
FEDERAL RESERVE BANK OF ST. LOUIS 
Research Division 

P.O. Box 442  
St. Louis, MO 63166 

______________________________________________________________________________________ 

The views expressed are those of the individual authors and do not necessarily reflect official positions of 
the Federal Reserve Bank of St. Louis, the Federal Reserve System, or the Board of Governors. 

Federal Reserve Bank of St. Louis Working Papers are preliminary materials circulated to stimulate 
discussion and critical comment. References in publications to Federal Reserve Bank of St. Louis Working 
Papers (other than an acknowledgment that the writer has had access to unpublished material) should be 
cleared with the author or authors. 

RESEARCH DIVISION
Working Paper Series

Optimal Ramsey Capital Income Taxation —A Reappraisal

YiLi Chien
and

Yi Wen

Working Paper 2017-024C
https://doi.org/10.20955/wp.2017.024

October 2017



Optimal Ramsey Capital Income Taxation

—A Reappraisal∗

Yili Chien† Yi Wen‡

October 23, 2017

Abstract
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ficiency in terms of the modified golden rule and individual allocative efficiency in terms
of self-insurance. Facing the trade off, the Ramsey planner prefers issuing debt rather
than taxing capital to correct the capital-over-accumulation problem. In particular,
the planner always intends to supply enough bonds to relax individuals’ borrowing
constraints and through which to achieve the modified golden rule by crowding out
capital. Public debt is financed by labor income tax as it is less distortionary than
capital tax. Thus, capital taxation is not the optimal tool to achieve aggregate alloca-
tive efficiency despite over-accumulation of capital. Hence, the optimal capital tax can
be zero, positive, or even negative, depending on the Ramsey planner’s ability to issue
debt. In a Ramsey equilibrium the modified golden rule can fail to hold whenever the
government encounters a debt limit. Finally, the desire to relax individuals’ borrowing
constraints by the planner may lead to an increasing debt accumulation, resulting in a
dynamic path featuring no steady state.
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1 Introduction

The seminal work of Aiyagari (1995) has inspired a large literature. However, despite several

important revisits, such as Chamley (2001), Conesa, Kitao, and Krueger (2009), Dávila,

Hong, Krusell, and Rı́os-Rull (2012), and many others, the issue regarding optimal capital

income taxation in the heterogeneous-agent incomplete-market economy remains unsettled.

One of the daunting challenges in unlocking the precise mechanisms behind many results

in this literature is tractability and transparency. When models are not tractable, not only

the Ramsey problem becomes difficult to solve, but the proofs also become highly non-

transparent. Consequently, intuitions often get lost and dubious claims may be made.

For example, the competitive market equilibrium in the Aiyagari model (Aiyagari (1994))

may appear to be dynamically inefficient due to excessive accumulation of capital under

precautionary saving motives, which results in excessively low marginal product of capital

at the aggregate. Thus, the modified golden rule (MGR hereafter) is violated and leads

to an aggregate inefficiency. This observation provides the key intuition of Aiyagari (1995)

that the Ramsey planner should tax capital income to restore the aggregate efficiency — the

MGR.

On the other hand, the above intuition for justifying positive capital income tax is

counter-intuitive. By taxing capital income and thus reducing each individual’s optimal

buffer stock of savings, the planner is hampering and even destroying individuals’ ability to

self-insure themselves against idiosyncratic risks. Since taxing capital does not directly ad-

dress the lack-of-insurance problem for households (if anything, it intensifies the borrowing

constraint problem), why would taxing capital always be an optimal thing to do for the social

planner? Or why would the MGR matter to individuals’ welfare more than the need of self

insurance? This question is particularly intriguing since lack of insurance is the only friction

in the economy and hence the ultimate concern for households regarding idiosyncratic risks.

In other words, achieving the MGR through capital taxation does not help at all to alleviate

the primal friction in the model — borrowing constraints, thus using the MGR principle

to justify positive capital income tax regardless of model parameters is not at all clear and

convincing.
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In short, two margins of inefficiency exist in the Aiyagari model: aggregate inefficiency in

light of MGR, and individual inefficiency in light of borrowing constraints or insufficient self

insurance. Clearly, the aggregate inefficiency is a consequence of the individual inefficiency

(due to externalities of household savings on the rate of return to aggregate capital), sug-

gesting that restoring individual efficiency is the correct way to achieve aggregate efficiency.

