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Forecasting Recessions:
Can We Do Better on
MARS?

Peter Sephton

acroeconomists spend much of their time
Mdeveloping theories and building models

to demonstrate how shocks propagate
and affect the overall level of economic activity.
Both policymakers and the private sector maintain
a keen interest in understanding the state of busi-
ness affairs and the most likely path the economy
will take over a planning horizon. Although there
are a number of economic events that concern the
authorities—including excessive inflation and
unemployment—considerable attention is paid to
the forecasting of recession. If policymakers can
anticipate a recession, they take preemptive cor-
rective action. The private sector uses this infor-
mation to shelter itself from the vagaries of the
business cycle and the most likely reaction of
policymakers.

Recently a number of studies have examined
the ability of financial variables to forecast reces-
sions. Many analysts find that financial indicators
contain information that can be used to increase
forecast accuracy. Estrella and Mishkin (1998)
found that the slope of the yield curve helped pre-
dict recessions beyond one quarter. Haubrich and
Dombrosky (1996), Bernard and Gerlach (1996),
Dueker (1997), and Atta-Mensah and Tkacz (1998)
reported similar results.!

Many of these studies employed probit models
to estimate the probability of recession. Probit
models are sometimes used when economists
model the behavior of a dependent variable which
takes on two values, e.g., recession = 1, no reces-
sion = 0. The traditional approach to probit mod-
eling requires the researcher to choose the vari-
ables that will be included in the equation, deter-
mine their level of interaction, and assume each
variable plays the same role across all recessions
in the sample period. These assumptions imply
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that the causal nature of recessions remains fixed
over time, which we know to be at odds with the
stylized facts of American business cycles in the
twentieth century.? Consequently, probit models
may not adequately capture the underlying
processes related to recession.

The purpose of this paper is to revisit the infor-
mation contained in financial variables using non-
linear, nonparametric methods, in particular, multi-
variate adaptive regression splines (MARS).> As with
the probit specification, MARS models provide prob-
ability forecasts that lie between zero and one, yet
they admit a much wider range of possible relation-
ships in the data. The MARS approach allows the
series to enter both individually and in combination.
Given the idiosyncrasies of the American business
cycle, this nonlinear, nonparametric approach may
provide greater insight into the factors contributing
to recession while avoiding some of the pitfalls asso-
ciated with the probit specification.

MODELING WITH MARS
Data

The National Bureau of Economic Research
(NBER) has identified six recessions from January
1960 through September 1999. The dates of these
recessions are indicated in the list below. A dicho-
tomous dependent variable that is equal to one if
the economy is in recession and equal to zero
otherwise will be used as the dependent variable
to be forecast.

e April 1960 ~ February 1961

e December 1969 - November 1970
¢ November 1973 - March 1975

e January 1980 - July 1980

e July 1981 — November 1982

e July 1990 - March 1991

Recession dates are available at the NBER Web
site at http://www.nber.org.

Friedman and Kuttner (1998) report that the closely related paper-
bill spread fared less well at predicting the 1990-91 recession. They
argue that relative supply conditions in the commercial paper and
Treasury Bill markets led to this result. It is worth remembering that
although spreads and yield curves contain information on monetary
policy, they are a function of returns on assets which are not always
perfect substitutes.

See Temin (1998) for an economic historiography of American
recessions since 1890.

3 The professional release of MARS is available from Salford Systems
at < http://lwww.salford-systems.com > .
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An Example of Thresholds

Y

Knot Knot

A wide variety of financial and real variables
have been used as predictors of recession and out-
put growth. The choice of which variables to
include depends on whether the analysis is under-
taken on monthly or quarterly data. Here the data
frequency is monthly, and we employ six vari-
ables. The slope of the yield curve (measured by
the difference between the 10-year constant matu-
rity Treasury bond rate and the rate on 3-month
Treasury bills [secondary market]) has been most
prominent in previous studies. Changes in real fac-
tors will be captured by the change in the loga-
rithm of the index of industrial production as well
as the change in the civilian unemployment rate.
Recessions are, after all, persistent declines in real
output; thus, past changes in industrial production
and the unemployment rate are natural candidates
for use as predictors of recessions. The change in
the logarithm of the S&P 500 Index has been
shown to contain predictive content by Estrella
and Mishkin (1998) and Dueker (1997), as have
changes in the logarithm of real money, defined to
be M2 deflated by the consumer price index. The
change in the federal funds rate is also included in
the model. These last three variables might cap-
ture the effects of both expected and unexpected
monetary policy. All series are similar to those
examined by others in the literature.

