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n many economic models, business cycles

are driven by some combination of monetary,

fiscal, and technological innovations, where
“technology” is often thought of as the unexplain-
able component of the business cycle that is mani-
fested as a change in the overall productive capacity
of the economy. Recently, a growing empirical litera-
ture has undertaken the challenge of defining tech-
nology shocks and their effects on the economy
in structural statistical models.

In this paper, we survey the recent literature on
long-run identified technology shocks. We present
the results of a bivariate vector autoregression (VAR)
with labor productivity and labor hours as a bench-
mark for the recent results found for technology
shocks. We then propose an alternative approach
for identifying and studying the effects of technology
shocks.

We propose a reverse approach to that used in
the structural VAR literature, the motivation of which
is to provide a robustness check of the recent results
from the existing literature. Our new methodology
entails four basic steps. We first estimate the reduced-
form VAR, saving the coefficient and the error
variance-covariance matrices. Given the estimated
reduced-form coefficient and covariance matrices,
the second step is to constrain the impulse response
for labor productivity. Specifically, we restrict the
sign of the impulse response for productivity such
that technology shocks have long-lasting positive
effects on productivity. The third step is to collect
all the shocks that can generate this long-horizon
response of productivity—we call these disturbances
potential technology shocks. The final step is to
examine the response of labor hours to these shocks.
Contrary to standard real business cycle (RBC) theory,
recent studies in this literature have found that labor
hours respond negatively to a positive technology
shock. We test the robustness of this result.
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The remainder of the paper is organized as
follows: We define the properties of the VAR-based
technology shock and review the current empirical
findings in the second section. In the third section,
we examine a standard application of long-run
restrictions used to identify technology shocks and
present our (bivariate) benchmark results from this
exercise. In the fourth section, we employ an alter-
native form of a long-run restriction that is adapted
from the agnostic algorithm originally proposed by
Uhlig (1999).

EMPIRICAL TECHNOLOGY SHOCKS:
A SURVEY

The traditional view in macroeconomics was
that economic fluctuations arose from transitory
shocks, e.g., temporary shocks to monetary and
fiscal policy. Secular trends were believed not to
contribute to quarter-to-quarter or even year-to-year
fluctuations in macroeconomic data. In a very influ-
ential paper, King et al. (1991) empirically examined
the effects of shifts in stochastic trends common to
several macroeconomic series. They presented an
economic model with a single common stochastic
trend, interpreted as a permanent shock to produc-
tivity, that altered the steady state of the model
economy. This stochastic trend, the unit root in
productivity, is now widely referred to as a “tech-
nology shock”; currently, the challenge for macro-
economists is how to more accurately identify this
measure of technology shocks.

The growth accounting approach proposed by
Solow (1957) has been widely used to identify tech-
nology shocks. Under the assumption of competitive
markets and constant returns to scale in production,
total factor productivity (or the Solow residual) is
that part of output that is left unexplained after
accounting for the contributions of capital and labor.
A typical growth accounting equation would be of
the form:

log(Y;) = ylog(L,) + (1—y)log(K,) +10g(4,).

where Y, is period-t output; K, and L, are period-t
capital and labor, respectively; ¥ is the labor share
of output; and A, is the so-called Solow residual.
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Innovations to the Solow residual were thought
of as shocks to technology.! However, there are three
potential shortcomings with the use of the Solow
residual as a proxy for technology shocks. First,
growth accounting does not incorporate either
workers’ effort or capital utilization. Thus, embedded
in the residual A, are these confounding measures
that have nothing to do with technology shocks.
Second, the probability of technological regress
using the Solow residual is of the order of 40 per-
cent, which is implausible to some economists. It is
not apparent that the structural VAR (SVAR) method
overcomes this criticism, implying that it is nearly
equally likely to have technological regress as
progress. Third, the measure failed what are now
referred to as the Hall (1988) and Evans (1992)
tests. These studies found that the Solow residual
is correlated with other exogenous shocks—such
as shocks to money, interest rates, and government
spending—that are not related to technology.?

