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Abstract

When constructing unconditional point forecasts, both direct- and iterated-multistep
(DMS and IMS) approaches are common. However, in the context of producing con-
ditional forecasts, IMS approaches based on vector autoregressions (VAR) are far more
common than simpler DMS models. This is despite the fact that there are theoreti-
cal reasons to believe that DMS models are more robust to misspecification than are
IMS models. In the context of unconditional forecasts, Marcellino, Stock, and Watson
(MSW, 2006) investigate the empirical relevance of these theories. In this paper, we
extend that work to conditional forecasts. We do so based on linear bivariate and
trivariate models estimated using a large dataset of macroeconomic time series. Over
comparable samples, our results reinforce those in MSW: the IMS approach is typically
a bit better than DMS with significant improvements only at longer horizons. In con-
trast, when we focus on the Great Moderation sample we find a marked improvement
in the DMS approach relative to IMS. The distinction is particularly clear when we
forecast nominal rather than real variables where the relative gains can be substantial.
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1 Introduction

Conditional point forecasts are a useful means of evaluating the impact of hypothetical
scenarios. In these exercises the goal is to predict variables such as GDP growth or inflation
conditional on, for example, an assumed path of monetary or fiscal policy variables. As
an example of the former, Dokko et al. (2009) use both the FRB/US model as well as a
VAR to produce forecasts of the housing market conditional on various paths of the federal
funds rate. As an example of the latter, Christoffel, Coenen, and Warne (2008) use their
New Area-Wide (DSGE) Model to evaluate conditional forecasts of Euro Area GDP growth
conditional on paths for a variety of series including government spending. In addition, as
discussed in Sarychev (2014) and Hirtle et al. (2016), conditional forecasts have become
an important component of bank stress testing. Conditional forecasts are also used in
academic research including Giannone et al. (2014) who use VARs to construct forecasts of
inflation conditional on paths for oil and other price indicators; Caruso, Reichlin, and Ricco
(2015) who construct forecasts of fiscal variables conditional on IMF projections for GDP
growth and inflation; and Baumeister and Kilian (2014) who consider forecasts of oil prices
conditioned on a range of scenarios.

Regardless of whether these conditional forecasts were constructed using frequentist or
Bayesian methods, the recursive nature of the VAR was ultimately used to produce the
forecast.! Put differently, the VAR was first estimated as a model with one-step-ahead
forecast errors and then its recursive structure was used to produce conditional forecasts
at the desired horizon given the assumed scenario. This VAR-based IMS approach to
producing conditional forecasts is by far the most common.?

Within the literature, a few alternative approaches exist. Instead of using a VAR, Guer-
rieri and Welch (2012) estimate a scalar autoregressive distributed lag (ARDL) model and
use it to produce forecasts of bank net charge-offs conditional on those macroeconomic se-
ries that the Federal Reserve releases in its annual bank stress testing exercise. As above,
their model is also estimated to have one-step-ahead forecast errors and is iterated forward
to produce the conditional forecast — but without accounting for the joint evolution of all

variables in the system. At first glance this approach seems unlikely to perform well,

1Or near-VARs in the case of DSGE models. See Giacomini (2013) for a discussion on the relationship
between DSGE models and VARs.

2Throughout we will use the phrase “conditional forecast” in the same context used by Waggoner and
Zha (1999). One can, of course, also interpret an impulse response function as a type of conditional forecast.
As such, the local projections method of Jorda (2005) is a special case of DMS-based conditional forecasting.



especially at longer horizons, because it does not provide a complete characterization of
the joint dynamics among the variables as would a VAR. On the other hand, far fewer
parameters are estimated, and hence, this ARDL-based IMS approach to conditional fore-
casting may be more accurate in a mean-squared-error (MSE) sense by taking advantage
of a bias-variance trade-off. A handful of others, including Arseneau (2017) and Kapinos
and Mitnik (2016) have also used this approach to conditional forecasting. In the context
of bank net charge-offs, Bolotnyy et al. (2013) perform a direct comparison of the accuracy
of conditional forecasts made using fully specified VARs and those made by simpler ARDL
models and find little evidence to recommend one over the other.

This “simpler might be better” approach to forecasting is reminiscent of an issue common
in the literature on producing unconditional forecasts. Specifically, rather than estimate
a fully specified VAR, it is quite common to use DMS models to construct point forecasts.
When taking this approach, the predictors are lagged such that a distinct model is estimated
for each horizon. Since the model-implied forecast error is horizon-specific, the model is used
directly — no iteration is required. While this DMS approach is less fully specified than
the VAR-based IMS approach, Bhansali (1997), Findley (1983), and Schorfheide (2005)
each argue that, under certain assumptions, DMS models can be more robust to model
misspecification than are IMS models. More recently, Chevillon (2017) shows that DMS
models have an advantage when balancing a bias-variance trade-off at longer horizons.

It is therefore surprising that there appear to be almost no empirical examples of DMS
approaches to conditional forecasting.? For a sophisticated forecasting agent at a central
bank the intuition is obvious — the model would clearly be misspecified and would not
account for all the general equilibrium feedback among the variables in the system. While
this is true, it is also true that any empirical model is likely misspecified in some way. This
point is emphasized by Bidder, Giacomini, and McKenna (2016) in the context of the New
York Fed’s CLASS model — a model used to produce conditional forecasts of bank stress
under various severely adverse scenarios. At a minimum, nearly all models are only known
up to a collection of unknown parameters that are estimated, which in turn introduces
estimation error into the forecast.

In this paper we provide empirical evidence on the accuracy of VAR-based IMS condi-
tional forecasts relative to ARDL-based DMS conditional forecasts. In no small part our

investigation parallels Marcellino, Stock, and Watson (MSW, 2006) who compare both a

3There is a discussion of DMS-based conditional forecasting in Jorda and Marcellino (2010). Their
approach is distinct from ours and is derived assuming Gaussian forecast errors.



large number of univariate and bivariate IMS models to comparable DMS models. Like
them, we begin with a large dataset of monthly frequency macroeconomic time series that
includes real, nominal, and financial time series dating back to 1959. From this database,
2,000 randomly selected bivariate VARs/ARDLSs are estimated and used to construct a se-
quence of pseudo-out-of-sample conditional forecasts. With these forecasts in hand, MSEs
are constructed and the accuracy of the forecasts are compared. In order to emphasize the
methods used rather than the scenarios chosen, ex-post realized values are used when form-
ing the conditioning paths. Like MSW, in our bivariate results we abstract from real-time
data issues and conduct the exercise using a single vintage of data taken from FRED-MD
(McCracken and Ng, 2016).

We then narrow our evidence to a smaller collection of 150 trivariate systems that
always include one real, nominal, and financial variable. Our primary reason for choosing
this collection of models is that they are closer in spirit to the types of monetary VARs used
by central banks when producing conditional forecasts. In addition, this smaller collection
of model makes it considerably easier to implement bootstrap-based inference when we
investigate the role model misspecification plays for our results.

Regardless of whether bivariate or trivariate models are used, some of our results re-
inforce those found in MSW but other results do not. For example, when estimating the
models and evaluating the forecasts over the time frame used in MSW we also find that
VAR-based IMS conditional forecasts are generally more accurate though improvements are
often quite modest. Empirically relevant improvements only arise at the longer horizons
and are dependent on whether short or long lags are used. In addition, there is evidence
that DMS methods provide specific benefits when the variable being forecasted is nominal
(e.g. prices, wages, and money) rather than real or financial.

Our results begin to deviate from those in MSW when we either extend the out-of-sample
period to include the more recent 2003-2016 period or when we restrict our sample to the
Great Moderation. In both cases we observe a substantial improvement in the relative
performance of the DMS approach. In fact, across both our bivariate and trivariate results
we find that ARDL-based DMS methods are clearly the preferred choice when forecasting
nominal variables. In many cases the improvements are quite large when using DMS meth-
ods to predict nominal variables. For both real and financial variables the results are much
less clear: neither DMS nor IMS is particularly better than the other.

