First, unlike in Karaivanov and Martin (2015), we allow agents’ assets to be
non-contractible. Second, instead of assuming an arbitrary asset-dependent but otherwise
exogenous outside option for the agent, we endogenize the division of the gains from risk-
sharing by defining and analyzing a bargaining problem between the parties.

This article also differs from the literature on optimal contracts with hidden savings (see
Allen, 1985, and Cole and Kocherlakota, 2001, among others) that assumes that the principal
has no ability to monitor the agent’s assets. The main result in these articles is that no addi-
tional insurance over self-insurance may be possible, unlike in this article. On the technical
side, our assumption of observable assets (even if non-contractible) helps us avoid dynamic
adverse selection and the possible failure of the revelation principle with lack of commitment
(Bester and Strausz, 2001), while still preserving the empirically relevant intertemporal impli-
cations of savings non-contractibility.

More generally, in the dynamic mechanism design literature, allowing agents to accumu-
late assets in a principal agent relationship typically yields one of the following three results,
depending on the specific assumptions about the information or commitment structure:
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(i) An agent’s assets play no role (when the insurer can control the agent’s consumption). (ii)
Assets eliminate the insurer’s ability to smooth the agent’s consumption beyond self-insurance
(Allen, 1985, and Cole and Kocherlakota, 2001). Or (iii) the environment becomes highly
intractable (Fernandes and Phelan, 2000, and Doepke and Townsend, 2006). In contrast, we
show that Markov-perfect insurance contracts result in simple dynamic programs with a
single scalar state variable and avoid the curse of dimensionality, including the case with non-
contractible savings.

2 THE ENVIRONMENT

Consider an infinitely lived, risk-averse agent who maximizes discounted expected utility
from consumption c. The agent’s flow utility is u(c), with u_ < 0 < u,(c) and u satisfying Inada
conditions.! The agent discounts the future by factor 8 € (0,1). Each period the agent receives
an output/income endowment, which he can consume or save. Output is stochastic and
takes the values y' > 0 with probabilities 7* € (0,1) for all i = 1,...,n, with n > 2 and where

n i . .
2. 7' =1. Without loss of generality, let y' < ... <y".

The risk-averse agent would like to smooth consumption over output states and over time.
We assume that the agent can carry assets a over time by means of a savings (storage) technol-
ogy with fixed gross return r € (0,57"). Let A = [0,a] denote the set of feasible asset holdings,
where @ € (0,%) is chosen to be sufficiently large that it is not restrictive. In contrast, the lower
bound on A is restrictive and represents a borrowing constraint. Assuming that assets cannot
be negative means that the agent cannot borrow—that is, he can only save.

Suppose that the agent has no access to insurance markets and therefore can rely only on
self-insurance through savings—running up and down a buffer stock of assets as in Bewley
(1977). In this situation, which we label “autarky,” the agent’s optimal consumption and sav-
ings decisions depend on his accumulated assets and are contingent on the output realization.
That is, given realized output y’, the agent carries into the next period assets a’ > 0 and con-
sumes c'=ra+y - a'.

Formally, the agent’s problem in autarky can be written recursively as

n
(1) Qa)= max ZEi[u(ra+yi—ai)+ﬁQ(ai)].

{a'20}y =1
By standard arguments (e.g., Stokey, Lucas, and Prescott, 1989), our assumptions on u ensure
that the autarky value function Q(a) is continuously differentiable, strictly increasing, and
strictly concave for all a € A. The autarky (self-insurance) problem is a standard “income
fluctuation” problem, versions of which have been studied, for instance, by Schechtman and
Escudero (1977) and Aiyagari (1994), among many others. The properties of the solution are
well known: imperfect consumption smoothing (¢’ differs across states with different y*); con-
sumption ¢’ and next-period assets a' in each income state increasing in current assets a; asset
contraction (negative savings) in the lowest income state(s); and asset accumulation (positive
savings) for some range of asset holdings in the highest income state(s).
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Since the rate of return on assets is assumed to be smaller than the agent’s discount rate,
r < B!, the agent saves only to insure against consumption volatility.> In particular, there is a
precautionary motive for saving because the agent wants to mitigate the chance of ending up
with zero assets, a situation in which he would be unable to self-insure against negative income
shocks. Note that since assets provide the same return in all output states, the agent is unable
to insure perfectly against income fluctuations. Thus, there is a demand for additional insur-
ance as addressed in the next section.

