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Persistence, Excess
Volatility, and Volatility
Clusters in Inflation 
Michael T. Owyang

Three key features of the U.S. inflation time
series have been identified by empirical
studies. First, innovations in the level are

persistent—that is, changes in the inflation rate
generally endure. Second, volatility appears in
clusters directly after changes in inflation. Follow-
ing an innovation in the inflation rate, short periods
of increased volatility are indicated by the presence
of autoregressive conditional heteroskedasticity
(ARCH) in the regression residuals. Third, periods
with high mean inflation have a correspondingly
high variance of inflation, and vice versa. Likewise,
periods with low levels of inflation tend to be asso-
ciated with low variability.

This paper presents a model in a single, inte-
grated framework that offers one possible explana-
tion for these facts about the U.S. inflation time
series. In this model, the policymaker faces a trade-
off between inflation and unemployment in the
form of an expectations-augmented Phillips curve.1
The Phillips curve is subject to two shocks: a persis-
tent shock that follows a Markov process and a white
noise shock. The magnitudes of both shocks are
unobservable, forcing the policymaker to employ
an ordinary least-squares (OLS) learning technology
to determine the policy target. Agents have the same
information set as the policymaker and form rational
expectations of monetary policy. In addition to the
Phillips curve shocks, an independent Markov pro-
cess governs the policymaker’s preferences; agents
form their expectations after observing current
policymaker preferences. 

Learning and the interaction between the

Markov processes governing the position of the
Phillips curve and the policymaker’s preferences
provide one possible explanation for the three
stylized facts about the U.S. inflation time series.
Changes in the variable that determines the position
of the Phillips curve (henceforth called the structural
variable) are persistent and directly determine the
policymaker’s target. Thus, regime shifts in the
structural variable induce persistent shifts in infla-
tion—the first of three stylized facts. The second,
volatility clustering, is driven by the policymaker’s
learning mechanism. Once the economic funda-
mentals change, the policymaker resets the learning
algorithm to determine the magnitude of the new
shock. As the policymaker learns, new information
each period does not lead to as large of an update
of his estimate of the position of the Phillips curve.
Thus, periods of volatility follow the shock, then
drop off. 

The third fact, the relationship between mean
and variance, is a result of the process governing the
policymaker’s preferences. In addition to persistence
effects, uncertainty in the policymaker’s estimate
of the position of the Phillips curve produces variabil-
ity in the policy target. When the policymaker is
accommodative, i.e., inflation is high, this uncertainty
is amplified. However, when the policymaker is in
an inflation-intolerant regime, uncertainty about
fluctuations in the Phillips curve are not amplified,
as the policymaker is less willing to trade off infla-
tion for small gains in unemployment. 

The model is estimated using Gibbs sampling.
The estimation procedure will generate both a
parameter vector for the model and posterior densi-
ties for each Markov process. Monte Carlo simula-
tions using the estimated parameters reveal that
three-state versions of both Markov processes
(governing the Phillips curve and the policymaker’s
preferences) produce artificial data that exhibit the
three characteristics described above.

FEATURES OF THE U.S. DATA

Figure 1 shows the U.S. monthly annualized
inflation rate for the period 1947:01–1998:05.2
The inflation data over this period exhibit three
particular time-series characteristics:

1 This literature stems from the seminal work of Kydland and Prescott
(1977) and Barro and Gordon (1983). Models possessing policymaker
preferences of similar form include Barro (1986), Cukierman and
Meltzer (1986), and Ball (1992, 1995).

2 The data are seasonally adjusted CPI data taken from Citibase.
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1. Changes in inflation are persistent.
2. Inflation series have volatility clusters and

can be modeled as some form of ARCH series.
3. High/low levels of inflation are associated with

relatively high/low variance and uncertainty.