Nonlinear, Nonparametric Methods
The basic problem facing any forecaster is to

determine the fundamental relationship between a
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dependent variable, Y, and a vector of predictors,
expressed by X. The question is how best to specify
the functional form f{.} in equation (1):

1) Y= f{x +¢

where ¢ is the deviation of the dependent variable
from the relationship linking X to Y. Equation (1)
could involve time series on X and Y, or cross-
sectional data on X and Y. The idea behind local
nonparametric modeling is to allow for a poten-
tially nonlinear relationship over different ranges
of x.4

Friedman (1991a, 1991b) introduced the MARS
approach of using smoothing splines to fit the
relationship between a set of predictors and a
dependent variable. A smoothing spline is similar
to a cubic spline, in which a cubic regression® is fit
to several pre-selected subsets of the data. By
requiring the curve segments to be continuous (so
that first and second derivatives are non-zero), one
obtains a very smooth line that can capture “shifts”
in the relationship between variables. These shifts
occur at locations designated as “knots” and pro-
vide for a smooth transition between “regimes.”
The MARS algorithm searches over all possible
knot locations, as well as across all variables and
all interactions among all variables. It does so
through the use of combinations of variables
called “basis functions,” which are similar to vari-
able combinations created by using principal com-
ponents analysis. Once MARS determines the opti-
mal number of basis functions and knot locations,
a final least-squares regression provides estimates
of the fitted model on the selected basis functions.

As an example, Figure 1 presents the relation-
ship between a single predictor and a dependent
variable. This relationship changes at two knot
locations—values of X; at the points where the
relationship between X; and Y, shifts. We can view

4 There are a number of attractive nonlinear, nonparametric regres-
sion models. Granger (1995) recognized that modeling nonlinear
relationships between extended-memory variables holds promise
and has recently devised a test for threshold unit roots with Enders
(Enders and Granger, 1998). Granger and Terasvirta (1993) exam-
ined issues relating to modeling nonlinear relationships in econom-
ics. Qi (1999) has demonstrated that stock returns can be predicted
accurately using financial and economic variables in a neural net-
work model, whereas Cao and Soofi (1999) and Fernandez-
Rodriguez et al. (1999) show that nonlinear methods can be suc-
cessfully employed in exchange rate prediction.

In a cubic regression between a predictor X and a dependent vari-
able Y, the regressors would include a constant, the level of X, the
square of X, and the cube of X.
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these knots as threshold effects, in that if X, is
below the first knot (threshold), the relationship
appears to be linear. If X, is between the two
knots, the relationship appears curved; whereas if
X, is above the second knot, the relationship
changes once again. If we label the X, variable as
time and the Y; variable as the price level, Figure 1
tells us something about the behavior of the infla-
tion rate over time. It changes at the knots. A
smoothing spline provides a curved transition
between the various thresholds exhibited in
Figure 1.

When modeling the relationship between a
single predictor X, and the dependent variable Y,
a general model might take the form

M
@) Y= 3 aBy(X,) e,

where By (Xy) is the kth basis function of X,. Basis
functions can be highly nonlinear transformations
of X, but note that Y; is a linear (in the parame-
ters) function of the basis functions. Estimates of
the parameters ag are chosen by minimizing the
sum of squared residuals from equation (2). The
advantage of MARS is in its ability to estimate the
basis functions so that both the additive and the
interactive effects of the predictors are allowed to
determine the response variable.

An example will aid in understanding MARS
modeling. Suppose the rate of inflation, 7T money
growth, 4, output growth, 4, and the rate of cur-
rency depreciation, Y, are related according to the
following equation:

(3) m= 1.25+0.1max(0, 4 ~2.0)
+0.5max(0,8 ~5.0) +0.8max(0, y —2.5)
+0.25max (0, 4 ~2.0)max (0,6 - 5.0) .