3 INSURANCE

Suppose there exists a risk-neutral, profit-maximizing insurer. Throughout the article,

we assume that the insurer can costlessly observe output realizations y’ and the agent’s assets a.
The insurer can borrow and lend, without restrictions, at gross rate R > 1. The insurer’s future
profits are also discounted at the rate R. The parameter R can have either a technological or
preference interpretation. The special case r = R can be thought of as the insurer having the
ability to carry resources intertemporally using the same savings technology as the agent. If,
instead, R = 7', we can think of the agent and insurer as having the same discount factor—
a standard assumption in the literature. In general, we allow R to take any value between these
bounds, as stated in Assumption 1 below.

Assumption1 0<r<R< B, withr< ', andR> 1.

3.1 The Agent’s Savings Decision

Suppose the insurer, while observing the agent’s assets a, cannot directly control the
agent’s savings decision—namely, the choice of a’. We can think of the insurance arrangement
between agent and insurer in any time period as the exchange of output y’ for gross transfer t*
(this includes the insurance premium or payoff in the different states of the world). Transfers
are allowed to depend on the agent’s accumulated assets 4, since assets affect how much insur-
ance the agent demands.

Suppose the agent is offered insurance for the current period. What is his savings deci-
sion given transfers t'? Call period consumption ¢’'=ra + v’ - a”, as implied by the insurance
transfer T, the gross return on the agent’s current assets ra, and the agent’s savings decision a".
Let v(a'") denote the continuation value for the agent carrying assets a' into the next period.
The function v is an equilibrium object that depends on all future agent-insurer interactions,
which in turn depend on the level of assets carried into the future. The consumption/savings
problem of the agent can then be written as follows:

max Zﬂi[u(ra+ t'—a")+pv(a” ):|

o't

With the Lagrange multiplier &'z’ > 0 associated with the non-borrowing constraint a” > 0,
the first-order conditions are
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—u (ra+7' —a")+Bv, (@) +E =0

foralli=1,...,n. In other words, given an insurance contract for the current period and
anticipating future interactions (contracts) between the agent and the insurer, which yield
the continuation value v, the agent’s savings decision is characterized by

(2) u,(c')=pv, (") =0, with equality if a” > 0.

When the agent’s savings are non-contractible, the insurer must take into account the agent’s
savings decision given by (2) when deciding on the insurance transfers t'. We call this the
agent’s incentive-compatibility constraint, as any insurance contract that allows the agent to
make his own savings decisions must respect condition (2).

Below we also consider the alternative case in which the agent’s savings can be specified
(enforced) as part of the insurance contract. In this case, inequality (2) does not restrict the
design of the insurance contract offered to the agent.

3.2 Markov-Perfect Insurance

We assume that the agent and the insurer can bargain over the insurance terms each
period. The insurance contract is negotiated every period since we assume a limited commit-
ment friction—neither the agent nor the insurer can commit to honor any agreement beyond
the current period. This limited commitment friction could be motivated by legal, regulatory,
or market reasons. For example, in many real-life situations (labor contracts, housing rental,
home and car insurance, and so on) the parties are allowed to (costlessly) modify or renegoti-
ate the contract terms at fixed points of time (e.g., yearly).

If the parties do not reach an agreement, they revert to their respective outside option
from then on. Of course, given the limited commitment friction, both parties know that any
agreement spanning more than one period is subject to renegotiation and cannot be com-
mitted to. The outside option for the agent is autarky, with value Q(a) as derived previously.
The outside option for the insurer is zero profits.