The first of these phenomena has been considered
in the empirical literature by Barsky (1987) and
Fuhrer and Moore (1995). They find that innovations
in the rate of inflation are largely permanent, caus-
ing persistent shifts in trend; in the presence of an
aggregate shock, the inflation rate rises and stays
high for an extended period. Consider the subperiod
1968-73, for example; here, an innovation in the
inflation rate is associated with a largely permanent
shift in trend.3

Table 1 shows the results from an analysis of the
autocorrelations for monthly data over the sample
period 1947:01–1998:05. Autocorrelations for the
first eight lags range between approximately 0.4
and 0.6, providing strong evidence of the presence
of serial correlation. Results indicate that inflation
is largely persistent with lagged coefficients that
are clearly significant, indicating that innovations
that occur in any period spill over into subsequent
periods.

Following Engle’s (1982) original analysis of
the U.K. inflation data, a number of papers have
attempted to fit the U.S. inflation data to an ARCH
model to test for the presence of volatility clusters.
Kim (1993) tests ARCH against alternate specifica-
tions and finds that ARCH does not perform as
well as an unobserved-component time series with
Markov-switching heteroskedasticity. However,
Baillie, Chung, and Tieslau (1996) employ an alter-
nate specification to model the inflation process,
using an autoregressive, fractionally integrated,
moving-average version of a generalized autoregres-
sive conditional heteroskedasticity model (ARFIMA-
GARCH). They find evidence of persistence and
mean reversion, as well as heteroskedasticity, in
the inflation time series.

In light of this evidence, consider a GARCH(1,1)
model for the variance of the form

,

in which the current conditional variance depends

  σ κ χ δσt t te2
1

2
1

2= + +− −
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3 This period coincides with the beginning of the two-tiered system
for gold coverage in 1968, the closing of the gold window in 1971,
and the end of the adjustable peg in 1973.
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on the lagged conditional variance and the lagged
squared residual. A test for ARCH by employing a
Lagrange multiplier (LM) test indicates that the null
hypothesis of ARCH cannot be rejected. Table 1
contains the results from the LM test of an AR(4)
model and the variance results of the GARCH(1,1)
regression of the U.S. inflation time series. Both the
ARCH and GARCH components of the variance
equations are significant.

Ball and Cecchetti (1990) cite a relationship
between the level of inflation and its variance,
noting that an increase in the level of inflation is
not only persistent but often associated with a
corresponding increase in the variance and/or
uncertainty of future inflation.4 Explanations for

this phenomenon have focused on three primary
areas: changes in the expectations-augmented
Phillips curve, temporary and permanent aggregate
shocks, and idiosyncratic policy.

Using the U.S. quarterly gross national product
(GNP) deflator and consumer price index (CPI) data
divided into subperiods of various lengths, Ball and
Cecchetti (1990) test the hypothesis that the level
and variability of inflation are related. Their result
is that the correlation between level and variance
rises for the first few years and then begins to fall.
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4 Logue and Willet (1976), Cosimano and Jansen (1988), Devereux
(1989), and Evans (1991) also test this relationship. Evans pays particu-
lar attention to estimating inflationary uncertainty. Ball (1992) provides
a theoretical model that attempts to explain this correlation.

Table 1

Autocorrelations and AR(4) Regression for U.S. Time Series Inflation 1947:01–1998:05

Autocorrelations

Lag 1 0.611 Lag 5 0.473

Lag 2 0.575 Lag 6 0.465

Lag 3 0.501 Lag 7 0.463

Lag 4 0.466 Lag 8 0.475

Variable Coefficient Standard error t Statistic

∆CPIt–1 0.392983 0.044755 8.780743

∆CPIt–2 0.217638 0.053232 8.780741

∆CPIt–3 0.153694 0.048365 3.177771

∆CPIt–4 0.180432 0.044039 4.097130

C 0.334763 0.114108 2.933746

ARCH(1) 0.141611 0.017654 8.021489

GARCH(1) 0.830818 0.020444 40.63829

Summary statistics

R2 0.382133 Mean inflation 4.099219

Adjusted R2 0.376006 SD inflation 4.511847

SE of regression 3.564057 Akaike info criterion 2.553171

LM test

F Statistic 62.33962 Probability 0.00000

Obs R2 56.66900 Probability 0.00000

Variable Coefficient Standard error t Statistic

C 6.959891 1.016461 6.847182

RESID^2(–1) 0.302882 0.038361 7.895545



Ball and Cecchetti decompose inflation into a series
of permanent shocks and temporary shocks—a
trend stationary component and a white noise com-
ponent. They show that permanent shocks have
increasing variance with level and thus cause a rise
in uncertainty when trend rises.