These shortcomings led economists either to
seek to improve upon the Solow residual or search
for an alternative measure of technology shocks.
Basu, Fernald, and Kimball (1998) sought to improve
upon the Solow residual by incorporating unob-
served factor inputs into their estimations. They
followed Hall (1990) and regressed the growth rate
of output on the growth rate of inputs at a disaggre-
gated level with proxies for capacity utilization.
Technological change is then defined as an appro-
priately weighted sum of the resulting residuals.
They found that technological improvements con-
tradict RBC theory predictions about the (technology-
driven) co-movement of labor hours and productivity
across the business cycle; specifically, hours fall, at
least in the short run, when hit with a productivity-
improving technology shock.

The search for an alternative measure of tech-
nology shocks has proceeded along two lines. The
first line of research concerns the assumption(s) used
to identify technology shocks. The second line
involves the choice of data used to identify technol-
ogy shocks and asks: Are technology shocks either
(i) a manifestation of the unexplained component

This view is not the consensus of the growth accounting literature.
For example, Denison (1979) views productivity as a measure of
society’s ability to increase standards of living.

King and Rebelo (1999) provide a comprehensive survey of the RBC
literature. In particular they highlight the features of the RBC model,
e.g., indivisible labor and capital utilization, that generate business-
cycle-like second moments while correcting for the failures of the
Solow residual.
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of labor productivity or output or (ii) the culmination
of research and development?

Proceeding along the first line of research, Gali
(1999) attempted to disentangle technology and non-
technology shocks by analyzing labor productivity
and hours of employment. He estimated a SVAR
with the key identifying assumption that technology
shocks alone can produce long-run effects on labor
productivity.® Gali estimated a bivariate model of
productivity and hours.# He found that hours fell in
response to a shock that permanently raised labor
productivity (the technology shock). Gali thus con-
cluded that technology shocks were not the driving
force behind cyclical fluctuations and that his “non-
technology” shocks better explained the short-run
movements in aggregate economic data. Kiley (1998)
followed Gali and applied a similar methodology to
17 two-digit manufacturing industries. He found
that, for a majority of these industries, technology
shocks identified by these SVARs produced the same
negative hours response as found for the aggregate
data.

Francis and Ramey (2002) used Gali as a starting
point in their recent analysis of technology shocks.
Using the SVAR approach, they reexamined Gali’s
work by first testing whether the shocks identified
in this framework can be plausibly interpreted as
technology shocks. They first derived additional
long-run restrictions and used them as overidentify-
ing tests. For example, they estimated a model of
real wages and hours with the assumption that only
technology shocks can have permanent effects on
real wages. If this assumption is true, then real wages
and productivity should share a common trend, an
assumption not rejected by the data.5 Next, they
augmented Gali’s basic model with data on real
wages, investment, and consumption and deter-
mined whether the impulse responses for these
variables accorded with theory. Finally, they tested
whether their technology shocks were Granger-
caused by exogenous events unrelated to technology
as per Hall (1988) and Evans (1992). Their measure
of technology survived the scrutiny of all three tests.

In a bivariate framework, the employed identification is equivalent
to a Wold causal chain structure in the long run.

Gali (1999) also estimates a five-variable model that includes money,
inflation, and interest rates. Results from this model are consistent
with the bivariate framework.

The first-order condition states that workers are each paid their
marginal product. Therefore, it stands to reason that the same assump-
tion for the effect of technology shocks on labor productivity must
also hold for technology shocks on real wages.
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However, they still found that labor hours responded
negatively on impact to a technology shock.®

Shea (1999) proceeded along the second line of
research. He used data on both patents and research
and development to identify technology shocks
and found that hours fell in response to a technology
shock. However, unlike the above studies, the decline
in hours is a long-run response—that is, hours rise
in the short run but then eventually fall.

In sum, using different methodologies to identify
technology shocks, these recent lines of research
have produced similar results. Further, the identified
technology shock is unable to explain a substantial
proportion of the variation in hours across the
business cycle. Our contribution will be to add a
fourth methodology that provides a robustness
check of the SVAR results.