Hence, intuition tells us a social planner can improve welfare more likely through addressing

the individual inefficiency problem by relaxing borrowing constraints. Yet Aiyagari (1995)

argues that the social planner should directly address the aggregate inefficiency problem by

hampering individual efficiency, or by sacrificing individual’s buffer stock of savings, regard-

less of model parameters. This conclusion seems dubious and puzzling, for it completely

ignores the trade off between the two margins of inefficiency in terms of benefits and costs.

The goal of this paper is to investigate the trade off between the two types of inefficiency

in a transparent manner. Our contributions are four-fold. First, we construct a tractable

heterogeneous-agent incomplete-market model with closed-form solutions, in which the dis-

tributions of market allocations can be derived analytically. The analytical solution of the

competitive equilibrium simplifies the Ramsey problem dramatically. As a result, the optimal

Ramsey allocation can be derived analytically both along the transitional path and in the

steady state. Armed with the closed-form solutions of the Ramsey problem, the mechanism

and intuition of optimal capital taxation can be seen clearly.

Second, our model has the special property that given an exogenously specified interest

rate identical to the time discount rate, household’s asset demand may remain finite and

in such a case the borrowing constraint never binds for any households. However, if the

interest rate is endogenously determined by the marginal product of capital, then under

sufficiently large idiosyncratic risks, the equilibrium interest rate is always below the time

discount rate, suggesting over-accumulation of capital and failure of the MGR. However,

since the government is able to manipulate the market interest rate through bond supply, we

show whether the modified golden rule holds under the Ramsey planner depends critically

on the government’s ability to issue bond as an alternative store of value for households to

buffer the idiosyncratic risk. In particular, the MGR holds if and only if the government can

issue sufficient amount of bond to completely relax households’ borrowing constraints. Once
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borrowing constraints are completely relaxed with zero binding probability, the equilibrium

interest rate equals the time discount rate. In such a case, the social (aggregate) efficiency

is achieved, simply because the individual efficiency is fully restored. As a result, there is no

need to tax capital. This result provides a strong rationale for the supply of public debt.

Third, we demonstrate that if the government has limited capacity to issue debt, then

MGR does not hold under Ramsey because individual efficiency cannot be fully achieved.

In such a case, the optimal tax rate on capital income can be either positive or negative,

depending on model parameters. When the optimal capital tax rate is negative, the social

planner is encouraging precautionary saving despite over-accumulation of capital. In this

case individual efficiency outweigh aggregate efficiency for the Ramsey planner, so it is not

optimal to target MGR by tightening household borrowing constraints with positive capital

tax, in sharp contrast to Aiyagari’s (1995) analysis. In other words, there exist situations

where the Ramsey planner opts not to achieve the MGR even if he/she is fully cable of doing

so by taxing capital income.

Finally, we show that there may not even exist a Ramsey steady state if the magnitude of

the idiosyncratic shock is not bounded above and if there is no limit on issuing government

bond. This finding suggests the possibility of having a non-steady-state Ramsey outcome.

Yet the existence of a steady state is a common assumption in the extant literature. Our

finding provides a cautionary note to such a dangerous assumption.

Aiyagari (1995) proves his theoretical results based on a nonstandard feature — endoge-

nous government spending in household utilities, which equalizes all agents’ marginal utilities

of government spending. Aiyagari’s analysis utilizes this nonstandard feature and exclusively

focuses on the efficiency of aggregate resource allocation without worrying about income or

wealth distributions. Yet the main motivation for considering such heterogenous agent mod-

els is precisely that distributions matter for social welfare.1 In fact, allowing endogenous

government spending in our model (the same way as in Aiyagari (1994)) does not change

our results if the distributional effects of government policies are taken into account.