While the Great Moderation has a large impact on our results, the reasons for that



impact are not obvious. In MSW the authors argue, in footnote 7, that DMS methods
improve relative to IMS when a larger sample is used to estimate the model parameters.
They base this on a comparison of relative MSEs constructed using the first and second
halves of their 1979-2002 out-of-sample period in which they observe that DMS-based MSEs
are relatively lower in the latter period. Instead, we find that DMS methods improve relative
to IMS methods even when we shorten the estimation sample — so long as that sample
consists of the period identified as the Great Moderation (e.g. the in-sample period starts
in 1984 rather than 1959).

We consider two potential explanations for our results. In the first, based on the premise
that DMS models are considered robust to model misspecification, we conduct a variety of
tests of model misspecification for each of the trivariate VARs. Counterintuitively, we find
less evidence of model misspecification in the Great Moderation sample than the sample used
by MSW. In the second, based on the premise that the DMS models have less parameter
estimation error and thus balance a bias-variance trade-off better, we compare the relative
changes in information criteria across the two samples for each of the DMS models and the
associated VAR. Here we find some evidence that the fit of DMS models has improved
(deteriorated) at a higher (lower) rate than the corresponding VARs following the Great
Moderation, suggesting that perhaps the simplicity of the DMS models allows them to
handle better the lower levels of predictive content present during the Great Moderation.

The remainder of the paper proceeds as follows. Section 2 provides a simple example
of the models considered and motivates why DMS models may be useful for conditional
forecasting. Section 3 describes the modeling approaches more generally and discusses the
data. Sections 4 and 5 discuss our results. Section 6 concludes. An appendix contains

additional detail on the data used.

2 A Simple Example of the Models

To better understand the comparison of interest, and how model misspecification can make
conditional forecasts from ARDL models more accurate than those from VAR models,
consider a very simple example adapted from Clark and McCracken (2017) in which we
forecast inflation (y;) one period ahead conditioned on a known value for the federal funds

rate (z;). The data-generating process (DGP) of inflation and the funds rate is a zero-mean



stationary VAR(1) taking the form

ye \ _ (0 0 Yt—1 €t
()=o) (i) =),
with i.i.d. N(0,1) errors with contemporaneous correlation p. Using this DGP we provide
three comparisons. In the first, the VAR is correctly specified while in the second and
third it is not. In the latter two cases the DMS model is trivial, and yet we will see that
it can still provide more accurate conditional forecasts. In each case we abstract from
finite sample estimation error and construct forecasts using the pseudo-true parameters of
the respective model. As a practical matter, estimation error certainly plays a role but
we abstract from that in order to emphasize that model misspecification affects conditional

forecasts as well as unconditional forecasts.

2.1 Correct Specification

In our first example, the VAR-based conditional forecasts are constructed after using OLS
to estimate a VAR(1) for (y,z:). The residuals are then used to estimate the error
covariance matrix. Note that these regression parameter estimates and residual variance
estimates are all consistent for the parameters of the DGP. From Waggoner and Zha (1999)
we know that the time-t minimum-mean-square-error one-step-ahead conditional forecast

of Y411 given w41 takes the form

U1 = U1 +p(E5 — 3is)
= b+ p(zi41 — cy)

where the superscripts ¢ and u denote conditional and unconditional forecasts, respectively.
The conditional forecast of y is comprised of the standard, unconditional M S FE-optimal
forecast Yi'1, plus an additional term that captures the impact of conditioning on the future
value of the federal funds rate, 2§, = x¢+1. With this forecast in hand, straightforward
A

algebra implies that, for e;: IMSY2 — 1 - p2.

S =y — 051, Elefy
Now consider a very simple DMS forecast based on a model in which y; is regressed on

x¢, and hence the model takes the form
Yt = YTt + Et-
This model yields a forecast of the form
Z)tc,1 = %%f,l

= (be+p(1 —c*))wpsy.



Given this forecast, straightforward algebra implies that, for eglM S = gy — Ut 15
E(efM9)? =1 p? + (b—cp).

If we take the difference between the two MSEs we find that the IMS forecasts are more
accurate than the DMS forecasts if and only if (b—cp)? > 0. Since this is trivially true, we

reach the expected conclusion that the minimum-MSE approach to conditional forecasting

provides more accurate forecasts.

2.2 Incorrect Specification of Conditional Mean

In our second example, everything remains the same except that the equation for x; in the
VAR is misspecified as x; = axi_o+1;. In this framework, the regression parameters for the
y equation remain consistent for their population values — including the residual variance.
For the z equation, it is clear that & = ¢?. In addition, the residual variance for the x

equation is 1+ ¢? while the residual covariance across equations remains p. Together these

imply that the IMS forecast takes the form

~C — AU N X AU
U1 = Ua + (A5 — i)

_ p 2

= ba:t + i 2 (ZL‘H_l C l‘t—l)'
. : - 2p?

Straightforward algebra implies F (e{]y N2 =14 p% - 1i =

larger than under correct specification. This opens the door for the trivial DMS example

which is, not surprisingly,

to become more accurate than the “optimal” VAR-based conditional forecast. Specifically,

we find that E(eﬂ/fs)2 is now less than E(etl?lMs)Q if and only if 2p?(1 — \/117) < (b—pc)2.

This is easily violated. For example, if we set b = p? and ¢ = p the inequality takes the

form 2p%(1 — \/117) < 0, which is false, and hence the simplistic DMS approach provides

more accurate conditional forecasts.

2.3 Incorrect Specification of Residual Variance

In our third example, we return to the first example in which the conditional mean of
the VAR is correctly specified. The sole difference is that we allow the contemporaneous
correlation between the model errors to change from p = pg to p; over the one-step-ahead
horizon T to T'4 1. Since this change is unknown at time 7', the point forecasts remain

the same and take the form

~C AU ~.C AU
Y11 9r1+ po(27, — 271)

= bxr + po(rr41 — caT)



and
@%,1 = 'YSAU%,I
= (be+po(1 = *))zri1.
for the VAR and DMS methods respectively. Straightforward algebra reveals that E (e%\{ 2 =
1+ p2 — 2pop1 and E(egjl\/ls)2 =1+ b+ p2(1 — c) — 2bepr — 2pop1(1 — ). Both mean
squared errors differ from what we obtained above because of the change in the contempo-
raneous correlation in the model errors. This again opens the door for the DMS example
to be more accurate than the “optimal” VAR-based conditional forecast. Specifically, for
all parameterizations for which b > pgc, F (eﬂ/[ )2 is now less than F (eEIM )2 if and only
if 2¢p; < b+ poc. This too is easily violated. For example, if we set b = 0 and ¢ € (0, 1),
po € (—1,0), and p; € (0,1), the inequality is false, and we find that the simple DM S

approach provides a more accurate forecast in expectation.

3 Models and Data

The three examples from the previous section are obviously stylized and simplistic. Even
S0, very minor misspecification in either the conditional mean of the VAR or its residual
variance matrix led to conditional forecasts that were potentially less accurate than the DMS
conditional forecasts. In practice, all models will be misspecified at some level, and hence,
as MSW emphasize, whether one method provides more accurate conditional forecasts than
another is purely an empirical matter. In this section we describe the collection of models,

both IMS and DMS, that we consider as well as the data used throughout our experiments.

3.1 Modeling Approaches

We produce a variety of results used to evaluate conditional forecasts. Many more results
could have been produced, but we restricted some choices in order to either (a) allow
comparison of our results to those in MSW or (b) focus attention on the accuracy of the
various forecasting methods and the robustness thereof. In the following set of bullets
we delineate the choices in the context of a bivariate system Z; = (Y, X;)' consisting of
two series that may be in levels or log-levels. Extensions to higher order systems are
straightforward. The goal is to forecast Y;;p. Let y; denote the stationary transform of
Y; which may be in levels or consists of taking first or second differences. Finally, let x;
denote the comparably transformed value of X;, but note that y and x need not have the

same stationary transform.



e We consider two distinct methods for constructing Yt‘fh, the h-step-ahead conditional

forecast of Yiiy.