The terms in parentheses have effects on inflation
only if they are positive and are zero otherwise;
max (0, 4 —2.0) is interpreted as the maximum
value of the two elements, 0 and (1 —2.0), and so
on. When money growth, output growth, and the
rate of currency depreciation are below their
threshold values, the inflation rate is 1.25 percent.
If money growth is above 2 percent (the value at
which there is a knot), this has both direct and
indirect (or joint) effects on inflation. The direct
effect raises inflation by 0.1 times the difference
between money growth and its knot. The joint
effect depends on whether output growth is above
5 percent at the same time that money growth is
above its knot or threshold effect. The rate of cur-
rency depreciation raises inflation by 0.8 times the

difference between the rate of currency deprecia-
tion and 2.5. Below these knots, for each variable
in this example, there are no effects on inflation.

MARS would take money growth, output
growth, and the rate of currency depreciation as
predictors and attempt to fit the best model for the
inflation rate by placing knots and choosing addi-
tive and interactive effects to minimize the sum of
squared errors. The basis functions would be inter-
preted as the additive and interactive effects of the
variables relative to their knot locations. Thus, in
this example, the first basis function would involve
max (0, 4 — 2.0); the second basis function would
contain max (0, d— 5.0); the third basis function
would be max (0, y— 2.5); and the final basis func-
tion would involve two variables and be nonlinear
(in variables): max (0, 4 —2.0) max (0, d—5.0).6

MARS identifies the knot locations that most
reduce the sum of squared residuals. For example,
with a single predictor the sum of squared residu-
als would be

N [] Q . K [%
@) > -3 0x7 -3 a(X -6,)+°0

i=1[] j=0 k=1 O
where b;and a are multiple regression coeffi-
cients on cubic (Q = 3) splines of X;, and X, rela-
tive to knot location t. The notation (X;—tg ) + ¢
indicates that the cubic spline of X relative to
knot location ¢ is included if the difference is pos-
itive; otherwise it is zero.

From equation (4) it is clear that the addition
of a knot can be viewed as adding the correspon-
ding (X; -tz ) + ©. A forward and backward step-
wise search is incorporated in the MARS algo-
rithm, with the forward step purposely overfitting
the data. Insignificant terms are deleted on the
backward step of the routine.

Model selection is based on the generalized
cross-validation (GCV) criterion of Craven and
Wahba (1979). The GCV can be expressed as

(5) GVC = (1/1\1)2[[); —fM(Xt)]Z /[1=c(m)/N] 2}

where there are N observations, and the numera-

© Note that values below these thresholds could be included in the

final model if they add to the fit of the equation. For example, one
might find a knot in money growth at 1.1, which has a different
effect on inflation than that when money growth is above 2.0.
Assuming the coefficient to be 0.04, equation (3) would become:

7= 1.25 +0.1max (0, u ~2.0) +0.5max (0,5 -5.0)
+0.8max (0, -2.5) +0.25max(0, 4 ~2.0)(0, 5 -5.0)
+0.04max (0, —1.1).
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Because MARS is a relatively new tool in the
econometrician’s toolkit, an example will help illus-
trate its potential value. Orphanides and Porter
(2000) recently demonstrated how regression trees
can be used to explain shifts in M2 velocity, with a
view to resurrecting the P* model of inflation.
Regression trees can serve to identify breaks in the
reduced-form velocity equation as changes in the
coefficient on the opportunity cost of M2 and the
time trend. Inflation forecasts based on their esti-
mates of equilibrium velocity outperform those
based on the simple Hallman, Porter, and Small
(1991) P* model.

To demonstrate the advantages of using MARS, I
constructed estimates of M2 velocity using data iden-
tical to those employed by Orphanides and Porter
(2000), spanning a somewhat longer time frame,
1959:Q1 to 2000:Q1. Velocity is assumed to be a
function of the opportunity cost of M2 balances (the
difference between the three-month Treasury bill
rate and the average rate paid on M2 balances) and a
time trend. MARS allows threshold effects in the
opportunity cost and time trend series to accommo-
date shifts in velocity resulting from financial innova-
tion. Moreover, it allows both series to jointly affect
velocity over the sample.