To model the bargaining game between the agent and the insurer, we adopt the Kalai
(1977) solution, which picks a point on the utility possibility frontier depending on a single
parameter 6. This parameter can be interpreted as the agent’s “bargaining power.” Specifically,
in Kalai’s bargaining solution, a larger value of 8 implies that the agent obtains surplus closer
to his maximum feasible surplus, while the insurer obtains surplus closer to his outside option.
The converse is true for lower values of 6. The limiting case 6 > 1 corresponds to the agent
receiving his maximum possible surplus and the insurer receiving his outside option of zero
profits. This situation can be interpreted as a market setting with perfect competition and
free entry by insurers. In contrast, in the opposite limiting case, 6 - 0, the agent receives his
outside option, while the insurer receives maximum (monopoly) profits. Formally, the Kalai
bargaining solution postulates a proportional surplus-splitting rule, which takes the form
(1 - 0)S* = 6S’, where $4 is the agent’s surplus, defined as the difference between the agent’s
value in the contract and his outside option, and S’ is the insurer’s surplus, defined analogously.
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Let y= 27: ) n'y' >0 denote expected output. The insurer’s expected period profit is
therefore y —Z" ln'iri. Equivalently, using ¢’ = ra + t* - a"’, we can rewrite the insurer’s profit
=

in terms of the agent’s consumption and next-period assets as y +ra —2?_1 7' (c'+a"). The

participation constraints of the contracting parties are therefore

ZII'iI:u(Ci)+ﬁV (a” )]2 Q(a)
i=1
y+ra—-Y, ﬂ’[c’ +a" —R'I(a" )]2 0,
i=1
where v and IT denote the (endogenous) agent and insurer continuation payoffs, respectively,
both as functions of the agent’s asset holdings.
Assuming 0 € (0,1), we can write the insurance contract with Kalai bargaining as

max y+ra— Y1 [ci +a" —R'M1(a" ):',

{d,a">0} i1

subject to (2) foralli=1,...,n and

(3) (1—0){&%" (u(ci )+ Bv (a'i))—Q(a)}—6[7+m —in’i (c+a” —R‘IH(a"'))}:O.
i=1 i=1

The insurer’s profits are maximized subject to the agent’s incentive-compatibility constraint

and the proportional surplus-splitting rule.

Since the insurer observes the output realization y’ and there are no private information
issues or intratemporal commitment problems, it is optimal that the agent receives full insur-
ance—that is, ¢’ = ¢ for all i. Formally, this can be shown by taking the first-order conditions
with respect to ¢’ in the constrained maximization problem above and noticing that they are
fully symmetric with respect to i. Intuitively, the risk-averse agent is fully insured against his
idiosyncratic income fluctuations and all income risk is absorbed by the risk-neutral insurer.
Unlike in alternative settings (e.g., with moral hazard or adverse selection), here there are no
gains from making the agent’s consumption state-contingent since output realizations are
exogenous and not affected by any agent actions or type. Assuming a symmetric solution, we
also obtain a'' = a' for all i. In this case (which is assumed hereafter), the insurance contract
can be written as

max y+ra—c—a’+R'TI(a),

c,a’20
subject to
(4) u, (c)—Bv, (@) =0, with equality if a’>0
and
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(5) (1-0)[u(c)+Bv(a)-Q(a)]-6 [§+ra—c—a'+ R_IH(a')]zo.

We formally define an MPE and a Markov-perfect insurance contract in our setting as
follows.

Definition 1 Consider a risk-averse agent with autarky value Q(a), as defined in (1), and bar-
gaining power 6 € (0,1) contracting with a risk-neutral insurer.
(i) An MPE is a set of functions {C, A, v, 1} : A> R x A x Rx R, defined such that, for all a € A:

{C(a),A(a)}=argmaxy+ra—c—a’+R'TI(a),
c,a’ 20

subject to (4) and (5), and where

v(a)=u(C(a))+Bv(A(a))
M(a)=y+ra—C(a)-A(a)+ R 'TI(A(a)).

