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Real-Time Forecast Averaging with ALFRED

Chanont Banternghansa and Michael W. McCracken

This paper presents empirical evidence on the efficacy of forecast averaging using the ALFRED
(ArchivaL Federal Reserve Economic Data) real-time database. The authors consider averages
over a variety of bivariate vector autoregressive models. These models are distinguished from
one another based on at least one of the following factors: (i) the choice of variables used as pre-
dictors, (ii) the number of lags, (iii) use of all available data or only data after the Great Moderation,
(iv) the observation window used to estimate the model parameters and construct averaging
weights, and (v) the use of either iterated multistep or direct multistep methods for forecast hori-
zons greater than one. A variety of averaging methods are considered. The results indicate that
the benefits of model averaging relative to Bayesian information criterion-based model selection
are highly dependent on the class of models averaged The authors provide a novel decomposition
of the forecast improvements that allows determination of the most (and least) helpful types of
averaging methods and models averaged across. (JEL E52, E58, C53) 
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time data from the ALFRED (ArchivaL Federal
Reserve Economic Data) database. We compare
our model-averaging results with those obtained
with BIC-based model selection. 

Model averaging for forecasting is nothing
new. An abundance of evidence suggests that
model averaging can improve forecast accuracy
relative to model selection. Empirical examples
of this evidence include, but are certainly not
limited to, Stock and Watson (2004), Kapetanios,
Labhard, and Price (2008), and Kascha and
Ravazzolo (2010). Theoretical results include
Hansen (2008), Elliott and Timmermann (2004),
Clark and McCracken (2008), and many others.

In some instances (e.g., Clark and McCracken,
2010, and Faust and Wright, 2009), forecasting
with model averages accounts for the real-time
nature of the data. Even so, such examples are
the exception and not the norm. Here we use the

T his paper provides evidence on the
ability of various forms of forecast
averaging to improve the real-time
forecast accuracy of monthly bivariate

vector autoregressive (VAR) forecasts of headline
and core consumer price index (CPI)-based infla-
tion, growth in industrial production (IP), and
the unemployment rate. We consider a range of
approaches to averaging forecasts obtained by a
variety of primitive methods for managing the
estimation of each bivariate VAR model. The
averaging methods include equally weighted
averages, medians, mean square error (MSE)-
weighted averages, Bayesian model averages
based on a Bayesian information criterion (BIC)
approximation, and averages based on the top
10 percent of models that have performed best
historically. For each averaging approach, we
construct forecasts of each variable using real-
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ALFRED database to mimic the type of data that
would have been accessible to forecasters at each
point in time as they construct their monthly fore-
casts. Using real-time data is important because
it accounts for the fact that economic data are
often subject to revision and hence the actual
value of a variable may change across forecast
origins. In addition, using real-time data accounts
for the fact that most macroeconomic data become
available only after a substantial lag and, more-
over, these time lags can vary widely across vari-
ables from as short as a week (for employment
figures) to as long as two months (for trade data).
Finally, by using the ALFRED database as the
universe of potential predictors, we allow for the
availability of new series across time and existing
series that are sometimes discontinued.

In accordance with the literature, our results
indicate that model averaging can—but does not
always—improve forecast accuracy relative to
the more-standard BIC-based approach to model
selection. Put differently, model averaging per se
is not a panacea for improving forecast accuracy.
Improvements from model averaging depend
critically on the type of models averaged across.
Preselecting which primitive models should be
used in the averaging process appears to offer
some advantage. For example, when forecasting
core CPI-based inflation there appear to be sub-
stantial gains in forecast accuracy at all horizons
when averaging over only those models estimated
with a rolling observation window of fixed size
rather than a recursive, expanding observation
window. In contrast, we find improved IP fore-
casting accuracy when averaging over only those
models estimated with a recursive window rather
than a rolling window of observations.

With these two examples in mind, we provide
a novel decomposition of the relative root mean
square error (RMSE) improvements for each
dependent variable at each forecast horizon,
which allows us to determine which primitive
model types and model-averaging techniques are,
on average, most (and least) beneficial. In some,
though not all, instances our decomposition
meshes well with the permutations of types of
models and types of averaging procedures that
produce the most accurate forecasts.

The remainder of the paper proceeds as fol-
lows. The next section describes the real-time data
used in our analysis. We then provide a synopsis
of the primitive models we average over, followed
by a section describing the types of model averag-
ing we consider. Finally, we present our results
on forecast accuracy, our decomposition, and
our conclusions. 

DATA
We obtained our data from the ALFRED

database maintained by the Federal Reserve
Bank of St. Louis. This database consists of col-
lections of vintages of data for each variable—
that is, vintages that vary across time as either
new data are released or existing data are revised
by the relevant statistical agency. Using this data-
base ensures that at each monthly forecast origin
we are using only data that were available as of
the date of the forecast origin. We therefore define
“real-time” forecasting as using any data avail-
able by the end of the month from which we are
forecasting.1

Choosing the end of a month as the forecast
origin is nontrivial. Nearly all monthly macro-
economic data are released after the end of the
month the data reference. A model needing data
for January 1996 must therefore be constructed
after that month has ended. If we choose the first
day of February 1996 as our forecast origin, the
forecast would be very timely but there would be
almost no data for January to use, thus reducing
the accuracy of the forecast. On the other hand,
if we choose the first day of May as our forecast
origin, all the data for January would be available
but the forecast would be very outdated. As a
middle ground we choose the end of the month
following the most recent data vintage as the rele-
vant forecast origin. For example, this implies
that one-step-ahead forecasts, constructed using
January 1996 vintage data, made at the end of
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1 The ALFRED database (http://alfred.stlouisfed.org/) allows retrieval
of vintage versions of economic data available on specific dates in
history. In general, economic data for past observation periods are
revised as more accurate estimates become available. Currently,
vintage data are available for 24,293 series in 14 categories.