Consider the mean and uncertainty of inflation
over five-year, non-overlapping subperiods and the
correlation between sample means and standard
deviations across these subperiods. The results are
plotted in Figure 2. Examination of the results
reveals a relationship between mean and standard
deviation, with a correlation of about 0.23. Figure 3
plots the inflation means and standard deviations
for each subsample. The magnitude of these in-
creases in mean and variance varies with the sample
period, but this indicates a relationship that might
not be completely revealed using a simple correla-
tion test. Note that only for the period 1975-79 does
the variance fall when the subsample mean rises.

Model

To formulate an integrated model that provides
one possible explanation for the previously men-
tioned time-series characteristics of U.S. inflation
data, I propose a reduced-form macroeconomic
model with the following features:

• a neoclassical rational expectations–
augmented Phillips curve subject to a Markov
shock to the natural rate of unemployment,

• a monetary policymaker with Markov-
switching preferences for low inflation 
relative to low unemployment, and

• policymaker learning.

The policymaker faces a short-run tradeoff
between inflation and unemployment embodied in
the Phillips curve.5 Mankiw (2000) argues for the
inclusion of both expectations and supply shocks
to provide a complete and stable view of the econ-
omy. This model incorporates these features but
assumes that the magnitude of these supply shocks
is unobservable and must be learned.6 This model
focuses on the actions of a policymaker under un-
certainty and subject to shifts in preferences. During
each period, events occur in the following order:

• The policymaker’s preferences are determined
and revealed to the public. 

• Agents and the policymaker simultaneously
set expectations and the policy target,
respectively. 

• The economic shocks then occur, and the
policymaker and agents observe the realized
inflation and unemployment rates. 

• The policymaker’s and agents’ information
sets are updated.

Consider an economy in which a monetary
policymaker sets an inflation target and private
agents form expectations about the realized inflation
rate.7 Suppose that the policymaker faces an expec-
tations-augmented Phillips curve of the form

(1) ,

where ut is the unemployment rate; πt is the infla-
tion rate; πt

e are the period t inflation expectations;
ηt is a persistent unemployment shock that follows

  u kt t
e

t t t= − + +( )π π η ε
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5 In order to abstract from interest rate properties, this paper does not
consider directly the policymaker’s instrument. In addition, I do not
include smoothing as a policymaker objective. If interest rates were
added as the policymaker’s instrument, the paper could be nested as
a special case of the model found, for example, in Clarida, Gali, and
Gertler (1999). The backward-looking nature of this model, driven by
the learning process in agent expectations, is similar to that proposed
originally by Taylor (1981) and later by Fuhrer and Moore (1995) and
Rudebusch and Svenson (1998).

6 A number of academic papers consider the effect of the Fed learning
about the world. Sargent (1999) considers a model in which uncertainty
generates paths between economic equilibria. Kasa (1999), Lansang
(2001), Sack (1998), and Wieland (1998, 2000) also consider models
in which the policymaker faces some degree of parameter or model
uncertainty.

7 Owyang and Ramey (2001) use a similar model with adaptive expecta-
tions to measure monetary policy.
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a three-state Markov-switching process with a vector
of possible structural states h�=(h1,h2,h3), a transition
kernel Tη, and period t state indicator vector St; and
εt~N(0,σε

2) is a white noise shock that occurs each
period.