(ii) For any a € A, the Markov-perfect contract implied by an MPE is the transfer schedule:

T (a)=C(a)+A(a)-ra.

Solving for an MPE involves finding a fixed point in the agent’s value function v and the
insurer’s profit function I1. We briefly characterize the properties of the MPE with bargain-
ing using the first-order conditions of the insurance problem. With Lagrange multipliers ,
A, and Cassociated with the constraints (4), (5), and a’ > 0, respectively, the first-order con-
ditions are

(6) —1+uu, ()+A{1-0)u (c)+6}=0

) —1+R T, (@) Bv,, (a)+2{(1-0) Bv, (&)~ 6] -1+ R 'T1 (@) [I+{ =0.

The values of the Lagrange multipliers—specifically, whether or not they are zero—are critical
to understanding the equilibrium properties.

Lemma 1 In an MPE, the Lagrange multiplier on the surplus-splitting rule (5) is positive—that
is, L> 0.

Proof. Rearrange (6) as A{(1 - O)u_(c) + 6} =1 - uu_. Given that u_> 0 and 6 > 0, the sign of
A is the same as the sign of the right-hand side. Since (4) is an inequality constraint, u > 0.
Thus, given u,, <0, the right-hand side of the previous expression is strictly positive, which
impliesA>0.m

If, in addition, u > 0, then (4) implies an interior solution for future assets, and so = 0.3
Conditions (6) and (7) can then be solved to obtain the values of u and A. The optimal con-
sumption and savings (c,a’) implied by the Markov-perfect contract with an interior solution
for assets are characterized by
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(8) u (c)=pv,(a)
and
9) 1-0)[u(c)+ Bv(@)-Q(a)| =8| F+ra—c—a'+ R TI(@) |.

We further describe the properties of the MPE insurance contracts numerically in
Section 4.1.
3.2.1 Discussion. If assets are contractible and there is a strictly positive rate of return differ-
ential between the parties (the case R > r), it would be optimal for assets to be carried over time
at the higher rate R. However, since in our setting the insurer cannot commit to future trans-
fers, the only way it could take over all the agent’s assets would be to appropriately compensate
him today. Doing so would imply inducing disproportionately high consumption today, which
is not optimal for intertemporal smoothing reasons. This implies that the agent carries assets
over time at the lower rate r. Note that the key problem is that the insurer is unable to commit
to a long-term disbursement of the returns from assets through future transfers. In contrast,
if the insurer could commit to an infinitely long contract, one can show that it is optimal to
extract all of the agent’s assets at the initial date (see Karaivanov and Martin, 2015, for details).

When assets are non-contractible, the agent can use savings to influence his future outside
option Q(a’). Hence, a conflict between the parties arises whenever the insurer has market
power. The insurer would prefer the agent to hold less assets, which implies higher demand
for market insurance by the agent because of his lower ability to self-insure and, thus, higher
profits for the insurer. In contrast, the agent would prefer larger future assets, a’, which would
raise his outside option, (a’), by providing a better ability to self-insure. The interplay of
these incentives is illustrated in the numerical analysis below.

3.3 Special Cases: Monopoly and Perfect Competition

We previously wrote the Markov-perfect insurance problem for any 6 € (0,1). To gain
more intuition about the properties of its solution, we describe what happens in two limiting
cases—as 0 goes to 0 or 1. The limiting case 6 - 0 implies that the agent has no bargaining
power and corresponds to the case of a monopolist insurer. Note that as 6 -> 0, the surplus-
splitting rule (5) converges to u(c) + fv(a’) = Q(a). Since the agent’s value in an MPE is v(a) =
u(C(a)) + Pv(A(a)), it follows that v(a) = 2(a); that is, the agent always receives present value
equal to his outside option. In other words, when the agent faces a monopolist insurer, the
insurer receives all gains from the contract and the agent receives the same value as in autarky.
Note that this applies regardless of whether constraint (4) binds. However, as we show in the
numerical analysis, the savings decision of the agent affects, in general, the profits that the
insurer can extract.