Method 1: Under the VAR-based IMS approach, at each forecast origint = R, ..., T—h

we use OLS to estimate a vector autoregressive model of the form
2zt =C+ A(L)zt-1 + &1,

where z = (y,z), ¢ = (ey,e,), and A(L) = Z?;é A;L7. Following Waggoner and Zha
(1999), and specifically the formulas provided in Jarocinski (2010), the h-step-ahead condi-
tional forecast of 3,1, is obtained by the standard minimum-MSE approach and thus takes

the form

~Cc _ su 2 AU
Yen = Yep + E Vit (Teyi — Tt')
1<i<h

for a collection of constants 4;; that are non-stochastic functions of 1211-7,5 and i‘t = (t—
2p— 1)t 22;11 €s+1€511- The values for g, and #}; are those one would obtain from the
standard unconditional forecasts of y or x constructed using the recursive structure of the
VAR. Forecasts of Y;1, are then computed by accumulating the sequence of forecasts gy,
for ¢ =1, ..., h in accordance with the order of integration of Y
9 if Y is 1(0)
Y = Y+ S g6 itY; is 1(1)
Y+ hAY, + 30 ST gy i Yy is 1(2)
Method 2: Under the ARDL-based DMS approach, at each forecast origin we use OLS

to estimate a horizon-specific linear regression of the form

p—1 p—1
h
yg ) =a+ Z Biyt—n—j + Z 0jTt—h—j + Z Vi%t—h+i t €t

e j=0 1<i<h
where
Y; if Y; is 1(0)
yt(h) _ Y, - Y, if Yy is I(1)

Y, = Y, — hAY, i Yy is 1(2)

(h)

The h-step-ahead conditional forecast of y,,7 is then constructed as

t+h
) p—1 p—1
~C ~ A N ~
O =6+ Biye g+ Y0+ Y At
=0 =0 1<i<h

Forecasts of Y;,, are then computed in accordance with the order of integration of Y:

i if ¥; is 7(0)
Y, = Yo+l ifYis I(1)

~c(h)

Yi+hAY: + 3, if Yy is 1(2)

8



e We consider four distinct approaches to selecting the lag order p. In the first two, all
lags are fixed at 4 or 12 respectively. In the second two, at each forecast origin ¢ either
AIC or BIC is used to select the number of lags p € {0, ...,12}.# In order to facilitate
comparison across methods, the lag order is the same for both the autoregressive terms

(y) and the distributed lag terms ().

e We consider four distinct forecast horizons: h = 3, 6, 12, and 24. For brevity, we do
not report output for A = 6, but note that these results typically lie between those

associated with horizons 3 and 12.

e In the reported results, for a given forecast horizon h, we construct forecasts condi-
tional on the path x¢11,...,x¢1p. (For the reported trivariate results, the forecasts are
made conditional on the full path of just one series.) In unreported results we have
also (i) produced forecasts conditional on just the value z;1p and (ii) for our trivariate
systems, produced forecasts conditioning on paths of two series rather than just one.

The pattern of results remains the same, so we do not report them to conserve space.

e In order to facilitate comparison to the results in MSW, we only consider a recursive
approach to model estimation. That is, for each forecast origin ¢t = R,...,T — h,

observations s = 1, ..,t are used to estimate the model parameters.

o We consider a variety of different samples for model estimation and forecast evaluation.
In some samples we use observations dating back to 1959:01 to estimate parameters
and in others we only use Great Moderation data dating back to 1984:01 to estimate
parameters. Similarly, in some samples we align our out-of-sample forecasting exercise
with that of MSW and form forecasts from R = 1979:01 + h to T' = 2002:12 while in
others our out-of-sample period ranges from R = 2002:12 4+ h to T' = 2016:12.

o Like MSW we require that, for a given pair/triple of series, horizon, and forecast
origin, at least 120 observations are used to estimate every regression (i.e. across
every lag-selection method and across both forecasting approaches, IMS and DMS)
before incorporating the forecast in the results. This is really only applicable for one
series, the trade-weighted exchange rate (which starts in 1973:01 and is only used in

the trivariate exercises), when the out-of-sample period begins in 1979:01 + h.

4To facilitate comparison with the results in MSW, we use the standard formulas for AIC and BIC. See
Hansen (2010) for a discussion of information criteria and DMS models when the horizon is greater than 1.



3.2 Data Used

All of our results are based on models estimated using data from vintages of FRED-MD
(McCracken and Ng, 2016). This dataset consists of 128 monthly macroeconomic series and
is designed to emulate that used in Stock and Watson (2005). We use the June 2017 vintage
when performing the bivariate exercises. Observations for most series are first available
starting in 1959:01. For the exceptions, we impose the restriction that observations must
be available starting no later than 1967:01 to be consistent with the dataset in MSW. As
a result, we remove four series that fail to meet this condition. We also drop two series for
ending prior to the desired end date of 2016:12 and one series due to significant outliers in the
series post transformation. This leaves us with a final total of 121 series that we consider for
the bivariate exercises. In order to facilitate comparison of our results with those in MSW
we have organized the series into the same five groups used by MSW: income, output,
sales, and capacity utilization; employment and unemployment; construction, inventories
and orders; interest rates and asset prices; and nominal prices, wages, and money. The
variables that we use, along with the relevant transformations used to induce stationarity,
are delineated in the appendix (Table Al).

It is worth emphasizing that our dataset is distinct from that of MSW for two reasons.
First, our dataset is a much more recent vintage than theirs, and hence, some differences
are due to data revisions. Perhaps more importantly, our dataset of 121 series is smaller
than the 170 that they use. The bulk of the missing series are from group 1 (income,
output, sales, and capacity utilization) and group 3 (construction, inventories and orders).
To get a feel for how important these differences are, in Table 1 we use our dataset to
replicate their Table 5. In this exercise 2,000 random pairs of y and x are selected from
the database such that y and x come from distinct groups and an equal number of series
pairs (y,z) come from each of the 10 possible group pairings. For each pair, horizon,
and lag-selection method, the out-of-sample MSEs from the VAR-based IMS unconditional
forecasts and ARDL-based DMS unconditional forecasts are constructed and their ratio
is taken. These ratios are then placed in bins associated with various quantiles of their
empirical distribution. Despite having fewer series and having a distinct vintage of data,
the results are remarkably similar, with few differences greater than the second decimal.

For the trivariate exercises, we focus on just 16 series within FRED-MD, which we
separate into three variable groups: real, nominal, and financial. These variables, along

with the relevant transformations used to induce stationarity, are likewise delineated in the

10



appendix (Table A2). The June 2017 vintage was utilized for these exercises as well. In
unreported results we also considered using real-time vintages of this smaller dataset of 16

series. This made little difference, and so we omit it for brevity.

4 Empirical Results

In this section we consider the relative accuracy of VAR-based IMS and ARDL-based DMS
conditional forecasts. Our approach is directly comparable to that from Table 1 with
the exception that we are now assessing the relative accuracy of conditional rather than
unconditional forecasts. In contrast to Table 1, in the following we only report the mean
and median functionals of the distribution of these ratios. This allows us to report results
across multiple subsamples in a single table and thus facilitates comparison. There are
three subsamples: (1) that associated with MSW, (2) one that extends the MSW sample but
forecasts over the 2003-2016 period, and (3) another that also forecasts over the 2003-2016
period but only uses Great Moderation data to estimate model parameters. In addition, to
get a better feel for the magnitude of the differences in MSEs, for each pairwise comparison
we construct a simple t-test of equal MSE & la Diebold and Mariano (1995) and West
(1996) at the 5% level.> If the test rejects in the upper tail we characterize the VAR-based
forecasts as “better” and if the test rejects in the lower tail we characterize the ARDL-based
forecasts as “better.” This is a crude approach to inference, and certainly ignores issues
associated with multiple testing, but we believe it conveys a useful guide to the statistical

significance of the differences.