IMPLEMENTING LONG-RUN
RESTRICTIONS

In this section, we present a bivariate long-run
restricted SVAR model of productivity and hours as
a benchmark to the technology literature. Essentially,
this section reproduces the bivariate results described
in Gali (1999) and Francis and Ramey (2002).

Data

The data are quarterly and cover the period
1948:0Q1 to 2000:0Q4. The labor productivity series
is from the Bureau of Labor Statistics (BLS) “Index
of output per hour, business,” while the labor hours
series is from the BLS “Index of hours in business.”
We tested and failed to reject unit roots for both labor
productivity and hours; therefore, in our benchmark
VAR specification, we enter these series in first differ-
ences. Productivity and labor are also not cointe-
grated. We use four lags of the dependent variables
in each equation of the VAR. The lag length was
chosen by means of the Schwarz or Bayesian infor-
mation criterion (BIC).

Econometric Framework

The recent methodology of choice in the tech-
nology shock literature is the SVAR, a standard
reduced-form VAR with additional restrictions that

6 Christiano, Eichenbaum, and Vigfusson (2003) and Uhlig (2002)
challenge the results of the aforementioned literature. They claim that
hours entered in levels would overturn the negative short-run hours
response when a technology shock hits the economy. However, Francis
and Ramey (2003), in another unpublished manuscript, show that
hours, properly detrended, experiences a decline on impact of a
technology shock.

are drawn from theory to separate and identify the
components of the residuals. These restrictions can
be short run (often comprising short-run restrictions
or the impact effects of shocks) or long run. A dis-
cussion of long-run restrictions follows.

Consider the following k-lag VAR:

OWL)Y,=¢,,
where

_Axt
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7An[
_gtx

g = ,

t 8;1

and ®(L) is a kth-order matrix polynomial in the lag
operator. The VAR can be rewritten in its moving
average (MA) representation:

(1) Y, =CL)E,,

where C(L) is a (infinite) polynomial matrix in the
lag operator ®(L) = C(L)™". The series x, denotes the
log of labor productivity, and n, denotes the log of
labor hours. We label €/ the technology shock and
g/ the non-technology shock, and we make the usual
assumption that these shocks are orthogonal and
serially uncorrelated.

For ease of exposition, it is useful to rewrite (1) as

@) y = Cu@) Cp) | &
C G Cu) g

We impose long-run restrictions to identify the
technology shock, €/. Each of the matrices in (2) is
a polynomial in the lag operator. To achieve exact
identification, we restrict the non-technology shock’s
long-run impact on productivity to be zero. This
assumption identifying the technology shock implies
that C,,(1) = 0, which restricts the unit root in pro-
ductivity to originate solely from the technology
shock.” The identifying restrictions do not restrict
the effect the technology shock can have on hours
at either the long or short horizon.8

We estimate the model using the method pro-

In principle, the model presented above could be augmented to mea-
sure the effects of shocks on other variables (see Gali, 1999, and Francis
and Ramey, 2002). The identification scheme here assumes that any
other shock, regardless of the size of the system, has no long-run
effect on labor productivity.

It can be shown that the identification scheme explained in this section
is equivalent to a Wold causal chain on the steady-state structure of
the model (see Rasche, 2001).
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Impulse Responses to a Technology Shock
(95% Bootstrapped Standard Error Bands)
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posed by Shapiro and Watson (1988). By using this
method we can estimate the equations in the VAR
one at a time. The productivity equation is as follows:

P p-l ) .
3 Ax, = ,%ax’“ JAx,_; +J§O B, A+l
where A? is the square of the difference operator.
Imposing the long-run restriction is equivalent to
restricting the hours variable to enter the produc-
tivity equation (3) in double differences.? Because
the current value of A’n, will be correlated with &},
we estimate this equation using instrumental vari-
ables. We use lags 1 through p of Ax, and An; as
instruments. The hours equation is then estimated
as follows:

)2 P
(4) An, = jzl e jAX,_; + jzl Oy j AT, + PrxEr +E-
Technology, €/, enters into the hours equation (4) in
order to achieve orthogonality between the tech-
nology and non-technology shocks. We estimate the
hours equation using ordinary least squares, since
there is no contemporaneous independent variable
that would be correlated with the residual €;'. The
Shapiro-Watson methodology, applied to the same
data, produces results identical to the matrix method
used by Gali.10 We present results from an illustrative
two-variable system in the next subsection.