The other limiting case, 8 > 1, can be interpreted as the agent having maximum bar-
gaining power (and the insurer having zero bargaining power) and corresponds to the set-
ting of perfect competition (free entry by insurers). Note that as 6 > 1, the surplus-splitting
rule (5) converges to y + ra - ¢ —a’' + R"'TI(a") = 0. Since in an MPE I1(a) =y + ra - C(a) -
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A(a) + R'TI(A(a)), this implies I1(a) = 0; that is, the insurer receives zero expected present
value profits. This holds for all asset levels a € A and all periods. In turn, this implies that
II(a) =y + ra-C(a) - A(a) =0, or equivalently, Il(a) = y - 7(a) = 0. In other words, if 0 > 1,
the insurer makes zero expected profits per period. Since this also implies that IT (a) = 0 for
alla € A, as 6 > 1 the first-order conditions (6) and (7) simplify to

—1+uu, ()+A=0
—1-upv,, (@)+A=0.

As shown in Proposition 5 in Karaivanov and Martin (2015), with free entry by insurers the
agent’s value function v(a) is strictly concave. Thus, v,, < 0, which, together with u_ <0,
implies that the above conditions are satisfied if and only if u = 0. Intuitively, when the agent
receives all the surplus from the risk-sharing contract, there is no misalignment between the
insurer and the agent in the values of assets to be held in savings and, thus, how much assets
to save and, thus, the incentive-compatibility constraint (4) does not bind.

4 THE ROLE OF ASSET CONTRACTIBILITY
4.1 Theoretical Analysis

Does asset contractibility matter for the degree of insurance and the time profiles of con-
sumption and savings? In other words, how important is it for risk-sharing whether the insurer
can or cannot bind the agent to a specific savings level? To answer these questions, we inves-
tigate whether, and under what conditions, the incentive-compatibility constraint (4) binds in
an MPE. If the constraint does not bind, then whether saving decisions can or cannot be con-
tracted on would not matter for risk-sharing. If the constraint does bind, however, then clearly
the agent and the insurer have conflicting views of what savings should be. In the proposition
below, we show that asset contractibility generally does matter for the contract terms.

Proposition 1 In an MPE, if I1 (a') < 0 for some a € A such that a’ = A(a) > 0, then the
incentive-compatibility constraint (4) binds—that is, the Lagrange multiplier u is positive.

Proof. Suppose u = 0. Then (6) and Lemma 1 imply 1 - 16 = A(1 - O)u(c) > 0. Since a’ > 0,
we have £= 0 and so we can rearrange (7) as

R, (@) (1-20)=2(1-0) u_(c)— Bv, () ].

The left-hand side is negative since, by assumption, I1 (a’) < 0 and since, as shown above,
1 - A8 > 0. The right-hand side, however, is nonnegative by (4), A >0, and 6 € (0,1)—a
contradiction. m

Proposition 1 shows that as long as the insurer’s profits are strictly decreasing in the
agent’s assets for some a’ > 0 in A at which the agent is not borrowing constrained, then
Markov-perfect insurance contracts in which the insurer is able to specify and control agent
savings (equivalently consumption) differ from Markov-perfect contracts in which the insurer
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is unable to do so. That is, asset contractibility matters for any asset level a satisfying the
proposition conditions. Insurer’s profits that monotonically decrease in the agent’s assets
(holding bargaining power 6 constant) naturally arise—for example, if the agent’s preferences
exhibit decreasing absolute risk aversion. In that case, richer agents have lower demand for
market insurance (they can do more smoothing with their own assets) compared with poorer
agents. The borrowing constraint a’ > 0 is also less likely to bind for richer agents. See Section
4.2 for an illustration.