4.1 Bivariate Comparisons

We begin with comparisons based on bivariate systems. For the same 2,000 pairs of y and
x used in Table 1, for each horizon, for each lag-selection method, and for each sample,
the out-of-sample MSEs from the VAR-based IMS conditional forecasts and ARDL-based
DMS conditional forecasts, of both y and x, are constructed and their ratio is taken (DMS
over IMS).% In panel A of Table 2 we report the mean, median, and percent better of these
4,000 ratios of MSEs separately for each permutation of horizon, lag-selection method, and
sample. Recall however that MSW identified variables from the prices, wages, and money

(PWM) group as being distinct from the others in their slightly stronger preference for DMS

>The standard errors are constructed using a Newey-West (1987) HAC with the lag-length set to [h* 1.5]
(rounded up to 5 when h = 3).
5That is, we forecast y conditional on & and then forecast = conditional on y.

11



models. We therefore decompose out results in a similar manner. In panel B we report the
results associated with the 2,400 ratios arising from models that exclude any pairs with a
series from the PWM group. Panel C does the same for the 800 ratios from pairs with a
single element from the PWM group but when the variable being forecasted is not from the
PWM group. The remaining 800 ratios, for which the variable being forecasted is from the
PWM group, are reported in the final panel.

First consider the MSW sample in the left-most sub-panels of panels A through D. These
results largely reinforce those in MSW for unconditional forecasts. So long as the variable
being forecasted is not known to be from the PWM group, the mean and median relative
MSE is typically greater than or equal to one suggesting a preference for the VAR-based
IMS approach to conditional forecasting. That said, the gains are typically meager with
statistically significant differences largely regulated to the longest horizons. The biggest
differences clearly arise when a PWM variable is being forecasted. Especially when the
lag order is shorter (BIC or 4) both the mean and median ratios are less than one and
hence the DMS approach to conditional forecasting dominates. In fact, the magnitudes
are large enough that for some horizons roughly 50% of the comparisons are considered
statistically significant by our crude metric. Larger lag lengths make the IMS approach
more competitive, though any gains are rarely statistically significant.

To get a feel for whether these MSW results are robust to different subsamples, we extend
the MSW in-sample period through 2002 and then forecast out-of-sample from 2002:12 + h
through 2016. Across each of the middle sub-panels of Table 2, the vast majority of the
reported mean and median values are lower than those in the left sub-panel. That said,
the relative improvement of the DMS approach is modest for most cases other than those
associated with forecasts of a variable from the PWM group. For this group, the DMS
approach continues to dominate with nominal improvements over the IMS approach of 10%
or more, especially at the longer horizons and when a short lag order is chosen. To be fair,
fewer of these larger differences are considered statistically significant by our rough metric,
but even so, there are very few cases in which the VAR-based IMS approach is providing
statistically significant improvements.

In the right-most sub-panel we again use an out-of-sample period from 2002:12 + A
through 2016 but change the in-sample period to only include Great Moderation data
which we date as starting in 1984:01. Once again we observe another modest improvement

in the DMS approach relative to the IMS approach in most instances. The smallest gains
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arise when the pairing does not include a series from the PWM groups while the largest
gains again arise when the variable being forecasted is from the PWM group. For this
latter group the nominal gains of DMS over IMS grow to 20% or even more, especially at
the longest forecast horizons.

The transition across the three sub-panels clearly indicates a sequence of modest im-
provements in the DMS approach relative to the IMS approach across most variables, lag-
selection methods, and especially the longer horizons. In MSW, the authors, in response to
a referee suggestion, do a subset comparison akin to ours and find that, relative to the IMS
approach, the DMS approach improves in the second half of their 1979-2002 out-of-sample
period. They conclude that this arises because DMS forecasts become less variable as
the in-sample size increases (see footnote 7 of MSW). Our results are less supportive of
this conclusion. While it is the case that the results in the middle sub-panels come from
models estimated using a longer in-sample period than used by MSW, that is not the case
in our Great Moderation subsample. An alternative interpretation of the MSW subsample
analysis, in conjuction with our results, is that the Great Moderation itself has made the
DMS approach perform relatively better and not the length of the sample used to estimate

the model parameters, particularly for the PWM series.

4.2 Trivariate Comparisons

We now extend our bivariate evidence to trivariate environments. For these results we
focus on a smaller number of 150 (6 x 5 x 5) systems each of which consists of a single
real (6), nominal (5), and financial (5) series. The individual series are delineated in Table
A2 (in the appendix) and were chosen, in broad terms, to align with the types of series
one might observe in a standard monetary VAR. In Table 3 we again report means and
medians of the distributions of relative MSEs along with our crude metric for determining
significance. We also decompose our results into separate panels in order to identify if the
results vary by whether the variable being forecasted is real, nominal, or financial.

As we did for the bivariate results, in the left-most sub-panel we begin by reporting the
relative MSEs of our trivariate models over the same in- and out-of-sample periods used
by MSW. In panel A, which aggregates the results from all 900 model comparisons (150
systems x 3 variables to forecast x 2 variables to condition on), we see a similar pattern to
that observed for the bivariate results. For the fixed lag orders and when AIC is used for

lag selection we again find that the mean and median ratios are greater than or equal to
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one. In addition, the few models that are significantly more accurate tend to be from the
VARs rather than the ARDLs. But when BIC is used there are a number of comparisons
for which the DMS approach is more accurate and significantly so.

The reason for this dichotomy becomes clear in panels B through D where we decompose
the results by the type of variable being forecasted. When the real variables are being
forecasted nearly all the quantiles are greater than or equal to one and there are almost
no instances in which the DMS provides significant improvements over the IMS approach.
In contrast, the conditional forecasts of the nominal variables are completely dominated by
the DMS approach, especially when BIC is used for lag selection but to a lesser extent also
when a fixed lag of 4 is used. At the longer lags the two methods are rarely that different.
For the financials the distinction is less stark but probably leans towards the IMS approach
unless BIC is used for lag selection. Even then the gains to DMS are nowhere near as large
as was the case for the nominal series.

In the second sub-panel we transition to the latter out-of-sample period but continue
estimating the models using the full dataset extending back to 1959:01. Akin to the bivariate
results in Table 2, the means and medians in the middle subpanel of panel A are nearly all
less than those in the left-most subpanel, suggesting a relative improvement in the DMS
approach broadly across the variables. For the real variables in panel B, the DMS gains
are generally modest and, as a practical matter, only reduce the advantage the IMS had in
the previous out-of-sample period. In very few cases are the differences between the DMS
and IMS approach significant.

For the nominals in panel C, there too is a bit of improvement in the relative strength
of DMS to IMS. Almost every mean and median ratio is less than or equal to one even for
the longer lag lengths. By our crude metric of significance, there are almost no cases in
which the IMS is significantly better than DMS. That said, there are also fewer instances
in which the DMS is significantly distinct from the IMS unless the shorter lag lengths are
chosen. The financials again fall somewhere in between the nominal and real panels in
terms of the relative strength of IMS and DMS. In broad terms, the results still lean in
favor of the IMS approach, though the gains are rarely large and less significantly so.

In the right-most subpanels we now restrict the in-sample period to that of the Great
Moderation while continuing to use the latter out-of-sample period. The pattern continues:
for almost every mean or median in panel A, the values continue to decline, suggesting

improvements for the DMS approach relative to the IMS approach. For the real variables,
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the relative improvement of the DMS approach continues but is not large and serves only
to reinforce the fact that there are few if any statistically significant differences between
the two methods. When forecasting the nominal series, the relative gains from using the
DMS approach sometimes reach incredible levels of 50% or more, especially at the longer
horizons or when information criteria are used to select the lag lengths. Across all lag
selection methods and all horizons there exists almost no statistically significant advantages
to using the IMS approach to forecasting nominal series. The financials once again lie in
between the nominal and real panels in terms of the relative strength of IMS and DMS.
One might argue that the results start to lean in favor of the DMS approach but the gains
are infrequently large and are significantly so only in isolated instances.