Table Al provides the final fitted model, allowing
as many as 40 basis functions and two variable inter-

Figure A1

Surface 1: Maximum = 0.57952
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CAN MARS EXPLAIN M2 VELOCITY SHIFTS?

actions. The time trend series is most important,
whereas the opportunity cost series is only 31.7 pet-
cent as important as the trend series. (These figures
are constructed on the basis of what happens to the
explanatory power of the model when each individ-
ual series is excluded from the equation.)

There appear to be threshold effects in the
opportunity cost series at 0.27, 2.36, and 3.30 per-
cent, while there are time trend thresholds at obser-
vations 20 (1964:Q1), 32 (1967:01), 47 (1970:Q4),
58 (1973:Q3), 63 (1974:Q4), 120 (1989:01), 130
(1991:Q3), 135 (1992:Q4), and 155 (1997:Q4).
Orphanides and Porter (2000) identified time effects
at 1960:Q3, 1962:Q3, 1978:01, 1988:Q4, and
1992:0Q3, as well as a number of interest rate effects
spanning from 1.643 percent to 2.034 percent.

MARS provides graphical information on the
optimal fit of the data. The surface plot demonstrates
that the optimal transformation and combination of
both series in explaining M2 velocity is nonlinear.

The actual and fitted MARS model for velocity
appear here. As you can see, the fitted MARS model
captures velocity shifts in the post-1991 era very
well. How this can be used to forecast inflation with-
in a P* model will be the subject of further work.
However, this example demonstrates the potential
benefits to MARS modeling.

Figure A2

MARS Model for M2 Velocity
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MARS Velocity Estimates

Table A1

Basis function 8 (BF8)
Basis function 10 (BF10) 0.007

Basis function 14 (BF14) -0.002

Basis function 16 (BF16) -0.004

Basis function 18 (BF18) 0.017

Basis function 20 (BF20) -0.017

Basis function 25 (BF25)

Basis function 27 (BF27) 0.509 x 107
Basis function 28 (BF28) ~0.809 x 1073
Basis function 40 (BF40) -0.009

R2 0.983
Number of observations 164

Independent

variable Coefficient t-Statistic Variable
Constant 0.982 19.278

Basis function 2 (BF2) 0.006 13.011 Max (0, 120-time)
Basis function 3 (BF3) 0.018 7171 Max (0, oppcost-0.270)
Basis function 6 (BF6) 0.008 12.005 Max (0, time-20)

NOTE: This table provides the final fitted model, allowing as many as 40 basis functions (of which only 11 are retained) and two
variable interactions. The time trend series is most important, whereas the opportunity cost series is only 31.7 percent as important
as the trend series. These figures are constructed on the basis of what happens to the explanatory power of the model when each
individual series is excluded from the equation (time denotes the time trend, oppcost the opportunity cost series). Also, there
appear to be threshold effects in the opportunity cost series at 0.27, 2.364, and 3.301 percent, whereas there are time trend thresh-
olds at observations 20 (1964:Q1), 32 (1967:Q1), 47 (1970:Q4), 58 (1973:Q3), 63 (1974:Q4), 120 (1989:Q1), 130 (1991:Q3), 135
(1992:Q4), and 155 (1997:Q4). Orphanides and Porter (2000) identified time effects at 1960:Q3, 1962:Q3, 1978:Q1, 1988:Q4, and
1992:Q3, as well as a number of interest rate effects spanning from 1.643 percent to 2.034 percent.

Max (0, time-155)

5.686 Max (0, time-58)* BF3
-5.940 Max (0, time—47)* BF3
—4.481 Max (0, time-63)* BF3

7.566 Max (0, time-130)

-7.279 Max (0, time-135)
Max (0, 3.301-oppcost)

3.187 Max (0, 2.364-oppcost)* BF6
—4.168 Max (0, time-32)* BF25
-8.997 Max (0, oppcost-0.270)* BF8

tor measures the lack of fit on the M basis func-
tion model fj; (X;). This term corresponds to the
sum of squared residuals from the fitted model.
The denominator contains a penalty for model
complexity, C(M), which is related to the number
of parameters estimated in the model.