February, will be forecasts of data associated with
February 1996.2

Our analysis uses a total of 238 unique
monthly macroeconomic series from the ALFRED
database. Of these 238 series, 67 are available for
the January 1996 vintage data. As we progress
across time, we allow the number of variables to
increase or decrease with data availability. For
example, the number of series available more than
doubles in November 1996. By the end of our
forecasting exercise in December 2008 a total of
193 series are used either as dependent variables
or as predictors. This is less than the total number
of variables because 45 series were discontinued
or did not have enough observations at some point
in time to adequately estimate either the model
parameters or model-averaging weights.3 There
are 29 output and production series; 8 income,
outlays, and savings series; 40 labor market series;
52 monetary aggregate and reserve series; 35
exchange rate series; 38 financial market and
interest rate series; 34 price series; and 2 survey
series. The detailed list is available from the
authors on request.

For brevity, in our forecasting exercise we
focus exclusively on forecasting four of the most
publicly visible nominal and real monthly fre-
quency variables: headline and core CPI-based
inflation, IP growth, and the unemployment rate.
Specifically, at each forecast origin starting in
February of 1996, we construct forecasts of three
variables: headline CPI-based inflation, IP growth,
and the unemployment rate. We begin forecasting
core CPI-based inflation using December 1996
vintage data—the first available vintage for this
series. For each of the four variables we construct
h = 1-, 3-, 6-, 12- and 24-month-ahead forecasts.
For unemployment, the target variable being fore-
cast is yt+h, the unemployment rate at the forecast
horizon h. For CPI and IP, the target variable being

forecast is the average annualized monthly rate
of growth over the forecast horizon and hence
interpretation of the target variable varies with
the forecast horizon. More precisely, if we let yt
denote the time t log difference in, say, headline
CPI, the target variable being forecast at horizon
h is 

In constructing our forecast errors, we use
the third release (or, equivalently, the second
revision) of the variable as the realized value of
our target variable. In total, because December
2008 is the final vintage used to evaluate our
forecasts, for each model we have roughly 155
1-month-ahead forecast errors that we use to
measure accuracy. This number shrinks to 151,
145, 133, and 109 for the 3-, 6-, 12-, and 24-month-
ahead forecasts, respectively. Following
Marcellino, Stock, and Watson (2006), each vari-
able is transformed to ensure stationarity using
differences or log differences. For the dependent
variables, we treat the unemployment rate as sta-
tionary in levels but treat headline CPI, core CPI,
and IP as stationary in log-first differences. These
transformations are made across all vintages uni-
formly. We do not allow for differences in the type
of transformation across vintages. After trans-
forming the variables we then check for outliers,
defined as observations greater than six times the
inter quartile range. The outliers are replaced with
the mean of the series (without the outlier) from
the relevant vintage. This replacement is done
vintage by vintage and hence the outlier detection
is not influenced by observations not available
at each forecast origin. Note that across the fore-
casting period the CPI and IP indices have been
periodically renormalized so that the units of
measurement are not the same across all vintages.
To avoid mixing and matching, we renormalized
each vintage relative to the December 2008 vintage.

METHODS
In this section we describe the primitive

models over which we average. All models have
one thing in common: They all take the form of
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2 Giannone, Reichlin, and Small (2008) refer to this type of forecast
as a “nowcast.”

3 In our analysis, we set a few basic rules for inclusion of variables:
(i) We do not use seasonally unadjusted data when the seasonally
adjusted version is available, (ii) we do not use regional data for
our analysis, (iii) we omit a variable if fewer than 10 years of data
are available for estimating the model parameters, and (iv) we omit
a variable if we do not have at least 24 pseudo out-of-sample fore-
cast errors to calculate the MSE-weighted forecasts.



an OLS-estimated bivariate VAR in the variable
to be predicted and one additional predictor (see
the section “Iterated Multistep and Direct Multi -
step Forecasts” for a caveat). Otherwise, all the
primitive models differ by at least one of six fea-
tures: (i) the series from the ALFRED database
used as an additional predictor, (ii) the number
of lags of the dependent variable used as a pre-
dictor, (iii) the number of lags of the additional
predictor used, (iv) whether the model is esti-
mated using all available data (i.e., the recursive
scheme) or a moving window of observations
(i.e., the rolling scheme), (v) whether the model
is estimated using only post-Great Moderation
data or data as far back as available for that vin-
tage, or (vi) for forecast horizons greater than one
step ahead, whether iterated multistep (IMS) or
direct multistep (DMS) methods are used to create
our primitive forecasts.

Predictors

As noted previously, we use the ALFRED
database for our real-time forecasting exercise. In
particular, we treat it as the universe of potential
variables that could be used as a predictor for any
one of our four dependent variables. Since the
number of variables in ALFRED changes across
forecast origins, the number of primitive models
over which we average changes across forecast
origins. At the beginning of our sample, January
1996, we have a total of only 66 potential predic-
tors for each dependent variable. At the last poten-
tial forecast origin, November 2008, we have a
total of 192 potential predictors for 1-step-ahead
forecasts. While the number of predictors typi-
cally grows—sometimes dramatically, as for
November 1996—in a few instances the number
of predictors falls as various variables are discon-
tinued or dropped because of insufficient data.4

Full Sample and Great Moderation
Sample

For each model, we estimate the regression
parameters using one of two subsets of data. In
the first, the full sample, we use all available data

in that vintage. While the date of the first observa-
tion varies across individual variables, many date
back to as early as January 1959. In the second,
the post sample, we restrict attention to only
those data available starting in January 1983,
roughly the time frame for the start of the Great
Moderation. Note that for the post sample, this
implies that for each vintage used for estimation,
any pre-1983 observations are discarded.