Benchmark Results

Figure 1 presents the impulse responses from a
shock to technology in the bivariate model of labor

Labor hours enters in double differences because we assume that
labor hours has a unit root. If the labor hours series were stationary,
then, to impose long-run restrictions, we would enter hours into the
productivity equation in first differences.
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10 The interested reader is directed to Appendix A for a detailed derivation
of the long-run restriction methodology. There, we demonstrate the
equivalence between the matrix method and the Shapiro-Watson
method of long-run identification.
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Impulse Responses to a Non-Technology Shock

(95% Bootstrapped Standard Error Bands)
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productivity and hours.!! Labor productivity immedi-
ately rises by 0.8 percent, displays a hump-shaped
pattern, and eventually settles to a new steady state
approximately 0.8 percentage points above its pre-
shock level. This persistent rise in productivity is at
the heart of the identification, as only the technology
shock can have this permanent positive effect.

The hours response is somewhat curious. On
impact, labor hours experience a statistically signifi-
cant decline in response to the technology shock;
moreover, the point estimate for the response
remains negative for the entire response period.
However, according to the 95 percent bootstrapped
confidence bands, the decline in labor hours is sta-

n Note that this is identical to Figure 1a in Francis and Ramey (2002).

tistically significant for only two quarters; thereafter,
it is insignificantly different from zero.

The responses of labor productivity and hours
to a non-technology shock—the shock that, accord-
ing to Gali (1999), coincides with cyclical fluctua-
tions—are shown in Figure 2.12 Labor productivity
gradually rises for about one year, but eventually
the effect of the non-technology shock on produc-
tivity disappears over time. On the other hand, the
non-technology shock has a permanent impact on
hours worked. Following the shock, hours worked
increases for about one year, displaying a hump-
shaped pattern, and eventually reaches a new steady
state higher than its pre-shock level.

12 We refrain from attributing any structural interpretation to the non-
technology shock. This shock can be thought of as a combination of
a number of shocks that remain unidentified within our system.
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IMPULSE RESPONSE RESTRICTIONS

In this section, we demonstrate how long-run
restrictions can be implemented in a framework
that leaves the structural parameters of the VAR
unrestricted but, instead, imposes sign restrictions
on the resulting impulse responses (see Uhlig,
1999).13 We can, therefore, estimate the model with-
out imposing the exact restrictions on the estimated
parameters, as in the long-run identification schemes
of Blanchard and Quah (1989) and Shapiro and
Watson (1988). We search for shocks that produce
impulse responses consistent with what we believe
technology should produce, i.e., a long-run positive
response to labor productivity. Our goal is to deter-
mine the robustness of the results found in the
preceding section by determining the percentage
of long-run effective shocks that produce an hours/
productivity negative co-movement.

An additional advantage to this approach, which
we leave to be exploited by further research, is that
hypothetical responses can be posed. The resulting
shocks required to induce those responses can be
computed and used to perform counterfactual
experiments. In this sense, we can work backward
to test the validity of our assumptions about the
effects of the shocks by performing, say, exogeneity
tests.14

Framework

Here, we outline the methodology that incor-
porates restrictions on the signs of the impulse
responses to identify the model. What we are doing,
in essence, is defining how a type of shock should
effect the economy and determining which shocks
might generate those results. While, to the casual
reader, this identification might seem to be con-
structed backward, it has theoretical foundations
that are detailed in Appendix B.

Formally, the reaction to the reduced-form shock
(e; from Appendix B) cannot be interpreted in a
structural context. However, it can be shown that
the structural shock ¢, is related to the reduced-
form shock by means of the contemporaneous
impact matrix, A,:

e,=Ay'g,,

13 Other ex post restrictions could also be employed. Examples of these
include restricting the forecast error variances (Faust, 1998) or the
cross-correlation (Canova and De Nicolo, 2002).