Interpretation

MARS estimates can most readily be interpret-
ed from an analysis of variance (ANOVA) represen-
tation of the model, where the fitted function is
expressed as a linear combination of additive
basis functions in single variables and interactions
between variables. MARS provides graphical plots
which illustrate the optimal transformation of the
variables chosen by the algorithm, much like the
alternating conditional expectations (ACE) algo-
rithm of Breiman and Friedman (1985). The ACE
approach to modeling finds the nonlinear trans-
formation of the predictors which maximizes the
correlation between the dependent variable and
the transformed predictors. A plot of the trans-
formed series against the dependent variable is

sometimes helpful in identifying a functional form
to be used in parametric modeling. Hallman
(1990) and Granger and Hallman (1991) employed
ACE to examine nonlinear cointegration. The
accompanying box provides a simple example of
the MARS algorithm applied to estimates of M2
velocity.

In MARS, a comparison of the low- and high-
order models assists in determining whether to
allow variables to enter individually or in combina-
tion. Friedman (1991a) suggests a comparison of a
measure analogous to an “adjusted R-squared,”
with a model involving interaction terms chosen
over an additive model only if its adjusted R-
squared is “substantially” larger. As part of the
MARS output, the relative contribution of each
variable is determined, as are estimates of the
model’s adjusted R-squared given that a particular
ANOVA function (variable) has been omitted from
the model. This assists in interpreting the signifi-
cance of each ANOVA function.

MARS has been extended to incorporate cate-
gorical variables, logit regression, and missing data.
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It has been successfully applied to the Wolf sunspot
data by Lewis and Stevens (1991), to cointegration
testing by Sephton (1994), to forecasting exchange
rates by Sephton (1993) and De Gooijer et al. (1998),
and to nonlinear causality testing by Sephton (1995),
as well as in describing large cross-sectional data
sets by Steinberg and Colla (1999). The objective
here is to examine the extent to which the logit
specification provides useful information on the
probability of recession.

FORECASTING RECESSIONS USING
MARS

There are two interesting questions to consid-
er. The first relates to in-sample forecasts of the
probability of recession based on information that
is available at time (t — k). That is, how well does
MARS fit the historical data? Given the flexibility
of the algorithm, one might expect to see MARS
perform very well in capturing the probability of
recession. The second, more interesting question
examines out-of-sample forecasts to determine
whether information on financial variables can
predict the probability of recession k periods
ahead. This is the type of question one might ask
of an “operational forecasting” model: Given data
at time (¢ — k) how likely is recession within the
next few months?

A number of previous studies have examined
the ability of probit models to capture recession
probabilities.” The probit specification examines
the probability of recession, Prob (Y; = 1), using
the cumulative standard normal distribution,

@ (.) and a set of regressors, X; _ p:

©  Prob (v, =1)=d(a+pX, ).

Given data up to period (¢t — k) these models are
estimated and used to generate recession forecasts
at time ¢. Statistics on pseudo-R-squared, root-
mean-squared error, mean absolute error, and
quadratic probability scores are used to gauge
forecast accuracy.® In-sample forecasts are gener-
ally more accurate than out-of-sample forecasts in
which an estimated model is used to forecast
beyond the estimation period. In the probit model,
the parameters are assumed to be temporally sta-
ble: that is, a and 3 are assumed to be constant.
The effects of X at time (¢ — k) are assumed to have
the same influence on the probability of recession
at every point in the sample. This assumption
ignores Temin’s (1998) historiography of American
recessions over the past 100 years. Temin conclud-
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ed that it was difficult to assign a unique corre-
spondence between an economic variable and the
likelihood of recession. The interesting question
here is whether MARS results outperform those
based on this simple probit specification.