We can gain more intuition by looking at the special cases when 6 approaches its bounds.
As shown in Karaivanov and Martin (2013), in the monopolistic insurer case (when 6 - 0),
if u is unbounded below and satisfies a mild technical condition, MPE contracts with and
without asset contractibility differ and asset contractibility affects the insurer’s profits. The
reason is that the commitment friction creates a misalignment in the asset accumulation
incentives of the contracting parties. Intuitively, the agent can use his ability to save privately
to increase his outside option, since Q is strictly increasing in a, thereby ensuring higher future
transfers. This strategy counters the principal’s desire, coming from profit maximization, to
drive the agent toward the lower utility bound €(0).

As 0 > 1—the case of free entry by insurers—we showed that (i) the insurer makes
zero expected profits per period for all assets levels a and (ii) u = 0, the savings incentive-
compatibility constraint (4) does not bind. In this case, since all of the surplus goes to the
agent, the objectives of the two sides are perfectly aligned. And because the insurer makes
zero expected profits per period, asset contractibility is irrelevant: The insurance contract is
the same, regardless of whether the insurer can control the agent’s savings. The result that
the insurer makes zero profits per period with free entry is critical, as it does not allow the
insurer to exploit his rate of return advantage when r < R if assets are contractible.

4.2 Numerical Analysis

We illustrate and quantify the effects of asset contractibility in Markov-perfect insurance
contracts using a numerical simulation. We adopt the parameterization we used previously
(Karaivanov and Martin, 2015). Specifically, suppose u(c) = Inc and pick the following param-
eter values: f=0.93,7=1.06, R=1.07, ' = 0.1, y* = 0.3, and &' = % = 0.5. These parameters
imply expected output y = 0.2. For market power, we choose 0 = 0.5 as the benchmark and
analyze the effects of varying it below.

We use the following method to compute the various cases. We begin by computing the
autarky problem. We use a discrete grid of 100 points for the asset space but allow all choice
variables to take any admissible value. Cubic splines are used to interpolate between grid
points. The upper bound for assets a is set to 5, which ensures that the asset accumulation
functions always cross the 45-degree line (i.e., the upper bound is never restrictive). Next we
compute the MPE assuming 6 = 1 (perfect competition), since in this case asset contractibility
does not matter. We use the first-order conditions of the autarky and MPE problems to com-
pute the numerical solutions for each case. Having solved the MPE with 6 = 1, we use it as
the starting point to compute an MPE for other assumptions on market power and asset con-
tractibility. These problems are solved using standard value function iteration methods.
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Figure 1 displays the agent’s consumption ¢ and net savings a' — a as a function of the
agent’s current asset level a. The solid line corresponds to the case with contractible assets
(i.e., when constraint (4) is not imposed). The dashed line corresponds to the case when the
agent’s choice of a’ is not contractible (i.e., when constraint (4) is imposed). As shown, the
agent’s consumption is strictly increasing in his assets, while net savings are decreasing in
assets. Allowing the savings decision to be part of the insurance contract results in higher
consumption and lower savings for the agent. Intuitively, when assets are contractible, the
insurer wants to push the agent’s assets toward zero as this generates a lower outside option
for the agent and more profits for the insurer. In addition, less assets are carried over time at
the agent’s rate of return r instead of the higher return R.

The long-run implications of asset contractibility are also significantly different. When
the agent’s assets are not contractible, if we start with an agent with some initial assets a, and
use the computed MPE to simulate the insurance contract for infinitely many periods, then
the agent’s assets converge in the limit to a positive value. This is shown by the dashed line in
the right panel of Figure 1, which shows that savings a’ - a is above zero for sufficiently low
asset values and below zero for sufficiently high asset levels. In contrast, when savings are
contractible, the agent’s assets converge to zero in finite time, as proven in Karaivanov and
Martin (2015).