" An example of this line of research can be found in Francis and Owyang
(2003).
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where A;'A;" = Z. Thus, the jth column of the
matrix A;' can be interpreted as the contempora-
neous effect of the jth fundamental shock (which we
will call an impulse vector). However, this decompo-
sition is not unique; for any orthonormal matrix Q,
A;'QQ'A;" =2 is also a permissible decomposition.
In the previous section, we distinguished between
acceptable rotations by imposing restrictions on the
form of the rotation matrix Q.

The identification technique we employ in this
section involves sampling from the distributions for
both the coefficient and covariance matrices that
are estimated from the model’s reduced form. We
draw a candidate impulse vector and compute the
impulse response; each impulse vector that gener-
ates an impulse response consistent with a prede-
termined set of sign restrictions is saved.!® Iteration
of this process generates a distribution for the
impulse vectors we will call technology shocks.

While the methodology utilized in the previous
section uniquely identified a (estimated) reduced-
form shock, the technique in this section estimates
a distribution for this shock. Exact identification
using this technique requires a large number of
restrictions, since the constraints on the impulse
responses may not bind at all horizons. Thus, instead
of imposing, for example, an explicit causal ordering,
we are able to define the technology shock based
on its ex post impulse response for certain variables.
We concentrate on identification of the technology
shock. In principle, other shocks that are effect-
orthogonal, i.e., have sets of mutually exclusive
restrictions, could also be identified.

A number of recent papers have employed this
algorithm to impose sign restrictions on impulse
responses. Uhlig (1999, 2001) and Owyang (2002)
restrict the responses of both inflation and interest
rates to identify a monetary shock. Mountford and
Uhlig (2002) impose restrictions on revenues,
expenditures, and deficits to identify fiscal shocks.
However, these applications of the algorithm have
centered primarily on the short-run responses to
shocks. Here, we can adapt the algorithm to test for
restrictions at long horizons. In this application, we
constrain the long-run response of labor productivity
to a technology shock to be positive.16

15 Mathematical details for the estimation and identification can be
found in Appendix C. For an explicit discussion of the relationship
between the impulse vector and the identified structural shock, see
Uhlig (1999).

1© In addition to long-horizon restrictions on the productivity response,
we also impose impact restrictions. We assume that a positive technol-
ogy shock raises productivity on impact.
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Distributions of the Impact Effects on the Two-System Variables
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Empirical Results The distributions of the impact effects on the
two-system variables are shown in Figure 3. We
include the point estimates of the impact effects
for the exactly identified shock from the previous
section. Labor productivity’s impact response from
the SVAR lies to the right of the mean of the impact

The system that we estimate is a VAR with prior
distributions on the parameters that we describe in
Appendix C. We make 1000 draws from the poste-
rior distributions generated by estimating the VAR.
For each draw from the parameter space, we draw
1000 candidate shocks.1”

of this shock can be achieved either through independent draws or
7 by utilizing an orthogonality assumption to decompose the system
We forgo identification of the hours shock in this section. Identification residuals.
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Impulse Responses for Sign-Restriction Algorithm for Labor Input

in Differences
(60% Coverage Interval Shown)
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distribution from the sign-restriction algorithm.
That is, the initial productivity response from the
SVAR is greater than the mean impact response
obtained from the sign-restriction algorithm. How-
ever, the opposite is true for the hours response.
That is, the hours response from the SVAR lies to
the left of the mean of the impact distribution from
the sign-restriction approach. Therefore, the sign-
restriction algorithm produces initial hours responses
that are invariably less negative (i.e., closer to zero)
than the impact response obtained from the SVAR
with long-run restrictions. In this sense the sign-
restriction approach is less restrictive than the SVAR
approach but nevertheless produces an initial hours
response that is negative on average.!8
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The resulting mean impact effects of the iden-
tified technology shock are
R 0.62
a= ,
-0.31

(0.62 for labor productivity and —0.31 for labor
hours), and the associated impulse responses are