Table 4 provides another perspective on the relative accuracy of IMS and DMS methods
across sub-samples but this time with an eye towards identifying the corresponding best
lag orders. For each horizon, method of lag selection, trivariate system, and for both the
DMS and IMS methods, we construct the MSEs and report them relative to the MSE from
a VAR(4). As in the previous tables, we report the mean and median of the distribution of
these ratios. We also report the fraction of all permutations for which the given lag length
performed best. Note that when the forecasts are based on IMS methods, the mean and
median of the distribution of ratios for a lag length of 4 are one by construction. Note
as well that, due to ties in lag selection, the sum of the fractions best can be greater than
one.” For brevity, we only report results for the sample used by MSW and that associated
with the Great Moderation.

Consider the left panel, that associated with the MSW sample. As we’ve seen before,
across all variables and especially for the real and financial series the fraction that perform
best tends to be higher when using VARs. In particular, when VARs are used to forecast
either the real or financial series the fraction that perform best is typically highest when the
lag lengths are short (i.e. a fixed lag of 4 or BIC). This pattern softens a bit at the longest
horizon where we start to see longer lags becoming useful as well. In contrast, when VARs
are used to forecast nominal series, a fixed lag of 12 or AIC is preferred. The only instances
in which DMS-based forecasts show signs of life is again when forecasting nominals at the
longer horizons and when longer lags are used.®

The sharp improvement of DMS-based methods during the Great Moderation sample

"For example, if AIC always chooses the lag length of 12 then the AIC and AR(12) columns are double
counting the same models.
8Though, as we saw in the previous tables, these gains may not be large or statistically significant.
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becomes apparent as we move to the right-hand panel. The fraction of times that the DMS
is best is now typically higher than that for the IMS approach, though the amount varies
by series. For real series, the IMS advantage over DMS is significantly reduced and, at the
longest horizon, is essentially gone. For the financial series, DMS typically is best, though
not in any way near the level in which DMS is best for nominals. For nominals, except
for the shortest horizon, there are almost no instances in which IMS is better than DMS.
In addition, when longer lags are chosen, the mean and median improvements relative to

using a VAR(4) are enormous, reaching levels of 50% or more.

4.3 TUnconditional Forecasts

Throughout this section, we have focused on the relative accuracy of DMS- and IMS-based
conditional forecasts. We have done so in large part due to our relative surprise at how
infrequently DMS-based methods are used for conditional forecasting despite their common
usage for unconditional forecasting. In the previous sections, we have shown that not only
are DMS methods potentially useful but their applicability may have improved over time,
in part due to the Great Moderation.

This of course begs the question of whether the same is true in the context of uncon-
ditional forecasts of the kind analyzed in MSW. In this section, we delineate a limited set
of results that support that view: as we transition from the samples used in MSW to the
Great Moderation period, the DMS method improves for unconditional forecasts as well.
Table 5 provides results associated with the bivariate comparisons while Table 6 provides
comparable trivariate results.

For both the bivariate and trivariate cases, as we transition across the three samples we
find marked improvements in the accuracy of DMS-based methods relative to IMS-based
methods except at the shortest horizons. As was the case for the conditional forecasts,
for the bivariate results in Table 5 the non-PWM series transition from leaning in favor
of the IMS approach when using the MSW sample towards being indifferent between IMS
or DMS in the Great Moderation sample. Similarly, the benefits to using DMS methods
for the PWM series grow as we move across the three subsamples. The same also holds
for the trivariate results in Table 6. The real and financial series transition from leaning
in favor of using the IMS approach towards being indifferent between DMS and IMS, as
indicated by the lack of significant differences. In contrast, except at the shortest horizons,

the DMS approach becomes even more useful when forecasting the nominals, with gains
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that are often large and statistically significant.

5 Understanding the Relative Improvement of DMS

The results from Section 4 all point towards an improvement of ARDL-based DMS forecasts
relative to IMS forecasts from VARs. The cause for this improvement, while obviously
related to the Great Moderation, is not clear. In this section, we investigate a few issues

that may point us in the right direction.

5.1 Tests of Predictive Ability

As we saw in Section 2, the DMS approach to conditional forecasting can outperform the
minimum-MSE VAR-based approach when either the conditional mean of the VAR or its
residual variance is misspecified. To investigate whether misspecification of the VAR plays
an important role in our results, we conduct three distinct tests of predictive ability for
each of the 150 trivariate VARs in Section 4. Fach test focuses on properties of the scalar
h-step-ahead forecast errors 5%,11 1 = ¢,u implied by the VAR.

For a fixed target variable y;4, the first two test statistics are the t-statistics associated

with regression-based tests of bias (ag) and efficiency (aq) of the form
éqtfh = Qévha + error

with g;vh = (1,37;{h) and o = (ap,a1). We apply the tests separately for each of the
three target variables in the VAR and for each horizon h. Note that the test uses the
unconditional, rather than conditional forecasts from the VAR. We do so based on simu-
lation evidence provided in Clark and McCracken (2017). There they show that the test
had much higher power to detect misspecification in the conditional mean when using the
unconditional rather than conditional forecasts.

The third is a normalized test of equal MSE developed in Clark and McCracken (2017)
and is designed to detect misspecification in both the conditional mean of the VAR and
residual variance. Note that, under minimum-MSE conditioning, correct specification of the
VAR implies the existence of a non-negative constant k satisfying E (Ezh)Q - FE (E;h)2 =k.
This constant depends on the VAR regression parameters A; and residual variance X in
much the same way as they do for the weights ~y; used to produce the conditional forecasts.

Specifically, following the notation in Jarocinski (2010), first define \IljZl/ 2 as the matrix
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of orthogonalized impulse responses after j periods and let

»1/2 0 0 0
R %12 »i/2 0 0
- »i/2 0

\I/h_lzl/2 \Ph—221/2 \11121/2 21/2

Now let R denote the matrix formed by those rows in R associated with a conditioning
restriction. Straightforward algebra then implies k = ¢/ RR'(RR')"'RR'1 where ¢ is a vector
that selects the single row associated with the variable being forecasted at the relevant
horizon.? The test statistic takes the form of a centered Diebold and Mariano (1995) and

West (1996)-type test of predictive ability based on the regression
(€)% = (66,)? — by = a+ error

where kr denotes the plug-in estimator of k using full sample estimates of A;, and X.

In each case, the standard ¢-statistic associated with the elements of o are asymptotically
normal with zero mean when the VAR is correctly specified. However, especially for the
centered test of equal MSE, the estimated standard error is not asymptotically valid due to
the presence of parameter estimation error coming from both the regression parameters /Ali’t
and the residual variance parameters $,. For that reason, following Clark and McCracken
(2017), we conduct inference using a percentile bootstrap applied directly to the ¢-statistics.
In particular we use a residual-based moving block bootstrap developed in Bruggemann et
al. (2016). In brief, this procedure is the VAR-equivalent of the sieve bootstrap but
where we draw blocks of residuals rather than drawing residuals one at a time. All results
are based on 299 bootstrap replications of the t-statistics using a block length of 40 for
the residuals. Once we obtain the bootstrapped t-statistics, we center each based on the
average across all draws and use their associated empirical distribution to estimate the
relevant critical values.

One weakness of this approach to inference is that it requires selecting a fixed lag length
for the VAR. This is perfectly reasonable when evaluating our VARs based on fixed lag
lengths of 4 and 12 but is less intuitive for those results based on recursive application of
AIC or BIC. In unreported results, we find that BIC selects a lag order of 2 a large portion
of the time regardless of which trivariate VAR is being considered, and hence, we also apply
our bootstrap at a fixed lag length of 2. AIC was less consistent in its lag selection with

mass spread between 4 and 12 lags. For brevity we only report results for lags 2, 4, and 12.

9Because the models are trivariate, this vector will be zeros everywhere except one of the three final
elements depending on which variable is being forecasted.
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In Table 7 we report the results of the tests of predictive ability associated with all 150
trivariate VARs. Much like the previous tables, for each horizon and lag order we report
the mean and median of the empirical distribution of the #¢-statistics associated with each
test and do so separately for the real, nominal, and financial series. We also report the
number of rejections obtained at the 5% level, though once again one needs to keep in mind
that these are not adjusted to account for multiple testing and are intended solely as a
rough guide. In the left-hand panel we report results for VARs estimated over the sample
used by MSW while in the right-hand panel we do the same but estimated over the Great
Moderation sample.