Figure 2 shows the implications of asset (non-)contractibility for the agent’s welfare and
the insurer’s profits. Agent welfare is measured as the per-period consumption equivalent
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Figure 2
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compensation the agent would require in autarky to be indifferent between remaining in
autarky and accepting the insurance contract. Formally, for any a € A, we define the welfare
gains as

Ala) Eexp{(l—ﬁ)[v(a)—Q(a)]}—l.

The insurer’s profits are measured as the expected net present value I1(a), which is expressed
in output units. As shown, both the agent’s welfare and the insurer’s profits are strictly decreas-
ing in the agent’s assets a. This is intuitive: At lower asset levels the agent is less able to self-
insure and therefore benefits more from additional insurance. That is, the surplus generated
in an insurance contract, which is proportionally split between the parties, is larger when the
agent’s wealth is lower.

Note that the welfare gains for the agent in an MPE relative to self-insurance can be sub-
stantial: At the extreme, at zero assets (no ability to self-insure), they amount to almost 0.8
percent of consumption per period. The welfare gains are still significant at higher asset levels,
converging toward 0.1 percent of autarky consumption per period, which is about the same
as the estimated cost of business cycle fluctuations for the average agent (see Lucas, 1987). The
welfare loss that arises if the agent’s assets are non-contractible (the difference between the
solid and dashed lines in Figure 2) can be large too: At zero assets, it is about 0.19 percent.
This difference, however, becomes negligible at high asset levels.
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Turning to the insurer’s profits, we see that they are the largest when the insurer contracts
with an agent with zero assets (given our log utility, this corresponds to the highest demand
for insurance and the least ability to self-insure). In this case, the net present value of profits
equals 54 percent and 40 percent of the expected per-period output (¥ = 0.2) for the cases with
and without contractible assets, respectively. As we can see, the ability to contract on the sav-
ings decision can also significantly boost the insurer’s profits, in addition to the agent’s welfare.

5 EXTENSIONS
5.1 Market Power

We now analyze how the degree of the insurer’s market power affects the results. That is,
how do Markov-perfect insurance contracts change when we vary the bargaining power
parameter 6?2 The proportional surplus-splitting rule (5) directly implies that raising the
agent’s bargaining power 0 strictly increases the agent’s net surplus from market insurance,
v(a) — Q(a), relative to the insurer’s present value profits I1(a).

Using the parameterization from the previous section, we quantify the effects of market
power on the agent’s welfare and the insurer’s profits. Figure 3 shows the consumption equiva-
lent compensation A(a) and the insurer’s profits at zero assets, plotted as a function of the
parameter 6. Recall that higher 6 can be interpreted as lower market power for the insurer.
As the figure shows, unsurprisingly, the agent’s welfare increases with his bargaining power,
while the insurer’s profits decrease. As we converge to a more competitive environment
(higher 0), the agent’s welfare increases considerably. In the extreme, at 6 > 1 (perfectly com-
petitive insurance market), the consumption equivalent compensation value of insurance in
an MPE for an agent with zero wealth is about 4.5 percent of his autarky consumption per
period. At the other extreme, when 6 > 0 (monopolistic insurer), the profits of an insurer
facing an agent with zero wealth are the largest, with a net present value about 65 percent of
expected per period output.

Figure 3 also shows that both the agent and the insurer lose (in terms of welfare or prof-
its) when the agent’s assets are not contractible over the whole range 6 € (0,1). Interestingly,
the agent’s largest welfare loss from savings non-contractibility, equal to about 0.4 percent
of autarky consumption, occurs at an interior value for the bargaining power parameter, at
around 6 = 0.8. Remember that the agent cannot benefit from asset contractibility in the
monopoly case (6 - 0) since in that case all gains from controlling the agent’s assets go to the
insurer. Also, as argued previously, the agent does not benefit from asset contractibility in
the case of perfect competition (6 - 1) since in that case the MPEs with and without asset
contractibility coincide (see Sections 3.3 and 4.1). The insurer’s largest loss from asset non-
contractibility occurs as 6 > 0 (the monopoly case), with a magnitude slightly higher than 14
percent of expected per-period output.