We consider both subsets of data because
there is considerable evidence, including that in
D’Agostino, Giannone, and Surico (2007), that
the predictability of many macroeconomic vari-
ables has changed since the onset of the Great
Moderation. Even so, there is a trade-off. Using
less information to estimate model parameters
may generate estimates that are more likely to be
unbiased because older data come from a differ-
ent macroeconomic regime, but less information
also can decrease the precision of the estimates.
In practice, this trade-off may favor using more
(or less) data to estimate parameters due to a bias-
variance trade-off.

Recursive and Rolling Windows

For each model, and conditional on whether
we use the full or post sample, we estimate the
bivariate VAR using one of two observation win-
dows. In the recursive scheme, we estimate the
model by OLS using all available data. Hence as
we move forward from one month to the next, we
use one more observation to estimate the model
parameters. In the rolling scheme, we estimate
the model by OLS using only the past 10 years
of available data. Hence when using the rolling
scheme, as we move forward from one month to
the next we use the same number of observations
to estimate the model parameters.

In some ways, our decision to consider two
subsets of data (full vs. post) and two types of
observation windows (recursive vs. rolling) may
seem redundant. We view the two choices, how-
ever, as distinct but related. In the former, we
essentially assume a discrete break in 1983 and
see how doing so helps forecast accuracy. For the
latter, we assume a somewhat smoother sequence
of breaks. Since we are unsure which is the proper
way to manage forecasting in the presence of
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4 See footnote 3 for more detail.



uncertain forms of potential structural change,
we consider both. See Clark and McCracken
(2010) for further discussion on this issue.

Iterated Multistep and Direct
Multistep Forecasts 

For each permutation of predictor, sample, and
observation window, we estimate our bivariate
VAR forecasting model using two different meth-
ods: the textbook method that induces an IMS
forecast and the somewhat easier-to-implement
method of DMS forecasting. The following text
provides a brief description of each approach.

Let yt denote either the time t level of the
unemployment rate or the time t log-first differ-
ence of headline or core CPI or IP. In addition,
recall that the target variable to be forecast at
forecast horizon h is 

for the CPI and IP indices but is simply yt+h for
unemployment. For the IMS forecasting approach,
at each forecast origin t we first use OLS to esti-
mate the bivariate VAR model,

(1)  

where A�L� denotes a lag operator of appropriate
dimension for the given number of lags used in
both the y and x equations. With the regression
parameter estimates in hand, the recursive nature
of the VAR is used to generate a sequence of 1-
through h-step-ahead forecasts ŷt+ i 1 = 1,…,h. For
the unemployment rate, ŷt+h is the resulting fore-
cast of our target variable. For the other depen -
dent variables, we follow Marcellino, Stock, and
Watson (2006) and define our h-step-ahead IMS
forecast as 

Note that for each forecast horizon, the same
parameter estimates are used to construct the
forecasts.

For the DMS forecasting approach, a distinct
model is estimated separately for each forecast
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horizon h. For the unemployment rate and a fixed
value of h, this model takes the form

(2)  

where Ay�L� and Ax�L� denote lag operators of
appropriate dimension for the given number of
lags used for y and x, respectively. For each sep-
arate forecast horizon the forecast is defined as 

For the CPI and IP indices, the model takes the
slightly different form of

(3)  

For each separate forecast horizon the forecast is
similarly defined as 

Note that in each of the above examples, the
parameter estimates from these models vary with
the forecast horizon.

Lags

Each of the IMS and DMS specifications
requires choosing the number of lags of y and x
to use as predictors. The textbook approach would
be to use a model-selection procedure such as BIC.
Such a choice, however, contrasts with our goal
of providing evidence on the benefits of model
averaging relative to model-selection techniques.
In addition, because of the considerable evidence
suggesting a change in the degree of persistence
in inflation (e.g., Levin and Piger, 2006), one might
consider the possibility that the lag order struc-
ture of the model, for inflation in particular, has
changed over time. We therefore consider all 144
permutations of up to 12 lags of either the y or x
variable.

AVERAGING METHODS
After considering all the permutations of

model elements discussed above, for each vari-
able we have 76,128 1-month-ahead forecasting
models estimated in January 1996 and 221,280
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1-month-ahead forecasting models estimated in
November 2008.5 With this rich collection of
individual forecasting models as building blocks,
we consider a range of approaches to model aver-
aging with an eye toward determining which
types of model averaging are most useful and
moreover, which types of primitive models are
the most useful for averaging over.

Simple Model Averages

Our first set of model averages is the simplest.
We consider the equally weighted average and
the median forecast from among these models.
While these methods are not statistically exciting,
substantial evidence suggests that simple forms
of model averaging can perform quite well (e.g.,
Smith and Wallis, 2009). Note that this form of
model averaging implies model weights invariant
to the forecast horizon.

Weighted Model Averages: 
Inverse Mean Square Error Weights

We then consider two distinct forms of
weighted model averaging. In the first, we follow
Stock and Watson (2004) (among others) and con-
sider relative inverse mean square forecast error
(MSE)-based weights to combine our models. The
intuition is that if historical evidence suggests
some models are more accurate than others, it
may be beneficial to give those particular models
more weight. Computationally, if MSEi,t,h denotes
the known MSE associated with individual model
i at forecast origin t associated with a sequence
of past h-step-ahead forecast errors, the weight
given to model i is 

where j = 1,…,Nt denotes an index of all the avail-
able primitive models at forecast origin t.