In the top left-hand sub-panel we report results for all VARs estimated using the MSW
sample. For the bias and efficiency tests there are 3 x 150 = 450 test statistics while for
the normalized equal MSE test there are twice as many since, for a given target variable y,
the test is constructed conditioning on future values of x and z separately. Across all three
tests there is considerable evidence of model misspecification. Particularly at the longer
lag lengths, the number of rejections associated with the slope coefficient in the efficiency
regression is substantial, ranging from 20% to nearly 95% of all 450 tests considered. Tests
associated with the intercept exhibit significantly fewer rejections, though still more than
one might expect at the 5% level. For the MSE tests, the number of rejections are typically
on the order of 25% of the 900 tests, though that rises to over 50% when the lag order is 12
and at the longer horizons. In the remaining left-hand subpanels we decompose the results
based on whether the variable being forecasted is real, nominal, or financial. Across these
sub-panels, evidence of model misspecification is wide-spread and not concentrated solely
on any specific subset of variables, lag lengths, or horizons.

That said, one should certainly be concerned about the degree of data mining exhibited
across the four left hand subpanels. With so many tests applied to so many series and VARs
it is hard to take any specific test seriously. For that reason we emphasize not the number
of rejections in the left hand panel so much as the overall reduction of rejections as we
transition to the right hand panel. While not uniform, the number of rejections reported
in the right hand panels are typically lower than those reported in the left hand panel. This
is especially true for the MSE test, for which the number of rejections is uniformly lower
when the VARs are estimated using the Great Moderation sample.

As a whole it therefore seems reasonable to conclude that evidence of model misspeci-

fication is lower in the Great Moderation sample than in the sample used by MSW. This
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is somewhat surprising given that DMS models have become more accurate relative to
VAR-based IMS models during the Great Moderation. Given the theoretical results rec-
ommending the use of DMS models when the corresponding VAR is misspecified, we would
have expected more, not less evidence of misspecified VARs over the Great Moderation
sample. In short, it is not obvious that the relative improvement of DMS models is being

driven by model misspecification, either in the conditional mean or residual variances.

5.2 The Evolution of Model Fit

Of course, when using any parametric model the accuracy of the associated point fore-
casts also depend on the degree to which the model manages finite sample estimation error.
That is, one explanation for the relative improvement of DMS models is simply that their
simplicity reduces the effect parameter estimation error has on their accuracy in a mean-
squared-error sense. In this section we report evidence associated with the evolution of
MSE-based model fit as we transition from the sample used by MSW to a Great Modera-
tion sample. To be clear, we do not necessarily expect to find much evidence of absolute
improvements in model fit whether it be for the DMS models or for the VARs. It is well
established in Campbell (2007) and Stock and Watson (2007) that predictive content has
declined during the Great Moderation. We simply conjecture that lower levels of predictive
content favor simple DMS models relative to more complex VARs.

To provide evidence of this hypothesis, for each trivariate system, for each forecast
horizon, and for fixed lag lengths of 2, 4, and 12 we calculate the value of BIC associated
with unconditional DMS models and the associated VARs.!? For a given trivariate system
and lag length, the VAR has a single value for BIC. In contrast, for the same lag lengths
and trivariate system, the DMS models have distinct values of BIC for each pairing of
horizon and target variable. The BIC values are all calculated twice: once using a pre-
Great Moderation sample ranging from 1959:01-1983:12 and once using a Great Moderation
sample ranging from 1984:01-2008:12. We use these subsamples, rather than those in our
previous results, in order to make clear comparisons between pre- and Great Moderation
(GM) samples but also to keep the sample sizes the same. Since the sample sizes are
the same, for a fixed model configuration we can measure the evolution of model fit by
comparing the two values of BIC estimated over distinct samples. Specifically, for each

model configuration, we measure the degree of improvement (or deterioration) in model

Duye to data limitations, the trade-weighted exchange rate was removed from the collection of financial
series. This reduced the number of potential triplets from 150 to 120.
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fit based on 100(BIC(pre-GM) — BIC(GM))/|BIC(pre-GM)|. Positive values indicate
improved model fit while negative values indicate poorer model fit.

While interesting, these measures of model fit are insufficient for comparing DMS models
to VAR-based IMS models across subsamples. As we noted earlier, a priori we expect to
see at least some negative values for this metric due to the decline in predictive ability
during the Great Moderation. What we need is to show how these measures of model fit
have evolved across samples for DMS models relative to those associated with the VARs.
We do this in Figure 1. In each sub-figure, a given point on the real plane represents the
percent change in BIC across subsamples for both DMS and VAR-based IMS for a fixed
trivariate system. A point above the diagonal means that the fit of the DMS model has
improved (deteriorated) at a higher (lower) rate than the associated VAR. The opposite
holds for points below the diagonal. Since the pattern of results was insensitive to the lag
length, we only report figures based on a fixed lag order of 4. In addition, for the real and
financial series the results were insensitive to the horizon, and hence, we only report results
for h = 12. In contrast, for the nominals the results do depend on the horizon, and so we
report separate figures for both A = 3 and 24. Results for h = 12 were intermediate to
those for h = 3 and 24. Note that, to make the figures more readable, large improvements
or declines are truncated and hence lie on the edges of the figure.

By this graphical measure, we begin to see some evidence of what might be causing
the relative improvement of DMS-based forecasts over IMS-based forecasts. The evidence
is most stark for the real series. Every point lies above the x-axis indicating that the fit
of the DMS models has improved as we transition from the pre- to the Great Moderation
sample. In contrast, a third of the values associated with IMS models are to the left of
the y-axis indicating a decline in their model fit. All together, 86% of the points lie above
the diagonal indicating that, relative to the IMS models, DMS models have improved their
fitness as we transition from the pre- to the Great Moderation sample.

For the nominal series, the evidence is less clear and is horizon dependent. At the
shortest horizon, where the unconditional and conditional DMS forecasts have seen little-
to-no improvements in MSE, the vast majority of DMS models have actually exhibited a
decline in model fit while the corresponding VARs have either improved their fitness or
deteriorated at a lower rate. In contrast, at the longest horizon, where the nominal series
have exhibited large gains in forecast accuracy relative to IMS models, roughly 80% of the

DMS models have exhibited improvements in model fit. And while a comparable percent
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of IMS models have improved as well, the magnitude of their improvement is dominated
by that of the DMS models. In total, roughly 70% of the points lie above the diagonal
suggesting a widespread improvement in the fit of DMS models relative to the fit of the
IMS models.

Finally, as we’ve seen in earlier tables, the results for the financial series lie somewhere
between those of the real and nominal series. Among the DMS models, half exhibit an
improved fit while half have deteriorated. This is less than the two-thirds of IMS models
that have improved their fitness. Nevertheless, the gains achieved by the DMS models
outweigh the gains of many of the IMS models and hence roughly 50% or the points lie
above the diagonal. As such, we would expect to see some improvements in DMS forecasts

relative to IMS models but nowhere near as prevalent as those for the nominal series.

6 Conclusions

Motivated by the increasing attention given to conditional forecasts, we provide empirical
evidence on the relative accuracy of VAR-based IMS and ARDL-based DMS conditional
forecasting models. Our approach follows that taken in MSW: we generate forecasts from
a large number of models based on a large macroeconomic dataset and then compare the
MSEs from the IMS and DMS models. In some ways our results emulate theirs but in others
they do not. For example, when estimating the models and evaluating the forecasts over the
sample used in MSW, we also find that IMS methods are generally more accurate though
improvements are often quite modest. There is some evidence that DMS methods may be
useful when the variable being forecasted is nominal rather than real.