Shifts in ηt represent dramatic, persistent
changes in the current economic environment.
These shifts can be viewed as unexpected but
highly visible events, such as wars or oil crises, in
which the timing of the event is clearly observed.8
However, the new value of ηt that arises following
a switch cannot be observed, but rather must be
learned by the policymaker and agents.9 Let
η̂t=Et[ηt|Ωt] denote the policymaker’s period t
estimate of ηt conditional on his information set
Ωt=(u1,u2,…,ut,π1,π2,…,πt).

The policymaker has preferences over inflation
and unemployment, Lt=αtu

2
t+π2

t, with the relative
weight on unemployment, αt, governed by a Markov
process with transition kernel Tα and possible states
α�=(a1,a2,a3). A high αt policymaker attaches more
weight to output and sets a higher inflation target,
conditional on the estimated state of the world, η̂t.
The low αt policymaker is an inflation hawk and
sets a lower conditional inflation target. It can be
shown that a policymaker who minimizes the
current period value of his quadratic loss will form
a short-run, discretionary inflation target that can
be given by

(2) ,

where η̂t is the policymaker’s estimate of the
magnitude of the unemployment shock.10 Although
the policymaker can set an inflation target, the

  
π α π η

αt t
t
e

t

t

k
k

k
= +

+
( )ˆ

1 2

realized inflation rate is subject to some normally
distributed noise, υt.11

For exposition, assume that agents form expec-
tations rationally and with the same information
set, Ωt, as the policymaker. Agent expectations are
then

(3) .

Combining equations (2) and (3) gives 

(2′ ) .

Equation (2′ ) can be interpreted in terms of
current and historical policy. Assuming that αt ≠ 0,
the policymaker’s short-run target moves as a func-
tion of his belief about the state of the economy. As
the balance of risks shifts toward higher perceived

π α ηt t tk= ˆ

π πt
e

t=
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8 It is convenient but not necessary to assume that the policymaker
observes the timing of the event. Similar results obtain if the event is
unobserved. If there is a switch but the policymaker believes there is
none, the policymaker’s inflation target will induce a poor unemploy-
ment outcome. If this persists for a number of periods, the policymaker
can conclude that a switch has occurred. On the other hand, if the
policymaker believes a switch occurred when it in fact had not, the
policymaker resets the gain sequence. New information does not
change the target on average but does induce more volatility.

9 Agents in the model, including the policymaker, are not assumed to
know the structure of the underlying process. They are assumed to
believe that the economy can take on a continuum of possible states.

10 Note that this formulation assumes the policymaker is optimizing
over the current period only. A more forward-looking policymaker
complicates the learning via feedback from the economy and is left
as an extension. This formulation, however, does not presuppose a
lack of a consistent long-run inflation target.

11 This can be interpreted as the policymaker setting an intermediate
interest rate target and realizing an inflation target with some error.
For this application, I suppress the interest rate target and consider
only the effect on inflation.
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unemployment (i.e., higher η̂t), the policymaker
will allow the inflation rate to wander while focusing
attention on achieving a higher growth rate (and,
thus, lower unemployment) and vice versa. 

The effect of the switching process αt on the
inflation target can be historically exemplified by
changes in Federal Reserve chairman, although the
model does not restrict it to be so. Clarida, Gali, and
Gertler (2000), among others, recognize the funda-
mental change in Fed objectives at the onset of the
Volcker regime in October 1979.

Finally, since the magnitude of the unemploy-
ment shock is unknown, the policymaker must infer
the state of the economy from the data. Since the
timing of the shock is known, the policymaker can
employ an OLS learning technology of the form

(4) ,

where gt is the number of periods since the last
switch in ηt. The sequence is g1,g2,…,gt referred to
as the gain sequence. The policymaker resets the
gain sequence when a switch occurs. This is synony-
mous with discarding previous (and now useless)
information gathered before the shock and attach-
ing more weight to incoming information. As the
policymaker accumulates more information, new
information becomes less valuable and the weight
attached falls.