In our application, for the relevant vintages
of data needed to estimate a particular model at
forecast origin t, we conduct a pseudo out-of-
sample forecasting exercise to generate these
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MSEs. The particulars of the exercise depend on
whether (i) the full or post sample and (ii) the
recursive or rolling scheme are used to construct
our forecasts. If the recursive (rolling) scheme is
used for the model forecast, then the recursive
(rolling) scheme is used for the pseudo out-of-
sample forecasts used to construct the model
weights. If the full sample is used, the first pseudo
out-of-sample forecast is based on parameters
estimated using data from January 1960 to
December 1969 and iterates forward until the
availability of real-time data, at time t, is insuffi-
cient to calculate a forecast error using the third
release of the relevant dependent variable. If the
post sample is used, the first pseudo out-of-sample
forecast is based on parameters estimated using
data from January 1984 to December 1993 and
iterates forward as discussed. Since our forecast-
ing exercise starts in January 1996, this implies
that the model weights constructed with the full
sample are estimated based on an average MSE
that uses many more squared forecast errors than
those constructed with the post sample.

Weighted Model Averages: 
Bayesian Weights

We also consider an approximate Bayesian
model-averaging strategy in which we calculate
a posterior probability from prior probabilities
and marginal likelihoods for each model, with
each model assigned the same prior probability.
Following Garratt, Koop, and Vahey (2006), the
marginal likelihood of a given model is approxi-
mated using its BIC. In our analysis, for each vin-
tage we estimate each model using the relevant
subset of the available data (i.e., the full or post
sample) and, based on the subsequent residuals,
calculate the value of the BIC. Computationally,
if we let BICi,t,h denote the value of the BIC associ-
ated with the residuals from individual model i
at forecast origin t, the weight given to model i is

For the IMS models the BIC is constructed in the
typical fashion using equation (1), which implic-
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5 The number of models not only changes across forecast origins
but also varies slightly across forecast horizons due to data avail-
ability. See footnote 3.
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itly assumes that the residuals are serially uncor-
related. For the DMS models, however, we know
that when h > 1 the residuals from equation (2)
are not serially uncorrelated and hence the typical
formulation is invalid.6 For simplicity, we use
the standard BIC formula regardless.

Weighted Model Averages with
Trimming

In addition to the previously described
weighted forecasts that average across all models,
we also considered a variant that filters out the
models considered “less accurate” by some metric
and averages over only those remaining. Specifi -
cally, at each forecast origin t we follow Aiolfi and
Timmermann (2006) and Clark and McCracken
(2010) by calculating a top 10 percent MSE-
weighted and a top 10 percent BIC-weighted aver-
age constructed using only the top 10 percent of
the available models. For the top 10 percent MSE
models this is done by averaging over only the
models with the lowest 10 percent of pseudo
out-of-sample MSEs based on the data available
as of the forecast origin. Similarly, for the top 10
percent BIC models this is done by averaging over
only the models with the lowest 10 percent of
values of BIC based on the data available as of
the forecast origin.

Benchmark Forecast

In reporting our results it is useful to gain
some perspective on the magnitude of the benefits
of model averaging. Doing so requires choosing
a baseline for comparison. Since our goal is to
observe the benefits of model averaging relative
to model selection, using a fixed autoregressive
model with known lags is insufficient. Not only
does that baseline fail to capture the time-varying
nature of model selection in a real-time forecast
setting, in many cases it does not even serve as a
particularly difficult benchmark to “beat.” For
example, we could have used the standard random
walk benchmark but, as seen below, while this is
a strong benchmark for the unemployment rate,

it is a horrible benchmark for IP and both CPI
indices.

Instead, we use the recursively estimated,
IMS, BIC-selected forecast estimated over the full
sample as our benchmark. At each forecast origin
t this entails calculating the value of the BIC for
each IMS model from equation (1), estimated by
(i) using the full sample, separately across all pos-
sible lag permutations and choices of additional
predictor, and (ii) then choosing the model with
the lowest BIC as the model that is used to con-
struct the forecast. The reason for our selection
is that this particular BIC-selected forecast is the
conventional methodology that a textbook in
time-series econometrics would suggest. For
completeness, we also report the relative RMSEs
associated with the random walk model.

Before we proceed, it is important to clarify
two things about our “benchmark model.” First,
it is chosen in real time in the sense that at each
forecast origin we use only the vintage of data
available at that forecast origin.7 In particular,
we use only the vintage of data available at the
time the forecast is constructed to compute the
value of the BIC for each possible model. Second,
across time there is no single benchmark model.
That is, as we proceed across forecast origins, it
is possible for the model with the smallest value
of BIC to change. This can occur for any number
of reasons: the presence of unmodeled structural
change, revisions in the data across vintages, or
even changes in the collection of models consid-
ered as the universe of variables in ALFRED
expands or contracts across time. Because of this
possibility, the benchmark model is not so much
a “model” as it is a forecasting method.

Summary of Methods

For each variable and each horizon, we con-
sider six different forms of model averaging:
average, median, (inverse) MSE-weighted, BIC-
weighted, top 10 percent (inverse) MSE-weighted,
and top 10 percent BIC-weighted. Each form of
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6 See Hansen (2010) for a discussion of how this affects the defini-
tion of BIC.

7 Recall that the phrase “full sample” is intended to denote that for
a given forecast origin the entirety of the corresponding vintage of
data is used for estimation. This is in contrast to the phrase “post
sample,” which uses only the portion of the corresponding vintage
that coincides with the Great Moderation.



averaging is then applied separately to several
distinct classes of models, which are indexed by
their type of construction using (i) the full and/or
post samples, (ii) the recursive and/or rolling
schemes, and (iii) the IMS and/or DMS approaches
to forecasting. Note that since we allow for aver-
aging over, for example, models estimated using
either the recursive or rolling schemes, there are
33 = 27 model classes that we consider. In all,
this gives us 6 × 33 = 162 distinct permutations
of forms of model averaging and the types of
models that are averaged over.