5.2 The Rate of Return R

We next analyze the effects of varying the insurer’s intertemporal rate of return R.
Increasing R is equivalent to decreasing the factor by which the insurer discounts future
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Figure 3
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profits—that is, making the insurer more impatient. Note that there is no direct productivity
effect of varying R as the agent’s output technology—and hence total resources—are inde-
pendent of R. In addition, the agent’s autarky problem (1) remains the same.

Figure 4 plots the agent’s welfare gains in an MPE relative to self-insurance, as meas-
ured by A(a), and the insurer’s present value profits I1(a) as R varies over its full range, from
R=r=1.06to R=1/f=1.075. All other parameters, including the bargaining power 0, are
held fixed at their respective benchmark values. In the interest of providing the clearest intu-
ition for the results, we focus on the case of zero assets, a = 0. All other asset levels provide a
similar qualitative picture (details are available upon request).

Two main results are evident from Figure 4. First, both the agent’s welfare gains relative
to autarky and the present value of the insurer’s profits are strictly decreasing in R. The intu-
ition for this result is found by examining the direct effect of varying R on the agent’s and
insurer’s surplus in the contract. If the decision variables c and a’ were held fixed, the agent’s
surplus, u(c) + pv(a’) - Q(a), would be constant in R, while the insurer’s surplus, y +ra - c -
a' + R'TI(a"), would be strictly decreasing in R. At a = 0, when assets are contractible a’ = 0
and thus, when R increases, the only way to satisfy the proportional surplus-splitting constraint
(5) is to decrease the agent’s consumption. When a > 0, savings decisions do vary with R and,
hence, there are further effects on welfare and profits.* Our numerical simulations show that,
for the chosen parameters, the overall effect still moves in the same direction as when the
agent has zero assets. The difference in welfare gains as R varies can be substantial. For example,
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Figure 4

Rates of Return
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at zero assets, moving from R = 1/ to R = r results in a welfare increase for the agent equiva-
lent to 0.14 percent of his autarky consumption per period.

Second, Figure 4 shows that our results on the effects of asset (non-)contractibility con-
tinue to hold for all admissible values of R. Making assets contractible increases both the
agent’s welfare and the insurer’s profits (compare the dashed lines with the solid lines). Quan-
titatively, at zero assets, the welfare gains from making the agent’s assets contractible are the
highest at R = r = 1.06 and are equivalent to 0.23 percent of autarky consumption per period,
compared with 0.19 percent at the benchmark value of R = 1.07 or 0.18 percent at R = 1/f.

6 CONCLUSION

We study the role of assets contractibility, market power, and the rate of return differential
between insured and insurers in a dynamic risk-sharing setting with a limited commitment
friction. We find significant welfare effects along all three dimensions. Potential lessons from
our analysis with relevance for actual insurance markets with commitment frictions similar
to those we model indicate the desirability of increased competition, extending the ability to
condition insurance terms on both the current assets and the savings of the insured, as well as
mitigating the possibility of a large return on assets differentials between insurance providers
and households or firms. m
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NOTES

T Throughout the article, we use subscripts to denote partial derivatives and primes for next-period values.

2 Thatis, the agent would not save if output were constant over time.

3 Generically, an interior solution for asset choice implies a’ > 0. However, it is possible to have an interior solution,

where @’ = 0 and where the nonnegativity constraint, although satisfied with equality, does not bind. In either
case, £=0.

In particular, the agent would prefer to contract with an insurer whose intertemporal rate of return Ris closer to
the agent’s rate of return r as this mitigates the distortion in the time profiles of consumption and savings arising
from the commitment friction (see Karaivanov and Martin, 2015, Section 3.2 for additional details).
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