In-Sample Estimates

For present purposes, recession forecasts are
examined at the three-, six-, nine-, and twelve-
month horizons. Information available at times
(t=3), (t-6), (t—9), and (t — 12) is used to model
the probability of recession at time t. The in-sample
evidence is based on estimating a MARS model
over the entire sample period. Actual dates of
recession are compared with forecasted probabili-
ties to measure the information content of the
MARS models.

For example, the six-month horizon model
examines the following specification:

(7) R =
f{Yt—é’AIPt—()'AURt—é’ARMt—é’ASPt—6’AFFt—6} +&

where R, is 1 if the economy is in recession in
period t and O otherwise; Y is the yield spread, AIP
is the change in the logarithm of industrial pro-
duction, AUR is the change in the unemployment
rate, ARM is the change in the logarithm of the CPI
deflated value of M2, ASP denotes the change in
the logarithm of the S&P 500 Index, and AFF
denotes the change in the federal funds rate. The
error term is given by &, with the nonlinear non-
parametric functional form given by f{.}. The fit-
ted value can be used to obtain an estimate of the
probability of recession given data at time

(t — 6). Information previous to (¢ — 6) and subse-
quent to (t — 6) is not included in the model.

The MARS algorithm involves setting a num-
ber of parameters used in model selection. The
most important are the maximum number of basis
functions allowed and the highest order of interac-
tion possible. Because there are six predictors, up
to six variable interactions are allowed. The MARS
algorithm will fit as many interactions as help

7 These include Estrella and Mishkin (1998), Haubrich and
Dombrosky (1996), Bernard and Gerlach (1996), Dueker (1997), and
Atta-Mensah and Tkacz (1998).

The quadratic probability score is simply the average of twice the
squared errors. For present purposes the root-mean-squared error
and mean absolute error rates will be used to gauge forecast accu-
racy. Currently there is no measure analogous to the pseudo-R-
squared used in probit models.
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describe the data, with up to 40 basis functions
allowed in the forward search strategy.

Reporting the results of each model would be
of little merit because a large volume of output is
generated by each estimation. More important is a
comparison of the forecast of recession with the
actual data. The upper half of Table 1 contains
summary statistics on how well each MARS model
fit the historical data, as well as those derived
from a probit specification using the same
explanatory variables. MARS recession probability
estimates are superior to those derived from the
probit specification, with the root-mean-squared
error for the three-month forecasting horizon 16.7
percent relative to 28.9 percent for the probit
model. The MARS root-mean-squared error is low-
est at the three-month horizon and is highest at
the twelve-month horizon, at almost 24 percent.
At all horizons the MARS models appear to domi-
nate those based on the probit specification. Fig-
ure 2 presents a plot of the MARS probability fore-
casts for the four different forecasting horizons.
The algorithm provides a very good in-sample fit
in the short-term, yet exhibits a number of false
signals beyond three months.

These results appear to suggest that there are
benefits to the modeling of the dichotomous vari-
able at the monthly frequency using MARS. This is
to be expected given that nonlinear nonparametric
models fare well at explaining relationships
in-sample. They are designed to be sufficiently
flexible to capture historical data, as are neural
network models of Kuan and White (1994). The
interesting issue is whether they perform well in
an out-of-sample forecasting exercise.

Before turning to that question, it is useful to
consider results presented by Dueker (1997). He
found that adding a lagged recession variable to
the probit framework improved forecast accuracy,
arguing that the probability of recession could be
affected by duration effects associated with differ-
ent “states of the world.” Does adding a lagged
recession variable affect the in-sample results of
both the probit and MARS frameworks?

The bottom half of Table 1 contains informa-
tion on this augmented model. A recession variable
dated at the same time as the other explanatory
series was added to the predictor space and MARS
models were re-estimated. Forecast accuracy
improves at the three-month horizon, with a reduc-
tion in the root-mean-squared error from 16.7 to
11.7 percent but remains relatively unchanged at
the other time horizons. The probit specification

Table 1

In-Sample Forecasting Statistics

Root-mean- Mean absolute
squared error deviation

Lag MARS Probit MARS Probit
Six predictors
3 167 289 .057 170
6 197 .298 .078 177
9 189 299 .071 77
12 244 311 117 193
Six predictors and lagged dependent variable
3 117 219 .074 .094
6 199 .280 158 154
9 193 299 187 178
12 239 307 199 191

NOTE: Root-mean-squared error is calculated by summing the
squared differences between the actual and forecast probabili-
ties of recession, dividing by the number of periods in the
sample, and taking the square root of the result. The mean
absolute deviation is the average absolute value of the predic-
tion less the true state of the recession variable.