RESULTS
In this section, we discuss our results on the

benefits of using forecast averaging as a tool for

improving forecast accuracy. For brevity, however,
we do not present the tables associated with all
162 model-averaging and model class variants.
Instead, Tables 1 and 2 present results for each
type of model averaging when we average over
all models. Table 1 presents results for headline
and core CPI-based inflation and Table 2 presents
results for growth in IP and the unemployment
rate. The values in the first row of each panel of
these tables are the RMSEs associated with the
benchmark model chosen using BIC at each fore-
cast origin. The remaining values in each panel
are relative RMSEs. Values greater than 1 favor
the benchmark model, while values less than 1
favor the form of model averaging denoted in the
first column. For each forecast horizon, the best
relative RMSE is shown in bold type.
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Table 1
RMSEs of Out-of-Sample Forecasts of Nominal Variables

Forecast horizon

Variables 1 month 3 month 6 month 12 month 24 month

Headline CPI

BIC, recursive, IMS, full* 3.560 2.741 1.622 1.146 0.800

Random walk 1.151 1.519 2.298 2.851 4.234

Median 0.995 1.018 0.990 0.934 0.760

Average, all forecasts 0.995 1.021 1.008 0.952 0.816

MSE weight, all forecasts 0.995 1.018 0.993 0.934 0.778

MSE weight, top 10% 1.000 1.030 1.006 0.943 0.821

BIC weight, all forecasts 0.994 1.024 1.007 0.946 0.781

BIC weight, top 10% 0.994 1.023 0.996 0.913 0.667

Core CPI

BIC, recursive, IMS, full* 1.233 0.805 0.606 0.586 0.591

Random walk 1.198 1.580 1.858 1.855 1.954

Median 0.938 0.942 0.899 0.867 0.827

Average, all forecasts 0.931 0.962 0.944 0.944 0.967

MSE weight, all forecasts 0.934 0.938 0.884 0.840 0.827

MSE weight, top 10% 0.958 0.949 0.893 0.848 0.834

BIC weight, all forecasts 0.936 0.946 0.918 0.918 0.922

BIC weight, top 10% 0.946 0.932 0.888 0.842 0.810

NOTE: *Values associated with the first row in each panel are RMSEs. The remaining values are ratios of RMSEs relative to that of the
first row. For each forecast horizon, the best relative RMSE is shown in bold type. BIC, Bayesian information criterion; CPI, consumer
price index; full, full sample (all available data in that vintage); IMS, iterated multistep; MSE, mean square error. See text for details.



Root Mean Square Errors of Nominal
Variables

The first panel of Table 1 provides the results
of forecasts for headline CPI-based inflation aver-
aged across all models. At the three shortest hori-
zons there are few, if any, advantages to forecast
averaging across all models in terms of RMSEs.
When averaging over all the primitive models,
the benchmark is either better than model aver-
aging or only marginally worse. However, as the
forecast horizon increases to 12 months, model
averaging improves accuracy by roughly 5 per-
cent and at the longest horizon, forecast averag-
ing improves accuracy by as much as 30 percent.
In each of these latter horizons, the top 10 per-
cent BIC-weighted forecasts yielded the lowest
RMSEs.8

The second panel of Table 1 provides the
results for core CPI-based inflation. In contrast
to the results for headline inflation, consistent
improvements are noted at all horizons for model
averaging across all models. At the shortest hori-
zons, the gains were on the order of a modest 5
percent, but as the horizon increases the improve-
ments rise to about 15 percent. Across all horizons,
no single averaging approach consistently gives
the greatest improvements: The average, MSE-
weighted, and top 10 percent BIC-weighted fore-
casts each perform best in at least one horizon.
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Table 2
RMSEs of Out-of-Sample Forecasts of Real Variables

Forecast horizon

Variables 1 month 3 month 6 month 12 month 24 month

Industrial production

BIC, recursive, IMS, full* 9.951 6.229 5.050 4.136 2.837

Random walk 1.125 1.263 1.313 1.561 2.281

Median 0.985 0.972 0.986 0.994 1.070

Average, all forecasts 0.985 0.970 0.981 0.994 1.055

MSE weight, all forecasts 0.986 0.970 0.982 0.996 1.056

MSE weight, top 10% 0.988 0.974 0.982 1.011 1.067

BIC weight, all forecasts 0.987 0.972 0.983 1.001 1.072

BIC weight, top 10% 0.989 0.990 1.005 1.023 1.094

Unemployment rate

BIC, recursive, IMS, full* 0.167 0.301 0.463 0.696 1.023

Random walk 0.995 0.958 0.947 0.982 1.031

Median 0.936 0.882 0.864 0.922 0.936

Average, all forecasts 0.935 0.877 0.857 0.917 0.922

MSE weight, all forecasts 0.935 0.877 0.856 0.916 0.926

MSE weight, top 10% 0.922 0.865 0.836 0.910 0.969

BIC weight, all forecasts 0.935 0.879 0.862 0.918 0.919

BIC weight, top 10% 0.938 0.895 0.889 0.953 0.985

NOTE: *Values associated with the first row in each panel are RMSEs. The remaining values are ratios of RMSEs relative to that of the
first row. For each forecast horizon, the best relative RMSE is shown in bold type. BIC, Bayesian information criterion; CPI, consumer
price index; full, full sample (all available data in that vintage); IMS, iterated multistep; MSE, mean square error. See text for details.

8 We do not test for statistical significance in our results because
there is no known method for doing so when the baseline model
is allowed to change across time and the competing model forecast
is not based on a model per se but is instead an average across
many models.



Root Mean Square Errors of Real
Variables

The first and second panels of Table 2 parallel
those in Table 1 in terms of the benefits of model
averaging. As for headline CPI, model averaging
across all models provides little to no improve-
ment relative to model selection when forecasting
IP growth at the shortest horizons. In fact, model
averaging typically is worse than model selection
at the longest horizons with losses of roughly 5
percent.