The intuition behind our results is rather simple and transparent. Government bond

1Wen (2015) and Camera and Chien (2014) emphasize the distributional impact of inflation on welfare
in incomplete market economies.
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meets individuals’ demand for precautionary saving without creating externalities on the

marginal product of capital. Hence, by substituting for (crowding out) capital, government

debt can satisfy households’ buffer stock saving motive and, at the same time, correct the

aggregate inefficiency due to over-accumulation of capital. This is why the Ramsey planner

opts to flood the asset market with sufficient amount of bonds to relax borrowing constraints

for all households in all states. As a result, if there is no debt limit, the risk-free rate of

bond can approach (and become equal) to household’s time discount rate, thus achieving

the first-best allocation.2 However, when debt limits exist, the Ramsey planner is unable to

issue enough bond to raise the rate of return to household saving to fully alleviate borrowing

constraints; but, in spite of this, the planner will not necessarily opt to levy tax on capital

simply to achieve the MGR. Instead, the benevolent government may subsidize capital to

encourage even more savings to relax borrowing constraints. Thus, the optimal capital

income tax rate can be negative or positive, depending on the burden of interest payments

on government debts and the availability of labor income tax. In addition, with unbounded

idiosyncratic shocks and without restrictions on the debt limit, the Ramsey planner may

tempt to issue infinite amount of bonds to achieve the first best allocation, thus destroying

the Ramsey steady state commonly assumed in the existing literature.

2 A Brief Literature Review

The literature related to the optimal capital taxation is vast. Here we review only the most

relevant papers in the incomplete market literature.

The work of Aiyagari (1994) is the first attempt at investigating optimal Ramsey taxation

in incomplete-market heterogeneous-agent economies. With the assumption of endogenous

government spending that equalizes all agents’ marginal utilities, Aiyagari shows that the

MGR should hold in the Ramsey steady state (if it indeed exists). On the other hand, since

the risk free rate is below the time preference rate under precautionary saving motives, he

argues that a positive capital tax should be levied by the Ramsey planner to correct the

2In this paper, we define the first-best allocation as a situation where both the aggregate efficiency and
individual efficiency are achieved; namely, the MGR holds and borrowing constraints do not bind for all
households in all states.
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problem of over-accumulation of capital.

Our paper suggests otherwise. The distributional effects on welfare from government

polices are specifically spelled out in our analysis. The Ramsey planner faces a non-trivial

trade off between aggregate efficiency and individual efficiency, which is ignored entirely or

assumed away by Aiyagari’s analysis. Hence, common perceptions or intuitions derived from

Aiyagari’s theory are no longer valid in our setup, as discussed in the Introduction of this

paper.

An important recent paper by Gottardi, Kajii, and Nakajima (2015) revisits optimal

Ramsey taxation in an incomplete market model with uninsurable human capital risk. As

in our model, tractability in their model enables them to provide transparent analysis on

Ramsey taxation and facilitates intuitive interpretations for their results. When government

spending and bond supply are both set to zero, they find that the Ramsey planner should

tax human capital and subsidize physical capital, despite the over-accumulation of physical

capital. The purpose or the benefit of taxing human capital here is to reduce uninsurable risk

from human capital returns; and the rationale for subsidizing physical capital despite over-

accumulation is to satisfy households’ demand for a buffer stock, similar to our finding but

in contrast to Aiyagari (1995)’s results. However, they solve the Ramsey problem indirectly

and can characterize analytically the properties of optimal taxes only in a neighborhood of

zero government bond and zero government spending.

In contrast, we can solve the Ramsey problem analytically and directly along the entire

dynamic path of the model, which permits transparent examinations on how the Ramsey

planner takes into account the impact of his policies on the dynamic distributions of house-

hold resources and aggregate efficiency. Our model also enables us to show analytically the

exact roles played by government debt and how such roles are hindered by debt limits.

Aiyagari and McGrattan (1998) study optimal government debt in the Aiyagari model.

Similar to our finding, government bond is shown to play an important role in providing

liquidity for households and help to relax their borrowing constraints. However, they restrict

their analysis to the special case of same tax rates across capital and labor incomes and

analyze welfare only in the steady state. In an overlapping generations model with uninsured

individual risk, Conesa, Kitao, and Krueger (2009) conduct a numerical exercise to derive
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optimal capital tax and non-linear labor tax. As in Aiyagari and McGrattan (1998), they

only consider welfare in the steady state, the transitional path is therefore ignored.

However, Domeij and Heathcote (2004) show that welfare along the transitional path

is an important concern for the Ramsey planner. Their findings indicate that steady-state

welfare maximization could be misleading when designing optimal policies. But, instead

of solving optimal tax policies, they numerically evaluate the welfare consequence of tax

changes.