Inflation Dynamics

The model specified by equations (1) through
(4) simplifies into two time-series equations govern-
ing unemployment and inflation: the Phillips curve
(equation (1)) and 

(5) ,

where υt is normally distributed inflation noise
that occurs after the policymaker sets the inflation
target and can be interpreted as control error.12

Equation (5) embodies the aforementioned
time-series characteristics of the inflation time
series. First, the autoregressive nature of equation
(5) and the Markov structure of the shocks indicate
that shocks to the inflation rate in the form of pref-
erence shocks to αt or structural shocks to ηt are
persistent, i.e., shifts in the inflation rate are lasting.
This can be verified if the diagonal elements of the
transition kernel sum to greater than 1. Second, a
Markov shock to the Phillips curve in the form of

  
π π α η ε υ υt

t

t
t

t

t
t t t t

g
g

k
g

= − + + − +− − − −
1

1 1 1 1( )

ˆ ˆη ηt
t

t
t

t
tg

u
g

g
= + −

− −
1 1

1 1

a shift in ηt will induce periods of volatility while
the policymaker learns. Third, an accommodative
policymaker (i.e., high αt) will tend to induce more
volatility in the inflation rate than the relatively
hawkish (i.e., low αt) policymaker.13

The first property implies that the equilibrium
inflation path exhibits persistence whenever αt>0,
as a direct result of persistence in the processes
determining αt and ηt and indirectly through the
effect of the learning rule on the policy choices. The
second property is demonstrated in the following
thought experiment. Consider an aggregate shock
at time t=0 that shifts the Phillips curve out through
an increase in the parameter ηt. The policymaker
would react to the shock by raising his inflation
target and raising the mean level of inflation, thus
causing a persistent change in the inflation rate.
The policymaker, however, does not know the exact
value of the target and cannot infer the magnitude
of the shock because of unemployment noise, εt,
and inflation noise, υt. He must therefore implement
a policy based on estimates of the new Phillips curve
parameters, which he constructs using the learning
technology. In the short term, the policymaker’s
estimate—and thus the inflation rate—is greatly
affected by new information in the form of new
observations. This result stems from the policy-
maker resetting the gain sequence, gt, in equation
(4). The weight on new information is increased
because information prior to the incidence of the
new shock is no longer valuable. Over time, the
policymaker collects inflation-unemployment data
and updates his estimate of the shock magnitude,
causing the accuracy of his prediction to increase.
Also, the accumulation of information allows the
policymaker to decrease the weight of new informa-
tion, and inflation becomes less variable.14

Suppose now that the policymaker’s preferences
change, switching from an accommodating regime
to an anti-inflationary regime. The policymaker
attaches more emphasis to minimizing the level of
inflation and subsequently reduces the inflation
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12 Equation (5) elucidates a time-series path for inflation. A similar
equation could be written for unemployment. However, the time-
series characteristics for unemployment are less well documented,
and I leave discussion of them to another paper. It is sufficient to say
that, in this formulation, the unemployment time series would follow
a Markov process with noise.

13 A formal presentation of these results is given in Appendix A.

14 This paper assumes a particular learning specification. However,
these results are robust to permutations of the policymaker’s learning
technology provided that the learning mechanism implemented
converges (see Marcet and Sargent, 1989).



target for a given estimate, η̂t. Additionally, because
the policymaker’s preferences enter multiplicatively
instead of additively, the adjustments made during
the learning process become smaller. Thus, the
policymaker sets a lower target with less variability—
the third property.

ESTIMATION

The preceding model of inflation and unemploy-
ment is estimated using Gibbs sampling. Gibbs
sampling uses an iterative filtering algorithm and
a Monte Carlo algorithm to generate the ergodic
density for the parameter vector conditional on the
data. An outline of the sampling procedure appears
in Appendix B. Seasonally adjusted monthly data
for both series are taken from Citibase for the sample
period 1947:01–1998:05. The inflation rate is taken
as the annualized rate of change of the CPI.15 The
parameter estimates are given in Table 2. 