Our results begin to deviate from those in MSW when we either extend the out-of-
sample period to include the more recent 2003-2016 period or when we restrict our sample
to the Great Moderation. In both cases, we observe a substantial increase in the relative
performance of the DMS approach. Our results are robust to whether we evaluate bivariate
or trivariate systems, whether we use fixed vintage or real-time vintage data, and whether
we consider conditional or unconditional forecasts. While the theory suggests that the
benefits of using DMS methods is driven by robustness to model specification, our results
suggest that the reason may be their robustness to lower levels of predictability prevalent

during the Great Moderation.
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Tables and Figures

Table 1: Comparison between FRED-MD and MSW — Distribution of Relative MSEs of
ARDL-Based DMS vs. VAR-Based IMS Bivariate Unconditional Forecasts

FRED-MD MSW

Model Mean /percentile Forecast horizon Forecast horizon
3 6 12 24 3 6 12 24
AR(4) Mean 1.00 1.00 1.02 1.07 1.00 1.00 1.02 1.09
0.10 0.96 0.91 0.88 0.84 0.96 0.90 0.85 0.82
0.25 0.98 0.96 0.95 0.95 0.99 0.97 0.96 0.96
0.50 1.00 1.01 1.02 1.06 1.00 1.01 1.02 1.06
0.75 1.02 1.03 1.08 1.14 1.02 1.04 1.08 1.19
0.90 1.03 1.08 1.16 1.32 1.03 1.07 1.16 1.37
AR(12) Mean 1.01 1.04 1.07 1.15 1.02 1.04 1.07 1.16
0.10 0.99 0.98 0.96 0.93 0.99 0.97 0.95 0.91
0.25 1.00 1.00 1.01 1.02 1.00 1.00 1.01 1.03
0.50 1.01 1.02 1.05 1.11 1.01 1.03 1.06 1.13
0.75 1.02 1.06 1.11 1.22 1.02 1.06 1.12 1.28
0.90 1.05 1.12 1.19 1.41 1.04 1.10 1.20 1.45
BIC Mean 0.96 0.95 0.97 1.02 0.98 0.97 0.99 1.06
0.10 0.80 0.71 0.69 0.68 0.88 0.79 0.78 0.79
0.25 0.93 0.89 0.90 0.94 0.96 0.93 0.92 0.94
0.50 1.00 1.00 1.01 1.04 1.00 1.00 1.00 1.04
0.75 1.02 1.03 1.05 1.13 1.02 1.03 1.06 1.15
0.90 1.05 1.08 1.13 1.27 1.05 1.08 1.15 1.31
AIC Mean 1.01 1.03 1.06 1.13 1.01 1.02 1.05 1.15
0.10 0.94 0.93 0.91 0.88 0.94 0.91 0.89 0.87
0.25 0.98 0.98 0.99 0.99 0.98 0.98 0.98 1.00
0.50 1.01 1.02 1.05 1.09 1.01 1.02 1.05 1.11
0.75 1.03 1.06 1.12 1.22 1.04 1.07 1.13 1.26
0.90 1.08 1.14 1.23 1.41 1.08 1.13 1.23 1.47

Notes: The left-hand panel is our attempt to replicate Table 5 from MSW, which is displayed in the right-hand
panel, using our dataset. Entries correspond to the indicated summary measure (i.e. mean, 10th percentile, 25th
percentile, etc.) of the distribution of the ratio of the MSE for the ARDL-based DMS forecast to the MSE for the
VAR-based IMS forecast for the given lag-selection method, horizon, and grouping. Per the procedure followed in
MSW, these measures are computed over 2,000 randomly selected pairs of series (4,000 sets of forecasts) as described
in the text, with each set of forecasts constructed using an in-sample period starting in 1959:01 over an out-of-sample
period ranging from 1979:01+h to 2002:12.
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Appendix

Below is the set of 121 series, organized by group, that we use in the bivariate exercises. The
column “Series” contains the series identifier in FRED-MD. The column “Trans.” denotes one of
the following data transformations for a series z: (1) no transformation; (2) Azy; (3) AZzy; (4)

log(w¢); (5) Alog(xy); (6) A”log(xy).

Table Al: Series Used in the Bivariate Exercises

Group 1: Income, Output, Sales, and Capacity Utilization

Series Trans.  Sample Period  Description
1 RPI 5 1959:01-2016:12  Real personal income
2 WS8T75RX1 5 1959:01-2016:12  Real personal incme ex transfer receipts
3 INDPRO 5 1959:01-2016:12  IP: total
4 IPFPNSS 5 1959:01-2016:12  IP: final products and nonindustrial supplies
5 IPFINAL 5 1959:01-2016:12  IP: final products (market group)
6 IPCONGD 5 1959:01-2016:12  IP: consumer goods
7 IPDCONGD 5 1959:01-2016:12  IP: durable consumer goods
8 IPNCONGD 5 1959:01-2016:12  IP: nondurable consumer goods
9 IPBUSEQ 5 1959:01-2016:12  IP: business equipment
10 IPMAT 5 1959:01-2016:12  IP: materials
11 IPDMAT 5 1959:01-2016:12  IP: durable materials
12 IPNMAT 5 1959:01-2016:12  IP: nondurable materials
13 IPMANSICS 5 1959:01-2016:12  IP: manufacturing (SIC)
14 1PB51222S 5 1959:01-2016:12  IP: residential utilities
15 IPFUELS 5 1959:01-2016:12  IP: fuels
16 CUMFNS 2 1959:01-2016:12  Capacity utilization: manufacturing
17 DPCERA3MO086SBEA 5 1959:01-2016:12  Real personal consumption expenditures
18 CMRMTSPLx 5 1959:01-2016:12 Real mfg. and trade industries sales
19 RETAILx 5 1959:01-2016:12  Retail and food services sales
Group 2: Employment and Unemployment
Series Trans.  Sample Period  Description
1 CLF160V 5 1959:01-2016:12  Civilian labor force
2 CE160V 5 1959:01-2016:12  Civilian employment
3 UNRATE 2 1959:01-2016:12  Civilian unemployment rate
4 UEMPMEAN 2 1959:01-2016:12  Avg. duration of unemployment (weeks)
5 UEMPLT5 5 1959:01-2016:12  Civilians unemployed - less than 5 weeks
6 UEMP5TO14 5 1959:01-2016:12  Civilians unemployed - 5-14 weeks
7 UEMP150V 5 1959:01-2016:12  Civilians unemployed - 15 weeks and over
8 UEMP15T26 5 1959:01-2016:12  Civilians unemployed - 15-26 weeks
9 UEMP270V 5 1959:01-2016:12  Civilians unemployed - 17 weeks and over
10 CLAIMSx 5 1959:01-2016:12  Initial claims
11 PAYEMS 5 1959:01-2016:12  All employees: total nonfarm
12 USGOOD 5 1959:01-2016:12  All employees: goods-producing industries
13 CES1021000001 5 1959:01-2016:12  All employees: mining
14  USCONS 5 1959:01-2016:12  All employees: construction
15 MANEMP 5 1959:01-2016:12  All employees: manufacturing
16 DMANEMP 5 1959:01-2016:12  All employees: durable goods
17 NDMANEMP 5 1959:01-2016:12  All employees: nondurable goods
18 SRVPRD 5 1959:01-2016:12  All employees: service-producing industries
19 USTPU 5 1959:01-2016:12  All employees: trade, transp., and utilities
20 USWTRADE 5 1959:01-2016:12  All employees: wholesale trade
21 USTRADE 5 1959:01-2016:12  All employees: retail trade
22  USFIRE 5 1959:01-2016:12  All employees: financial activities
23  USGOVT 5 1959:01-2016:12  All employees: government
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24  CES0600000007 1 1959:01-2016:12  Avg. weekly hours: goods-producing
25 AWOTMAN 2 1959:01-2016:12  Avg. weekly overtime hours: manufacturing
26 AWHMAN 1 1959:01-2016:12  Avg. weekly hours: manufacturing
Group 3: Construction, Inventories and Orders
Series Trans.  Sample Period  Description
1 HOUST 4 1959:01-2016:12  Housing starts: total new privately owned
2 HOUSTNE 4 1959:01-2016:12  Housing starts: Northeast
3 HOUSTMW 4 1959:01-2016:12  Housing starts: Midwest
4 HOUSTS 4 1959:01-2016:12  Housing starts: South
5 HOUSTW 4 1959:01-2016:12  Housing starts: West
6 PERMIT 4 1960:01-2016:12 New private housing permits (SAAR)
7 PERMITNE 4 1960:01-2016:12  New private housing permits: Northeast (SAAR)
8 PERMITMW 4 1960:01-2016:12  New private housing permits: Midwest (SAAR)
9 PERMITS 4 1960:01-2016:12 New private housing permits: South (SAAR)
10 PERMITW 4 1960:01-2016:12  New private housing permits: West (SAAR)
11  AMDMNOx 5 1959:01-2016:12  New orders for durable goods
12 AMDMUOx 5 1959:01-2016:12  Unfilled orders for durable goods
13 BUSINVx 5 1959:01-2016:12  Total business inventories
14 ISRATIOx 2 1959:01-2016:12  Total business inventories to sales ratio
Group 4: Interest Rates and Asset Prices
Series Trans.  Sample Period  Description
1 FEDFUNDS 2 1959:01-2016:12  Effective federal funds rate
2  CP3Mx 2 1959:01-2016:12  3-month AA financial commercial paper rate
3  TB3MS 2 1959:01-2016:12  3-month treasury bill
4 TB6MS 2 1959:01-2016:12  6-month treasury bill
5 GS1 2 1959:01-2016:12  1-year treasury yield
6 GS5 2 1959:01-2016:12  5-year treasury yield
7 GS10 2 1959:01-2016:12  10-year treasury yield
8 AAA 2 1959:01-2016:12 Moody’s seasoned AAA corporate bond yield
9 BAA 2 1959:01-2016:12  Moody’s seasoned BAA corporate bond yield
10 COMPAPFFx 1 1959:01-2016:12  3-month commercial paper minus fed funds
11 TB3SMFFM 1 1959:01-2016:12  3-month treasury minus fed funds
12 TB6SMFFM 1 1959:01-2016:12  6-month treasury minus fed funds
13 T1YFFM 1 1959:01-2016:12  1-year treasury minus fed funds
14 T5YFFM 1 1959:01-2016:12  5-year treasury minus fed funds
15 T10YFFM 1 1959:01-2016:12  10-year treasury minus fed funds
16 AAAFFM 1 1959:01-2016:12 Moody’s AAA corporate minus fed funds
17 BAAFFM 1 1959:01-2016:12 Moody’s BAA corporate minus fed funds
18 EXSZUSx 5 1959:01-2016:12  Switzerland/U.S. foreign exchange rate
19 EXJPUSx 5 1959:01-2016:12  Japan/U.S. foreign exchange rate
20 EXUSUKx 5 1959:01-2016:12  U.S./U.K. foreign exchange rate
21 EXCAUSx 5 1959:01-2016:12 Canada/U.S. foreign exchange rate
22 S&P 500 5 1959:01-2016:12  S&P’s common stock price index: composite
23 S&P: indust 5 1959:01-2016:12  S&P’s common stock price index: industrials
24  S&P div yield 2 1959:01-2016:12  S&P’s composite common stock: dividend yield
25 S&P PE ratio 5 1959:01-2016:12  S&P’s composite common stock: price-earnings ratio
26 VXOCLSx 1 1962:07-2016:12 CBOE S&P 100 volatility index: VXO
Group 5: Nominal Prices, Wages, and Money
Series Trans.  Sample Period  Description
1 M1SL 6 1959:01-2016:12 M1 money stock
2 M2SL 6 1959:01-2016:12 M2 money stock
3 M2REAL 5 1959:01-2016:12 Real M2 money stock
4 AMBSL 6 1959:01-2016:12  St. Louis adjusted monetary base
5 TOTRESNS 6 1959:01-2016:12  Total reserves of depository institutions
6 BUSLOANS 6 1959:01-2016:12 Commercial and industrial loans
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10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