Two recent works by Acikgoz (2013) and Dyrda and Pedroni (2015) numerically solve

optimal fiscal policies along the transitional path in an Aiyagari-type economy. In contrast

to our findings, their results are consistent with Aiyagari’s analysis. The sources of difference

between their results and ours could be the implicit assumptions of unbounded debt limits

and the existence of a steady state in their numerical analyses. Such assumptions may not

be well justified in light of our studies. In fact, Straub and Werning (2014) also argue that

the assumption commonly made in the numerical literature that the endogenous multipliers

associated with the Ramsey problem converge to a steady state may be incorrect and could

be misleading. Our model demonstrates exactly such a possibility. Specifically, under certain

parameter values the endogenous multipliers in our model do not necessary converge over

time.

Instead of using the Ramsey approach, Dávila, Hong, Krusell, and Rı́os-Rull (2012) char-

acterize constrained efficient allocations in an Aiyagari-type economy where the government

can levy individual specific labor tax, which is not allowed in the Ramsey framework. They

found that in competitive equilibrium the capital stock could be too high or too low com-

pared to the constraint efficient allocation, thus optimal capital income tax rate can be either

positive or negative.

Finally, Park (2014) considers Ramsey taxation in a complete-market environment fea-

turing enforcement constraints, a la Kehoe and Levine (1993). She shows that capital ac-

cumulation improves the outside option of default, which is not internalized by household

decisions. Therefore, capital income should be taxed in order to internalize such an adverse

externality.
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3 The Model

This section introduces a heterogeneous-agent model with incomplete markets, following

Bewley (1980), Lucas (1980), Huggett (1993), Aiyagari (1994), and especially Wen (2009,

2015). An important feature of the model is its analytical tractability with closed-form

solutions, which enables solving optimal Ramsey allocations analytically and directly over

infinite horizon at any point in time.

3.1 Environment

A representative firm produces output according to the constant-returns-to-scale Cobb-

Douglas technology, Yt = F (Kt, Nt) = Kα
t N

1−α
t , where Y, K and L denote aggregate output,

capital and labor, respectively. The firm rents capital and hires labor from households by

paying competitive rental rate and real wage, denoted by qt and wt, respectively. The firm’s

optimal conditions for profit maximization at time t satisfy

wt =
∂F (Kt, Nt)

∂Nt

, (1)

qt =
∂F (Kt, Nt)

∂Kt

. (2)

There is a unit measure of ex ante identical households that face idiosyncratic preference

shocks, denoted by θ. The shock is identically and independently distributed over time and

across households, and has the mean θ and the cumulative distribution F(θ) with support

[θL, θH ] , where θH > θL > 0.

Time is discrete and indexed by t = 0, 1, 2, .... There are two sub-periods in each period

t. The idiosyncratic preference shock θt is realized only in the second sub-period, and

labor supply decision must be made in the first sub-period before observing θt. Namely,

the idiosyncratic preference shock is uninsurable despite linearity in leisure cost. Let θt ≡

(θ1, ..., θt) denote the history of shocks. Period 0 is the planning period and there is no shock

in period 0. All households are endowed with the same asset holdings at time 0.

Households are infinitely-lived with quasi-linear utility function and face borrowing con-
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straints. Their lifetime expected utility is given by

V = E0

∞
∑

t=1

βt
[

θt log(ct(θ
t))− nt

(

θt−1
)]

, (3)

where β ∈ (0, 1) is the discount factor, ct(θ
t) and nt(θ

t−1) denote consumption and labor

supply for a household with history θt at time t. Note that labor supply in period t is only

measurable with respect to θt−1, reflecting the assumption that labor supply decision is made

in the first sub-period before observing the preference shock θt.

The government needs to finance an exogenous stream of purchases {Gt}
∞
t=1, and it can

issue bond and levy flat-rate, time-varying labor and capital taxes at rates τn,t and τk,t,

respectively. The flow government budget constraint in period t is

τn,twtNt + τk,tqtKt +Bt+1 ≥ Gt + rtBt, (4)

where Bt+1 is the level of government bond chosen in period t and rt is the gross risk free

rate.

3.2 Household Problem

We assume there is no aggregate uncertainty and that government bond and capital are

perfect substitute as stores of value for households. As a result, the after-tax gross rate of

return to capital must equal the gross risk free rate: 1+(1−τk,t)qt−δ = rt, which constitutes

a no-arbitrage condition for capital and bond.