Here, α�=(a1,a2,a3) reflects the policymaker’s
preferences and h�=(h1,h2,h3) describes unemploy-
ment shocks to the Phillips curve. The combination
(ai and Pr[αt=ai|αt–1=aj] for i, j=1,2,3) defines the
Markov process that determines the policymaker’s
preferences. Recall that α directly affects the policy-
maker’s inflation target. The high value for the
preference parameter, a3, indicates the most accom-
modative policymaker, while the low value, a1, repre-
sents a policymaker less willing to trade high inflation
for lower unemployment; a1 defines a regime in
which the policymaker sets a nearly zero inflation
target that does not respond much to changes in
the state of the economy. On the other hand, a2 and
a3 correspond to policymakers who are increasingly
responsive to shocks to the structural variable. 

Suppose a shock hits the economy in the form of
an increase in the natural rate ηt. The accommoda-
tive policymaker (αt=a3) responds to the shock by
increasing his inflation target. A 1 percent increase
in the natural rate, ηt, when the policymaker is in
the a3 state implies a 1.3 percent increase in the
inflation target. Similarly, a 1 percent increase in
the natural rate when the policymaker is in the a1
state implies a 0.5 percent increase in the inflation
target.

The parameters (Pr[αt=ai|αt–1=ai] for i=1,2,3)
are the on-diagonal transition probabilities that
determine the duration of the policymaker’s prefer-
ence regime. They also determine the expected
number of regime changes over the sample period.
The number of regime shifts predicted by the esti-
mated transition probabilities are similar to the pre-
dictions in Romer and Romer (1989).16

Now consider the three-state process for the
structural variable ηt. The process (hi, Pr[ηt=hi|ηt–1
=hj] for i, j=1,2,3) represents three shocks to the
natural rate of unemployment and their transition
probabilities. One interpretation of this process is
that the state ηt=h2 represents the “normal” state
of the economy, while the other two states are the
product of exogenous shocks. The low value, h1, can
be interpreted as the natural rate of unemployment
in an unusually productive state of the economy,
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15 Results using the monthly personal consumption expenditures (PCE)
index are not appreciably different. Postwar quarterly GDP deflator
data are of insufficient length to run this type of estimation.

16 Romer and Romer find seven instances during this sample when the
Fed reacted to explicitly reduce inflation. For a more detailed compari-
son of the type of model presented here and the Romer dates, see
Owyang and Ramey (2001).

Table 2

Estimated Parameters

Parameter Estimated value Parameter Estimated value

a3 1.2130 (0.3681) h3 6.1817 (1.2968)

a2 0.4856 (0.2468) h2 5.3110 (0.9644)

a1 0.0929 (0.1516) h1 4.3160 (0.9168)

συ 2.7434 (1.1105) σε 2.4194 (1.0503)

Pr[α t= a3|α t–1= a3] 0.9663 (0.0191) Pr[ηt= h3|ηt–1= h3] 0.9908 (0.0398)

Pr[α t= a2|α t–1= a2] 0.9706 (0.0189) Pr[ηt= h2|ηt–1= h2] 0.7645 (0.2057)

Pr[α t= a1|α t–1= a1] 0.9058 (0.0768) Pr[ηt= h1|ηt–1= h1] 0.6874 (0.2133)

NOTE: Standard deviations across iterations are given in parentheses.



perhaps caused by a positive technology shock.
The high value, h3, represents the innovation to the
natural rate after an adverse event such as an oil
shock.17

Simulations

To evaluate how well the proposed model fits
the data, the estimated parameters from the previous
section are used in Monte Carlo simulations. The
goal is to determine whether the model replicates
the moment and variability characteristics of the
U.S. inflation time series. Artificial data series are
created according to equation (5), and AR(4) regres-
sions are performed for comparison with the U.S.
time series.18 The residuals are then tested for
GARCH(1,1). Results of the simulations and subse-
quent statistical tests are shown in Table 3.