REALLN
NONREVSL

CONSPI

MZMSL
DTCOLNVHFNM
DTCTHFNM
INVEST
WPSFD49207
WPSFD49502
WPSID61

WPSID62
OILPRICEx
PPICMM

CPIAUCSL
CPIAPPSL
CPITRNSL
CPIMEDSL
CUSRO000SAC
CUSRO0000SAD
CUSRO000SAS
CPIULFSL
CUSRO0000SAOL2
CUSRO000SAOL5
PCEPI
DDURRG3MO086SBEA
DNDGRG3MO086SBEA
DSERRG3MO086SBEA
CES0600000008
CES2000000008
CES3000000008
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1959:01-2016:12
1959:01-2016:12
1959:01-2016:12
1959:01-2016:12
1959:01-2016:12
1959:01-2016:12
1959:01-2016:12
1959:01-2016:12
1959:01-2016:12
1959:01-2016:12
1959:01-2016:12
1959:01-2016:12
1959:01-2016:12
1959:01-2016:12
1959:01-2016:12
1959:01-2016:12
1959:01-2016:12
1959:01-2016:12
1959:01-2016:12
1959:01-2016:12
1959:01-2016:12
1959:01-2016:12
1959:01-2016:12
1959:01-2016:12
1959:01-2016:12
1959:01-2016:12
1959:01-2016:12
1959:01-2016:12
1959:01-2016:12
1959:01-2016:12

Real estate loans at all commercial banks
Total nonrevolving credit

Ratio of nonrevolving credit to personal income
MZM money stock

Consumer motor vehicle loans outstanding
Total consumer loans and leases outstanding
Securities in bank credit at all commercial banks
PPI: finished goods

PPI: finished consumer goods

PPI: intermediate materials

PPI: crude materials

Crude oil, spliced WTI and Cushing

PPI: metals and metal products

CPI: all items

CPI: apparel

CPI: transportation

CPI: medical care

CPI: commodities

CPI: durables

CPI: services

CPI: all items less food

CPI: all items less shelter

CPI: all items less medical care

PCE: chain-type price index

PCE: durable goods

PCE: nondurable goods

PCE: services

Avg. hourly hearnings: goods-producing
Avg. hourly earnings: construction

Avg. hourly earnings: manufacturing

35



Below is the set of 16 series, organized by group, that we use in the trivariate exercises. The
column “Series” contains the series identifier in FRED-MD. The column “Trans.” denotes one of
the following data transformations for a series z: (1) no transformation; (2) Awxy; (3) AZxy; (4)
log(zy); (5) Alog(zs); (6) A%log(x:). Note that all but one variable (TWEXMMTH) are in the set
of series that we use for the bivariate exercises shown above.

Table A2: Series Used in the Trivariate Exercises

Group 1: Real Variables

Series Trans Sample Period  Description
1 RPI 5 1959:01-2016:12  Real personal income
2 INDPRO 5 1959:01-2016:12  IP: total
3 CE160V 5 1959:01-2016:12  Civilian employment
4 UNRATE 2 1959:01-2016:12  Civilian unemployment rate
5 AWHMAN 1 1959:01-2016:12  Avg. weekly hours: manufacturing
6 DPCERA3MO86SBEA 5 1959:01-2016:12  Real personal consumption expenditures

Group 2: Nominal Variables

Series Trans.  Sample Period  Description
1 CES3000000008 6 1959:01-2016:12  Avg. hourly earnings: manufacturing
2 WPSFD49207 6 1959:01-2016:12  PPI: finished goods
3 OILPRICEx 6 1959:01-2016:12  Crude oil, spliced WTT and Cushing
4 CPIAUCSL 6 1959:01-2016:12  CPI: all items
5 PCEPI 6 1959:01-2016:12 PCE: chain-type price index

Group 3: Financial Variables

Series Trans.  Sample Period  Description
1 MI1SL 6 1959:01-2016:12 M1 money stock
2 FEDFUNDS 2 1959:01-2016:12  Effective federal funds rate
3 GS10 2 1959:01-2016:12  10-year treasury yield
4 TWEXMMTH 5 1973:01-2016:12  Trade-weighted U.S. dollar index: major currencies
5 S&P 500 5 1959:01-2016:12  S&P’s common stock price index: composite
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