Given the sequence of interest rates {rt}
∞
t=1, and after tax wage rates, {wt ≡ (1− τn,t)wt}

∞
t=1,

a household chooses a plan of consumption, labor and asset holdings {ct(θ
t), nt(θ

t−1), at+1(θ
t)}

to solve

max
{ct(θt),nt(θt−1),at+1(θt)}

E0

∞
∑

t=1

∑

θt

βt
{

θt log ct
(

θt
)

− nt

(

θt−1
)}

(5)

subject to

ct
(

θt
)

+ at+1

(

θt
)

≤ wtnt

(

θt−1
)

+ rtat
(

θt−1
)

, (6)

at+1

(

θt
)

≥ 0, (7)
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with a1 > 0 given and nt (θ
t−1) ∈

[

0, N̄
]

. The solution of the household problem can be

characterized analytically by the following proposition.

Proposition 1. Denoting household gross income (or total liquidity in hand) by xt(θ
t−1) ≡

rtat(θ
t−1)+wtnt(θ

t−1), the optimal decisions for xt(θ
t−1), consumption ct (θ

t), savings at+1 (θ
t),

and labor supply nt (θ
t−1) are given, respectively, by the following cutoff-policy rules:

xt = wtR(θ∗t )θ
∗
t (8)

ct(θt) = min

{

1,
θt
θ∗t

}

xt (9)

at+1(θt) = max

{

θ∗t − θt
θ∗t

, 0

}

xt (10)

nt(θt−1) =
1

wt

[xt − rtat(θt−1)] , (11)

where the cutoff θ∗t is independent of individual history and determined by the following Euler

equation,
1

wt

= β
rt+1

wt+1
R(θ∗t ), (12)

and the function R (θ∗t ) denotes

R(θ∗t ) ≡

∫

θ≤θ∗t

dF(θ) +

∫

θ>θ∗t

θ

θ∗t
dF(θ) ≥ 1. (13)

Proof. See Appendix A.1

Notice that individual’s consumption function in equation (9) is concave in gross income

or liquidity in hand (as noted by Deaton (1991)), and the saving function in equation (10)

exhibits a buffer stock behavior. When the urge to consume is low (θt < θ∗t ), the individual

opts to consume only θt
θ∗t

< 1 fraction of total income and save the rest, anticipating that

future consumption demand may be high. On the other hand, when the urge to consume

is high (θt ≥ θ∗t ), the agent opts to consume all gross income, up to the limit where the

borrowing constraint binds, so the saving stock is reduced to zero. The function R (θ∗t ) ≥ 1

reflects the extra rate of return to saving due to the option value (liquidity premium) of the
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buffer stock.

Denote Λt ≡
1
wt

as the expected marginal utility of income. Then the left-hand side of

equation (12) is the average marginal cost of consumption in the current period, and the right-

hand side is the discounted expected next-period return to saving (augmented by rt+1), which

takes two possible values in light of the two components in equation (13) for the liquidity

premium: The first is simply the discounted next-period marginal utility of consumption

Λt+1 in the case that borrowing constraint does not bind, which has probability
∫

θ≤θ∗t
dF(θ).

The second is the discounted marginal utility of consumption Λt+1
θt
θ∗t

in the case of high

demand (θt > θ∗t ) with a binding borrowing constraint, which has probability
∫

θ>θ∗t
dF(θ).

When the borrowing constraint binds, additional saving can yield a higher shadow marginal

utility θt+1

θ∗t+1

Λt+1 > Λt+1. The optimal cutoff θ∗t is then determined at the point where the

marginal cost of saving equals the expected marginal gains. Here, savings play the role of

a buffer stock and the rate of return to saving is determined by the real interest rate rt

compounded by a liquidity premium R(θ∗t ), rather than just by rt as in a representative-

agent model without borrowing constraint. Notice that ∂R
∂θ∗

< 0, and R(θ∗) > 1 as long as

θ∗ < θH .

Equation (12) also suggests that the cutoff θt is independent of individual history. This

property holds in this model because of the quasi-linear utility function and the assumption

that labor supply is determined in the first sub-period. In other words, the optimal level

of liquidity in hand in period t is determined by a “target” income level given by xt =

θ∗twtR (θ∗t ), which is also independent of the history of realized values of θt but depends only

on the distribution of θt. This target is essentially the optimal consumption level when the

borrowing constraint binds. This target policy (uniform to all households) obtains because

labor income (wtnt(θt−1)) can be adjusted elastically to meet an optimal target, given (and

regardless of) the initial asset holdings at(θt−1).
3 Hence, in the beginning of each period all

households will choose the same level of gross income. Thus, the history-independent cutoff

variable θ∗t uniquely and fully characterizes the distributions of the economy.