The coefficients on the autoregressive terms
and variability characteristics taken from the regres-

sions on the artificial data are statistically consistent
with those obtained from the U.S. time series. How-
ever, both the ARCH and GARCH parameters are
comparatively low and more variable. This can be
explained by the manner in which the simulations
are generated. The estimated variability character-
istics show dependency on the average duration of
the regime. Short-lived regimes in ηt will reduce
the variability characteristics of the artificial data,
as the policymaker is unable to carry out the learn-
ing process. The policymaker resets the gain at the
onset of each switch; however, if regimes tend to
be of short duration, the policymaker never has a
chance to reduce the gain. Variability characteristics
are driven by the switches in the regime rather than
the learning process. Long regimes in the ηt variable
can cause similar problems. When there are few
switches, the policymaker’s gain remains at low
levels, reducing the amount of variability induced by
learning. Analysis of individual simulations reveals
that, in iterations in which the policymaker reverts
to an anti-inflationary regime for unusually long
periods, the GARCH coefficient is near zero. Essen-
tially, the variability parameters are biased down-
ward in both cases of extremely high numbers of
switches and extremely low numbers of switches.
Incorporating switching processes into Monte
Carlo experiments of this kind makes these results
unavoidable, as some samples are bound to be
outliers.

The artificial data also exhibit the mean-
variability relationship found in the U.S. time series.
The correlation between mean and variance for five-
year intervals is highly variable in the simulated
data, however. This correlation is also caused by
the incorporation of Markov processes into Monte
Carlo experiments. Recall that the mean-variability
relationship depends on switches in the preference
process. Thus, the statistic will be biased downward
if the changes in the inflation level are driven pri-
marily by switches in the structural process. If no
switches in the αt process occur, the mean-variance
correlation can actually be negative. A similar result
is true if there is a large number of preference
switches, which can also have a tendency to under-
state the relationship or cause a negative correlation. 
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17 An alternate explanation for shifts in the natural rate involves the
change in demographics over time. Shimer (1999) attributes recent
changes in the natural rate to the “baby-boomers” phenomenon. 

18 Series lengths are 750 observations. The first 142 observations are
discarded to avoid issues associated with initial conditions.

Table 3

Three-State Monte Carlo Results

Simulated* U.S. time series†

AR(1) 0.3114 (0.0454) 0.3841 (0.0438)

AR(2) 0.2326 (0.0401) 0.2238 (0.0517)

AR(3) 0.1886 (0.0436) 0.1604 (0.0468)

AR(4) 0.1720 (0.0389) 0.1739 (0.0436)

Constant 3.2497 (2.883) 0.2554 (0.1053)

ARCH 0.0400 (0.0488) 0.1410 (0.0170)

GARCH 0.6753 (0.2754) 0.8406 (0.0195)

Five-year 0.2453 (0.3660) 0.3155
correlation‡

Sample mean 3.89 (0.21) 3.99

Variance 4.30 (0.61) 4.40

Skewness 0.92 (0.15) 0.85

Kurtosis 2.70 (0.21) 5.02

NOTE: Simulated data statistics are taken from 1000 iterations
of 608 period samples. The first column contains results from
the regression of inflation on four lags. GARCH(1,1) parame-
ters are taken from the following model of the variance σt

2=
κ+χu2

t–1+δσ2
t–1,χ,δ>0.

*Standard deviations across samples are given in parentheses.
†Standard errors for the AR(4) regression are given in 
parentheses.
‡Indicates the correlation between mean and variance of five-
year intervals.



CONCLUSION

The above model combines a reduced-form
model of monetary policy with a Marcet-Sargent
(1989) policymaker OLS learning formulation to
provide one possible explanation for the three styl-
ized facts about U.S. inflation. Results indicate that
a bivariate, three-state Markov-switching model can
generate these characteristics of the U.S. inflation
time series. The model is able to produce inflation
persistence, volatility clusters, and a correlation
between level and variance and the parameter esti-
mates that are similar to those of the actual U.S.
inflation time series.