But again, in contrast to the results in the
first panel, model averaging across all models
consistently improves forecast accuracy relative
to model selection when forecasting the unem-
ployment rate. Each model-averaging procedure
improves forecast accuracy at every horizon.
Somewhat surprisingly, the improvements are
(inverse) U shaped: The improvements in RMSE
are roughly 7 percent at the shortest and longest
horizons but are closer to 12 percent at the inter-
mediate horizons. Across all but the longest hori-
zon, the top 10 percent MSE-weighted forecast has
the largest improvements relative to the bench-
mark. At the longest horizon the BIC-weighted
average performs best.

Decomposition Regression Analysis

Tables 1 and 2 show that while model averag-
ing can improve forecast accuracy, it does not
always do so relative to our model selection-based
benchmark. Moreover, when model averaging
does provide improvements, the best form of
model averaging varies across both dependent
variables and forecast horizons. Finally, though
obviously not apparent in Tables 1 and 2 (which
present results averaged over all the primitive
models), comparable conclusions can be reached
if we report all the remaining  permutations of
types of model averaging and model classes for
each dependent variable and each horizon.

Even so, it may be that on average across all
these permutations, some simple patterns emerge
that could help in identifying the best types of
model averaging and the classes of models that
should be averaged over. To parse out such effects
we estimate a regression in which we use dummy

variables for the types of model averaging and
model classes as predictors for the corresponding
relative RMSEs. Specifically, for each dependent
variable and each forecast horizon, we use OLS
to estimate the following regression:

(4) 

where RMSEi
h is the relative RMSE of permutation

i = 1,…,162 and Rec and Roll denote the recursive
and rolling window schemes, respectively. By
subtracting 1 the coefficients are more easily
interpreted as indicating percent improvement
(a negative coefficient) or percent deterioration
(a positive coefficient) relative to our benchmark.

The α coefficients in equation (4) are associ-
ated with variables that indicate how an individual
forecast is made: DMS takes the value 1 if only
DMS models are included and 0 otherwise, Post
takes the value 1 if only Great Moderation data
are used and 0 otherwise, and Roll takes the value
1 if only a rolling window of observations is used
to estimate the model parameters and 0 otherwise.
The β coefficients are associated with the differ-
ent combinations of the α coefficients: IMS/DMS
takes the value 1 if the weighted forecast com-
bines both IMS and DMS forecasts and 0 other-
wise, Full/Post takes the value 1 if the weighted
forecast combines both the full and post samples
and 0 otherwise, and Rec/Roll takes the value 1
if the weighted forecast combines both recursive
and rolling estimation schemes and 0 otherwise.
The γ coefficients are associated with how the
weighted forecasts are constructed: Equal takes
the value 1 if either the average or median aver-
aging methods are used and 0 otherwise, Weight
takes the value 1 if the models are weighted
unequally and 0 otherwise, Top 10% takes the
value 1 if the averaging uses only the top 10 per-
cent of forecasts and 0 otherwise, and MSE takes
the value 1 if MSE-based weights are used and 0
otherwise.

Results for Nominal Variables

Table 3 shows decomposition results for both
headline and core CPI-based inflation. In each

RMSEi
h – 1 1 2 3

1 2

= + +
+ +

α α α
β β
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Table 3
Decomposition Regression of Nominal Variables

Forecast horizon

Variables 1 month 3 month 6 month 12 month 24 month

Headline CPI

DMS 0.000 –0.004 –0.001 –0.016* 0.014

DMS/IMS 0.000 –0.001 0.001 –0.005 –0.000

Post –0.011*** –0.027*** –0.049*** –0.066*** –0.147***

Post/Full –0.009*** –0.019*** –0.035*** –0.050*** –0.113***

Roll –0.004*** –0.045*** –0.075*** –0.086*** –0.141***

Rec/Roll –0.012*** –0.031*** –0.050*** –0.078*** –0.177***

Equal 0.018*** 0.074*** 0.088*** 0.082*** 0.087**

Weighted –0.001 –0.002 –0.000 0.001 –0.017

Top 10% 0.000 –0.002 –0.011* –0.020** –0.047***

MSE –0.001 0.002 –0.006 –0.022*** –0.011

N 162 162 162 162 162

Core CPI

DMS –0.000 –0.010* –0.034*** –0.085*** –0.152***

DMS/IMS –0.000 –0.004 –0.011 –0.025 –0.044

Post 0.001 –0.041*** –0.075*** –0.130*** –0.230***

Post/Full –0.002 –0.034*** –0.060*** –0.102*** –0.176***

Roll –0.002* –0.069*** –0.134*** –0.236*** –0.414*** 

Rec/Roll –0.013*** –0.056*** –0.105*** –0.182*** –0.317***

Equal –0.048*** 0.046*** 0.096*** 0.215*** 0.439***

Weighted –0.004*** –0.013** –0.011 –0.015 –0.027

Top 10% 0.009*** –0.011** –0.025** –0.049*** –0.073***

MSE 0.004** 0.000 –0.020** –0.040** –0.041

N 162 162 162 162 162

NOTE: Each column in each panel provides the coefficients associated with a distinct OLS-estimated version of equation (4). *, **,
and *** denote statistical significance at the 10 percent, 5 percent, and 1 percent levels, respectively. BIC, Bayesian information criterion;
CPI, consumer price index; DMS, direct multistep; Full, full sample (all available data in that vintage); IMS, iterated multistep; MSE,
mean square error; Post, only data that occur starting in January 1983; Rec, recursive window scheme; Roll, rolling window scheme.
See text for details.



panel, the first six rows relate to the selection of
models to average over and the next four rows
relate to the type of averaging method. We begin
by studying panel 1 (that associated with headline
CPI-based inflation).