Table 2

Out-of Sample Forecasting Statistics

Root-mean- Mean absolute
squared error deviation

Lag MARS Probit MARS Probit
Six predictors

317 292 152 181
6 311 293 145 160
9 317 303 135 167
12 319 .290 169 168
Six predictors and lagged dependent variable
3 .289 229 11 .094
6 299 281 129 135
9 319 .305 137 167
12 341 292 183 169

NOTE: Root-mean-squared error is calculated by summing the
squared differences between the actual and forecast probabili-
ties of recession, dividing by the number of periods in the
forecast horizon, and taking the square root of the result. The
mean absolute deviation is the average absolute value of the
prediction less the true state of the recession variable.

benefits from the addition of the lagged dependent
variable at the three-month horizon, but continues
to underperform relative to MARS.

Out-of-Sample Estimates

Although neural network and nonparametric
regression models frequently fit well in-sample,
their out-of-sample performance is not as impres-
sive. This is in part a result of the large data sam-
ples which are required to fit the models. As well,
the models are constructed to provide an optimal
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In-Sample Forecasts of Recession, MARS Models
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in-sample fit, and, as in traditional linear paramet-
ric methods, there is no guarantee they will pro-
vide a good fit out-of-sample. A realistic out-of-
sample exercise is required to determine whether
there are true benefits to modeling recession
probabilities using a data-mining procedure such
as MARS.

Toward this end, the first 200 observations of
the data were used to fit MARS and probit models,
which were subsequently used to forecast the
probability of recession k periods hence, with k =
3, 6,9, 12, as before.? Each forecast was compared
with the state of the economy to determine fore-
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cast accuracy. The sample was then extended by
one observation, and the process continued until
the entire sample was used to forecast the proba-
bility of recession. This process is similar to a
rolling regression forecast with model updating.
Table 2 contains summary statistics for the
original and the augmented (lagged recession vari-
able) predictor space. The MARS specification
does not fare as well at predicting recessions in

° The sample used to estimate the first MARS model spans February
1960 through September 1976 and expands by one month until all
the data through September 1999 are included.
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Out-of-Sample Forecasts of Recession, MARS Models
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out-of-sample forecasting, with root-mean- signals across all time frames suggests that the
squared errors around 31 percent using the four adoption of nonlinear nonparametric methods is
different forecast horizons. Adding a lagged reces- not a panacea for recession forecasting.
sion variable reduces the error rates by less than
3 percent at the three- and six-month horizons, CONCLUSION
with prediction errors at roughly 29 percent and For in-sample recession forecasting, the appli-
30 percent, respectively. The estimated MARS cation of multivariate adaptive regression splines
models perform nearly as well as the probit to financial predictors of recession shows great
approach to estimating recession probabilities. promise. The out-of-sample evidence indicates
Figure 3 presents a plot of the actual recession  that the MARS models considered here contain
dates and the MARS forecasts. At the three-month helpful, but not entirely accurate, predictions of
horizon, MARS appears to forecast the 1990-91 recession.
recession fairly well, but the large number of false There are a number of areas in which the
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present analysis can be extended. The first is to
include a broader set of financial variables to
determine whether they contain information in
addition to that already contained in the six series
included in the present analysis. Similarly, it may
be reasonable to examine these questions using
quarterly data rather than monthly data, since the
latter may be characterized by a high noise-to-
signal ratio.

Finally, the construction of a leading index
using the MARS modeling strategy may provide
useful forecasts against which to compare other
leading indicators maintained by the Conference
Board and others. The logit specification may be
too difficult for the algorithm to fit effectively; a
dynamic model examining economic growth
which allows for variable interactions and dura-
tion-dependence may offer significant advantages
over the present analysis.
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