These inflation characteristics are generated
by the interaction among the unobserved shock to
the Phillips curve, policymaker learning, and the
switches in the policymaker’s preferences. Persistent
shocks to either preferences or the Phillips curve
translate, through the policymaker’s decision rule,
into persistent changes in the inflation target. Addi-
tionally, more inflation-tolerant policymakers tend
to allow shocks to the economy to have a greater
effect on the inflation target, causing the inflation
target to become more variable when it is relatively
high. Finally, clusters of volatility are a reflection of
the policymaker’s learning process. The uncertainty
generated by the onset of a new shock makes the
target more variable; however, as the policymaker
learns, the target settles down.

What might this model, if correct, imply for
the future of the U.S. economy? Has the economy
entered a new technological regime? Can the econ-
omy sustain a low level of unemployment? Is a
slowdown inevitable? Forecasters move rapidly to
change their opinions at the onset of new informa-
tion. Fluctuations in economic indicators can quickly
alter the tenor of expectations. The Fed scrambles
to adjust rates; economists on Wall Street adjust
expectations. The result: more volatility while we
all figure out the real state of the economy.
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PROPOSITIONS AND PROOFS

Proposition 1. A shift in either αt or ηt results in
a persistent change in the inflation target π–t.
Proposition 2. A one-time switch in the structural
parameter causes the inflation variance to rise in
periods following the switch.
Proof. Given equation (5) and the fact that the
shocks are uncorrelated, write the variance of
inflation, conditional on gt, as

(A1)
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For t<t′, the economy is in a steady state with
gt=∞, and Var(πt|gt)=σ 2

υ. Further, (A2) implies that
Var(πt|gt) is strictly decreasing in gt, from which
follows that the variance of inflation rises follow-
ing t′. Q.E.D.

Proposition 3. The mean level of inflation is
increasing in α. Additionally, when α is larger, the
switch in ηt causes the variance of inflation to rise
by a greater amount.
Proof. The first statement follows directly from (5).
When α rises, the expected value of the second
term on the right-hand side of (5) rises and the
expected value of the next period target rises. In
period t, the expected value of the second term is
again larger than it was before the regime shift.
The first term has also risen because the target
rose that period. The conclusion follows by induc-
tion. Consider again (A1). It is easy to verify that
the variance of inflation rises with α, which implies
the latter result. Q.E.D.

Appendix A

19 More detailed analyses of the Gibbs sampler are available in Cassela
and George (1992) and Kim and Nelson (1999).

Appendix B

THE GIBBS SAMPLER

The goal of the sampling routine is to estimate
the conditional posterior distribution p(β∼T,S∼T,Z∼T,
ω|y∼T), where y∼T=( y1, y2,…,yT) is the vector of
observables through time T and ω is the vector of
parameters governing both Markov processes and
the variances of the white noise shocks to the
Phillips curve and the inflation rate.19 The Markov
processes make the direct estimation of this distri-
bution impractical. However, draws from p (β∼T,S∼T,
Z∼T,ω|y∼T) can be made from an ergodic distribution
of Markov simulations generated iteratively from
the following conditional densities:

(B1) .

The process of drawing from each of the
above marginal distributions is accomplished by
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a version of Carter and Kohn’s (1994) multi-move
algorithm, with one exception. The conditional
distribution p (S∼T|y∼T,β∼T,Z∼T,ω ) differs from the
others in (B1) in that St depends on S∼t–1 because of
the policymaker’s gain sequence. The multi-move
algorithm generates the entire vector S∼T simulta-
neously. However, given St’s dependence on pre-
vious states, it cannot be generated in this manner.
Thus, S∼T will be drawn from sequential sampling
from 

(B2) ,

where S∼–t=(S1,S2,…,St–1,St+1,…,ST). The joint den-
sity p (β∼T,S∼T,Z∼T,ω|y∼T) can then be estimated using
the marginal densities (B1) and (B2).

p S S y Zt t T T T( , , , , )|˜ ˜ ˜ ˜− β ω
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