'® The same is true when the sign-restriction algorithm has hours enter-
ing the VAR in levels. This means that the SVAR with hours in levels
does not impose enough restrictions to identify technology shocks.
In these SVARSs, non-technology shocks have long-lasting effects on
productivity, contrary to the initial identifying assumption. Our
algorithm with hours in levels imposes enough ex post restrictions
to circumvent such problems and thus produces negative labor hours
results just like its first-differenced counterpart. See Francis and Ramey
(2003) for further exposition.
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Impulse Responses for Sign-Restriction Algorithm for Labor Input
in Differences with Long-Run Neutrality of Technology on Hours
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illustrated in Figure 4.19 For the long-horizon sign-
restriction algorithm, we compute the responses
out to 40 quarters. Consistent with the findings
above, this estimation presupposes that labor hours
possesses a unit root and is entered in differences.
The productivity response to a technology shock is
positive on impact and converges to a steady-state
value of 0.6 percent approximately eight periods
after the initial shock. The algorithm imposes a rise
in labor productivity in the tenth year.20 However,

19 Figure 4 shows the mean response of the technology shock over the
saved draws. In addition, we provide a coverage interval that shows
the interior 60 percent of the distribution of effects. We do not provide
standard error bands since the distributions for the impulse responses
may be non-normal.

20 1n other words, we calculate the impulse responses for 40 periods

we note that the response to a technology shock
for the majority of prior periods turns out to also
be positive.

Next, note that the average labor hours response
is negative on impact. In fact, in approximately 95
percent of the accepted draws, the candidate tech-
nology shock produces a negative response of hours
on impact. However, on average, the decrease in
hours is not permanent. Based on our findings using
this impulse response-restricted algorithm, we
cannot reject the hypothesis that a technology shock
causes labor hours to fall on impact. This conclusion
stems from our ability to draw a variety of candidate

and impose that the productivity response from the 37th to the 40th
periods be positive.
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shocks, which produce both long-run productivity
responses and negative hours responses.?!

Finally, note that the coverage intervals in
Figure 4 are relatively large compared with the error
bands associated with the SVAR in the preceding
section. Recall that the technology shock produced
by the impulse response-restricted algorithm is not
exactly identified—that is, the algorithm identifies
only a distribution for the candidate shocks. Exact
identification requires further restrictions, and each
additional (binding) restriction contributes to a
narrowing in the coverage intervals. As an example
of this, consider Figure 5. Here, we have identified
the technology shock with the additional restriction
that imposes long-run neutrality of technology on
hours, i.e., the impulse response of hours to a tech-
nology shock is negligible at long horizons. In par-
ticular, notice that the coverage interval for the hours
response is much narrower and that, in this case,
a positive hours response on impact is even less
likely to occur.

CONCLUSION

Economists have long assumed that one of the
primary components of the business cycle is shocks
to technology that produce long-run changes in
labor productivity. In this article, we surveyed some
recent papers that attempted to identify such shocks.
We especially focused on papers using the SVAR
approach, with its accompanying long-run restric-
tions, to identify technology shocks.

Recent results using the SVAR approach to
identify technology shocks have shown that they
induce a negative impact response of labor hours.
Further, using a long-horizon impulse response-
restricted system, we generated “technology” by
assuming that it is the only shock with a long-horizon
impact (say, out to ten years) on labor productivity.
Technology shocks generated with this methodology
invariably produce the (non-standard) negative labor
hours impact result. That is, the probability of having
a fall in hours is found to be greater than the proba-
bility of having a rise in hours for technology gen-
erated in this manner, regardless of whether the
VAR is estimated with labor hours in levels or in
first differences.

Future research could apply the impulse
response-restricted technique in larger macro-
economic models instead of the bivariate model

! we performed a similar analysis using labor hours in levels. We found
that the hours response to a positive technology shock is still, on
average, negative on impact.
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employed here. From this we could examine which
technology shock, from labor hours in levels or in
first differences, produces the more plausible
impulses for variables such as consumption, invest-
ment, and real wages. Future research should also
examine which measure of technology stands up
to the scrutiny of the Hall-Evans tests as per Francis
and Ramey (2002).
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Recall from (1) the MA representation of the
VAR, reproduced here for convenience:

Y, =C(L)e,

where we have implicitly assumed that C(L) is
invertible, C(L)™ = ®(L), ®(L) is the matrix polyno-
mial in the lag operator, and the roots of |®(z)| are
outside the unit circle. From the assumption that
only technology can have long-run effects on pro-
ductivity, C(1) is lower triangular, which implies
that ®(1) is also lower triangular.22

The first equation of (L)Y, = ¢, then becomes

P
(A.1.1) Ax, = E’la"x'ijt’j
Since ®(1) is lower triangular, the long-run multi-
plier on An, is identically zero, so the coefficients
of its lags sum to zero. (Note, we do not impose
any short-run dynamics so the contemporaneous
value of An, appears in the productivity (Ax,)
equation.)

Imposing this constraint yields

P p-1 ) .
Ax, = -21 Oy jAX_j + ZO Bon. AT el
Jj= J=
The preceding equation is only a matter of algebra.
The equivalence of the two methods is shown in
the example below for a particular lag length.
Set p =4.23 Then, rewrite (A.1.1) as

2 We are essentially imposing that the system is a Wold causal chain
structure in the steady state.

5 We arbitrarily choose four lags, but the results will hold true for
any general lag length.
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(A.1.2)

Axt = axx,let—l + axx,ZAxt—Z + axx.BAxt—Z

+ axx,4Axt—4+ axn,OAnt + axn,lAnt—l

X
F 0y ANy + Oy 5 AN, 5+ Oy JAN €

In this case, the long-run restriction C,,"" = 0 of
lower triangularity implies

(A.1.3) Uyno + Ayn + Uyn2 + Uyn s + Uyna = 0.

Thus, we have
4
Ax, = -21 Oy j AXe_j + Oy ANy + 0, ANy
j=

+ axn,z Ant—Z + axn,S Ant—3 + axn,él Ant—4

4
= '21 axx,j Axt—j T®mo [Ant - Ant—l]
]:

+ [axn,o + axn,l] (Ant—l - Ant—z)

+ [axn,O Tyt axn,z] (Ant—Z - Ant—B)

+ [axn,o Ty T pp axn,Z] (Ant—Z - Ant—4)
+ [axn,O + axn,l + axn,z + axn,3 + axn,4] Ant—zl '

Restriction (A.1.3) implies that the coefficient on
An,_, is identically zero. Thus, we have

(A.1.9)

M

— 2 2
Axt - axx,j Axt—j + axn,O A nt + (axn,o + axn,l)A nt—l

Jj=1

2

+ (axn,o + axn.l + axn.Z)A ”t—z

2 x
+ (axn,o + axn,l + axn,z + axn,B)A N3 + gt .
We rewrite this as

’ g 3 2 X
(A.14") Axy =Y oy jAX_j+ X ﬁxn,jA n_j+& .,
J=1 J=0

where the fs are functions of the o:s. Note that
equation (A.1.4") here is identical to (3).

The hours equation (4) is straightforward. Note
that we do not require the contemporaneous value
of Ax, in the hours equation since € enters into
equation (4) directly.
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Consider the reduced-form VAR

AL)Y,=e,,

where A(L) is an (nxn) matrix of lag polynomials
and e, ~N(0,X). We can rewrite this VAR in its MA(%)
representation:

Y,=BL)e,,

where B(L) = A(L)"". The model residuals e, have
no structural interpretation; the objective of this
exercise is to identify the structural shocks &,
defined in the third section, on implementing long-
run restrictions. This can be accomplished by
imposing restrictions on either the contemporary
impact matrix or by imposing effect restrictions
on the long-run multipliers C;(1) defined in (2).
Once the structural shocks g, are identified, the
s-period-ahead response to shock &, can be com-
puted by

OE(Y,

t+s =C gi

(A2.1) . ,
a)}tl s*t

where C; is the lag-s matrix derived from the MA
representation, C;=B,#R and €,=R 'e,. Risa
(rotation) matrix that maps the reduced form into
the structural form and, thus, depends on the
nature of the restrictions imposed.