In the first two rows of panel 1 (those associ-
ated with averaging over DMS models, IMS mod-
els, or both), there appears to be little statistically
significant advantage to any of these particular
forecasting methods. The sole exception is at the
12-month horizon, where DMS models appear to
be favored. The results are stronger for the choice
of data used to estimate the models. Across all
horizons, the use of only Great Moderation data
to estimate the models appears to be a significant
advantage: Not only are the coefficients on post
samples significantly different from 0 and nega-
tive, they also are more negative than the coeffi-
cients associated with averaging over both the
full and post samples. The results for the choice of
sampling scheme are a bit more muddled but still
instructive. At the shortest and longest horizons,
combining the recursive and rolling schemes—
as suggested by Clark and McCracken (2008)—
appears to offer the most advantage in terms of
reducing RMSEs. At the other horizons, using
the rolling scheme tends to be the best choice.

In the next four rows of panel 1, results for
the type of averaging method clearly indicate that
the simple equally weighted averaging methods
perform significantly worse than the benchmark.
At all horizons the coefficient associated with
Equal is positive and different from 0. Unfortu -
nately, the remaining three rows are not as easy
to interpret. While the MSE, Weight, and Top 10%
coefficients are typically negative—suggesting
that a top 10 percent MSE-weighted average
might be best—the coefficients are statistically
significant only in a few instances at the longer
horizons.

The results in panel 2 (those associated with
core inflation) are similar to those for headline
inflation, with a few specific differences. The
evidence in favor of using the DMS approach to
forecasting is stronger at all horizons and signifi-
cantly so. Again, for all but the shortest horizon,
the evidence favors using only Great Moderation
data to estimate the model parameters. Similarly,

using the rolling scheme or a combination of the
rolling and recursive schemes is the preferred
approach.

In the seventh through ninth rows of panel 2,
the results for the type of averaging method are
much sharper than those for headline inflation.
In all but the shortest horizons, the simple equally
weighted averaging methods perform significantly
worse than the benchmark. But at the 1-month
horizon, it appears that a simple averaging method
does provide significant gains in forecast accuracy
and, moreover, those gains are larger than when
some form of weighting is used. For horizons
longer than 1 month, the coefficients on Top 10%
are all significantly negative, which along with
the negative MSE and Weight coefficients suggests
that a top 10 percent MSE-weighted average might
be best.

Results for Real Variables

The results for the real variables (Table 4),
particularly those for IP, are quite different from
those for the nominal variables. A quick glance
at the first six rows of panel 1 indicates quite
clearly that the preferred model types for averag-
ing are now IMS forecasting models estimated
recursively using the full sample—a sharp contrast
to the type of models chosen for both headline
and core CPI-based inflation. Moreover, in the
next four rows of panel 1, it appears that while
some evidence favors MSE weighting relative to
BIC weighting, the majority of the evidence sug-
gests even better results would be obtained using
the simple equally weighted averages rather than
a weighted or top 10 percent weighted average.

The results in panel 2 (those associated with
the unemployment rate) are less clear cut than
those for IP and even those for headline and core
CPI-based inflation. At the 3- and 6-month hori-
zons, the DMS approach to forecasting appears to
perform best but at the longest horizon the IMS
appears to perform best. Similarly, at the interme-
diate horizons, using the post (Great Moderation)
sample appears to perform best but at the longest
horizon the full sample appears to perform best.
And while the rolling scheme or a combination
of the recursive and rolling schemes tends to per-
form best at the shortest horizons, the recursive

Banternghansa and McCracken

60 JANUARY/FEBRUARY 2011 FEDERAL RESERVE BANK OF ST. LOUIS REVIEW



Banternghansa and McCracken

FEDERAL RESERVE BANK OF ST. LOUIS REVIEW JANUARY/FEBRUARY 2011 61

Table 4
Decomposition Regression of Real Variables

Forecast horizon

Variables 1 month 3 month 6 month 12 month 24 month

Industrial production

DMS –0.000 0.003*** 0.013*** 0.024*** 0.025***

DMS/IMS –0.000 0.000 0.004** 0.001 –0.003

Post 0.000 0.000 0.006*** 0.006** –0.001

Post/Full –0.000 –0.000 0.004** 0.004 –0.001

Roll 0.012*** 0.013*** 0.049*** 0.089*** 0.147***

Rec/Roll 0.004*** 0.006*** 0.025*** 0.050*** 0.085***

Equal –0.018*** –0.034*** –0.047*** –0.053*** –0.009**

Weighted 0.001*** 0.002*** 0.000 –0.000 0.003

Top 10% 0.003*** 0.007*** 0.007*** 0.002 0.003

MSE –0.002*** –0.006*** –0.003* 0.002 –0.006

N 162 162 162 162 162

Unemployment rate

DMS 0.000 –0.006*** –0.016*** 0.004 0.077***

DMS/IMS 0.000 –0.002 –0.004* –0.002 0.001

Post 0.001 –0.009*** –0.010*** –0.009*** 0.026***

Post/Full –0.001 –0.007*** –0.008*** –0.009*** 0.014

Roll –0.014*** –0.002 0.013*** 0.054*** 0.159***

Rec/Roll –0.009*** –0.004** 0.004 0.023*** 0.071***

Equal –0.054*** –0.107*** –0.127*** –0.088*** –0.151***

Weighted 0.003*** 0.003* 0.003 0.002 0.001

Top 10% –0.007*** –0.005** –0.006* 0.001 0.034***

MSE –0.008*** –0.009*** –0.014*** –0.010*** –0.006

N 162 162 162 162 162

NOTE: Each column in each panel provides the coefficients associated with a distinct OLS-estimated version of equation (4). *, **, and
*** denote statistical significance at the 10 percent, 5 percent, and 1 percent levels, respectively. BIC, Bayesian information criterion;
CPI, consumer price index; DMS, direct multistep; Full, full sample (all available data in that vintage); IMS, iterated multistep; MSE,
mean square error; Post, only data that occur starting in January 1983; Rec, recursive window scheme; Roll, rolling window scheme.
See text for details.



scheme clearly tends to dominate at the 6-month
and longer horizons. Finally, as for IP, it appears
that some evidence favors MSE weighting relative
to BIC weighting, but the majority of the evidence
suggests even better results would come from using
one of the equally weighted averages rather than
a weighted or top 10 percent weighted average.