Since B(L) is generated from the reduced-form
estimation, one can easily see that sufficient restric-
tions on the left-hand side of (A.2.1) can be used
to uniquely identify C(L) and sti. The alternative
identification that we impose in the fourth section
of the paper takes a decidedly different tack. Instead
of imposing restrictions on either the contempo-
rary impact matrix or the long-run multipliers,
we restrict the impulse responses (A.2.1) directly.
Since our algorithm imposes only sign restrictions,
which may not be binding, we do not exactly
identify the structural shock. Instead, we must
draw candidate shocks and test whether the sign
restrictions are violated. This allows us to identify
a distribution of structural shocks, which we use to
test the robustness of the conclusions drawn from
the estimation in the third section of the paper.

We begin with the reduced-form, four-lag VAR:

(A.3.1) Y, = iDth_i+et,

i=1
where the D; are the lag-i coefficient matrices,
I-D(L) = A(L), and the e; are the i.i.d. reduced-
form residuals with covariance matrix X. It is
convenient to stack the system (A.3.1) in the follow-
ing manner:

(A.3.2)

where D =[D,D,,...D, 1, Y=[y.Y5...Y7),

X =[Yit,YViz-Vice) . X=X, X,,... X7]’, and
e=[e.e,,...er]. Here, Tis the sample length and k
is the lag order (k = 4 in our case).

The system (A.3.2) can be estimated as a VAR
with a normal-inverted Wishart prior conjugate
distribution with parameters v,, Ny, 0y, and S,,.
Then, the VAR parameters can be drawn from the
joint posterior distribution, also a normal-inverted
Wishart distribution centered on 6 and S with v
degrees of freedom and precision matrix N. The

Y=XD+e,

parameters for the posterior distribution are
given by
v=T+v,,
N=N,+X'X,

8 =N"(N,5, +X’XD).
v, Ts 1 =~ , oo 2
S=7080+;2+;(D—50)N0N 'X’X(D-§,),

where D = (X'X)"'X'Y and = (Y-XD) (Y-XD).24
We can characterize the impulse vector 6 by

6=0Q9,

where QQ’ = X is the Cholesky decomposition of
the state-dependent covariance matrix and 9 is a
vector drawn from the unit circle. The Cholesky
factorization does not impose a causal ordering

2 1n estimating the Bayesian VAR (A.3.2), we utilize uninformative priors.
That is, we assume v = 0 and N = 0, with Sj and &, arbitrary. This
makes (A.3.2) a simple reduced-form VAR.
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in this case but provides a means of orthogonalizing
the shocks.25> We then apply (A.3.3) and (A.3.4) to
generate impulse responses and test them against
the restriction matrix R. Any 6 that satisfies the
restrictions on y,, ; is retained. Multiple iterations
over a single set of sampled model parameters
yield a distribution for the shocks, ©(D,Z,R).2¢

Suppose the impulse response to any vector
innovation 6 can be defined as

(A.3.3) Ay,,;=T76,

25 See Mountford and Uhlig (2002) for a discussion of the use of the
Cholesky factorization.

%% Our characterization of the impulse vector space is slightly different
from Uhlig (1999). He implicitly assumes that the sign restrictions
on the impulse response functions hold out to horizon [, and he
characterizes the space as ©(D,X,l). Since we will impose long-run
restrictions, it is beneficial to denote the impulse vector space as
dependent on a restriction matrix R.
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where 6 =[6,0, «2k-) and the (2k X 2k) impulse-
generating matrix I" is defined by

r o
(A.3.4) = -
D1y Ozk-1x2

Here, D is the stacked coefficient matrizg Ly
is the 2(k—1) X 2(k-1) identity matrix and O, _1)x»
is a 2(k—1) X2 matrix of zeros.

The algorithm for identifying the technology
shock is as follows: The impulse response to any
shock 6 can be calculated using (A.3.3) and (A.3.4).
The shock 0 is associated with a restriction matrix
R that is invariant to the state of the economy. R is
an (nx1) matrix that represents the priors that we
impose on the response of model variables to the
incidence of a shock 6 out to a horizon . Our
identification centers on the selection of the shock
0 that produces an impulse response satisfying
the restriction matrix R.