Rankings

Tables 3 and 4 give some indication of which
model-averaging types should be used and which
model classes should be averaged over. However,
we emphasize that these results are indicators of
average treatment effects across all 162 permuta-
tions of averages and model classes. They do not
necessarily indicate which permutations actually
do perform best. Tables 5 and 6 provide a brief
description of the permutations that perform best.
In particular, we list the 10 best-performing per-
mutations of averaging methods and model classes
and their respective relative RMSEs for each vari-
able and each of the 1-, 3-, and 12-month horizons.9

In addition, we provide the five worst-performing
permutations for the sake of comparison.

The first panel of Table 5 provides the rank-
ings for headline CPI-based inflation. There are
several striking features. In line with the results
from Table 1, at the 1- and 3-month horizons there
are few, if any, gains to model averaging irrelevant
of model class. But as the horizon increases to 12
months, gains of roughly 10 percent are available
when top 10 percent weighted averages are used;
these gains are consistent with the decomposition
results from Table 3. In addition, across all hori-
zons, the 10 best-performing permutations use
either the rolling scheme or a combination of the
rolling and recursive schemes. In contrast, the
five worst-performing permutations exclusively
use the recursive scheme. Finally, as suggested
in Table 3, all but one of the five worst-performing
permutations use the simple equally weighted
averaging schemes.

The second panel of Table 5 (that associated
with core inflation) offers a slightly different pic-
ture of the benefits of model averaging relative to

model selection. In particular, as in Table 1, model
averaging is consistently beneficial at all hori-
zons provided the right permutations of model
averages and model classes are used. The 10 best-
performing permutations outperform the bench-
mark by roughly 7 percent at the shortest horizon
and by as much as 25 percent at the longest hori-
zon. On the other hand, the 5 worst-performing
permutations outperform the benchmark at the
1-month horizon but not at the 3- and 12-month
horizons.

Interestingly, the types of model averages that
perform best and worst for core inflation coincide
nicely with the results in Table 3. At the shortest
horizon, equally weighted averages tend to per-
form best but as the horizon increases, the top 10
percent weighted averages begin to dominate. In
general, the class of models to average over also
coincides with the results in Table 3: The 10 best-
performing permutations are dominated by DMS
forecasting models estimated over the post (Great
Moderation) sample or an average of the post and
full samples, using the rolling scheme or a com-
bination of the rolling and recursive schemes. One
result that does not coincide is at the 12-month
horizon, where the BIC-weighted averages appear
to perform best while the results in Table 3 sug-
gest the MSE-weighted average would perform
better.

The first panel of Table 6 provides the rank-
ings for IP growth. As in Table 2, the advantages
to model averaging relative to model selection,
while feasible, are not particularly large, with a
maximum of only 5 percent at the 12-month
horizon. As indicated in the decomposition (see
Table 4), the equally weighted averages seem to
perform best at the 1-month horizon but as the
horizon increases to 3 months, top 10 percent
weighted averages appear to gain some traction
among the best-performing averaging methods—
a sharp contrast to the decomposition. Appar -
ently part of the problem is that many of the
worst-performing models are also top 10 percent
weighted averages; hence, in averaging across
all permutations, the decomposition indicates
the equally weighted averages should perform
better. One point that clearly matches our decom-
position is the choice of sampling scheme: Nearly
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all the best-performing permutations average
across models estimated with the recursive
scheme while all the worst-performing permuta-
tions average across models estimated with the
rolling scheme.

In the second panel of Table 6 (that associated
with forecasts of the unemployment rate), a few
things are immediately apparent. First, model
averaging uniformly improves forecast accuracy
across all horizons and all permutations. In fact,
at the 3-month horizon, the worst-performing
model average provides an improvement of 10
percent relative to the benchmark. Also, across
all horizons the 10 best-performing types of model
averaging are of the top 10 percent form. This is
in sharp contrast with the decomposition results,
which predicted that the equally weighted aver-
ages tended to perform best. Even so, as for the
decomposition shown in Table 4, it appears that
at the shortest horizon the rolling scheme appears
to perform best but as the horizon increases the
recursive scheme becomes preferred. At the 12-
month horizon, the 5 worst-performing permuta-
tions use the rolling scheme.

CONCLUSION
We use the ALFRED real-time database to

provide empirical evidence on the real-time
benefits of model averaging monthly-frequency
forecasts of headline and core CPI-based inflation,
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growth in IP, and the unemployment rate. Our
results support those discussed in much of the
literature on forecasting: Model averaging typi-
cally improves forecast accuracy relative to a
benchmark chosen using model selection. Even
so, we emphasize a different point that is typically
glossed over in the literature on forecast averag-
ing: The choice of models averaged across can
greatly influence the efficacy of the averaging
methods.

This of course raises the question of how to
choose the correct class of models to average
across. Based upon a novel decomposition of the
benefits of forecast averaging relative to using
model-selection methods, a few rules of thumb
seem evident. First, DMS forecasting models esti-
mated over the post (Great Moderation) sample
(or an average of the post and full samples) using
the rolling scheme (or a combination of the rolling
and recursive schemes) seem to perform best for
forecasting either headline or core CPI-based infla-
tion. Second, averaging over models estimated
using the recursive scheme (or an average of the
rolling and recursive) seems to perform best for
forecasting either IP growth or the unemployment
rate. Third, the top 10 percent averaging approach
frequently provides the best improvements in
forecast accuracy, but it is not immune to poor
performance relative to equally weighted averages
because past model performance does not always
ensure future model performance.
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