3It is shown in Appendix A.1 that with reasonable parameter values, hours worked are bounded in the
open interval

(

0, N̄
)

as long as N̄ is sufficiently large.
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3.3 Competitive Equilibrium

Denote Ct, Nt and Kt+1 as the level of aggregate consumption, aggregate labor and aggregate

capital, respectively. The competitive equilibrium allocation can be defined as follows:

Definition 1. Given initial aggregate capital K1 and bond B1, and a sequence of taxes,

government spending and government bond, {τn,t, τk,t, Gt, Bt+1}, a competitive equilibrium is

a sequence of prices {wt, qt}, allocations {ct(θ
t), nt(θ

t−1), at+1(θ
t), Kt+1, Nt}, and distribution

statistic θ∗t such that

1. given the sequence of {wt, qt, τn,t, τk,t}, the sequences {ct(θ
t), at+1(θ

t), nt(θ
t−1)} solve the

household problem;

2. given the sequence of {wt, qt}, the sequences {Nt, Kt} solve the firm’s problem;

3. the no-arbitrage condition holds for each period: rt = 1 + (1− τk,t)qt − δ;

4. government budget constraint in equation (4) holds for each period;

5. all markets clear for all t :

Kt+1 =

∫

at+1(θt)dF(θt)− Bt+1 (14)

Nt =

∫

nt(θt−1)dF(θt−1) (15)

∫

ct(θt)dF(θt) +Gt ≤ F (Kt, Nt) + (1− δ)Kt −Kt+1. (16)

Proposition 2. In the Laissez-faire competitive equilibrium, the steady-state risk free rate

is lower than the time discount rate, r < 1/β, and there exists over-accumulation of capital

with a positive liquidity premium, R (θ∗) > 1, if the size of the idiosyncratic shock (the upper

bound θH) is sufficiently large such that the following condition holds:

αβ

1− θ
θH

+ β(1− α)(1− δ) + αβgk < 1, (17)

where gk is defined as the steady-state value of Gt/Kt.

11



Proof. See Appendix A.2

Notice that when θH → ∞, as in the case of Pareto distribution, the above condition is

clearly satisfied if gk is small enough. The intuition of Proposition 2 is straightforward. Since

labor income is determined (ex anti) before the realization of the idiosyncratic preference

shock θt, household’s total income may be insufficient to provide full insurance for large

enough preference shocks under condition (17). In this case, precautionary saving motives

lead to over-accumulation of capital, which reduces the equilibrium interest rate below the

time discount rate. This outcome is (constrained-) inefficient. It emerges because of the

negative externalities of household savings on aggregate interest rate (due to diminishing

marginal product of capital), as noted by Aiyagari (1994).

However, unlike the Aiyagari (1994) model, a competitive equilibrium can be efficient

in our model if the idiosyncratic risk is sufficiently small (e.g., the upper bound θH is close

enough to the mean θ̄ such that condition (17) is violated). In this case, households’ bor-

rowing constraints will never bind and individual savings are sufficiently large to fully buffer

preference shocks. Clearly, under full self-insurance, it must be true that θ∗ = θH , R(θ∗) = 1,

and r = 1/β.

Full self-insurance is impossible in the Aiyagari (1994) model because every individual

household’s marginal utility of consumption (or the shadow price of consumption goods)

follows a supermartingale when r = 1/β. This implies that household’s savings (or asset

demand) can diverge to infinity in the long run, which cannot constitute an equilibrium.4

In our model, however, because the household’s utility function is quasi-linear, the expected

shadow price of consumption goods is thus the same across agents and given by 1
wt

(as

revealed by equations (37) and (39) in Proof of Proposition 1 in the Appendix), which kills

the supermartingale property of household’s marginal utility of consumption. As a result,

household savings (or asset demand) are bounded away from infinity even at the point

r = 1/β. More specifically, equations (8) and (10) show that individual’s asset demand is

always bounded above by (θH − θt)wt for any shock θt when r = 1/β. This upper bound

is finite as long as the support of θt is bounded. This special property renders our model

4Please refer to Ljungqvist and Sargent (2012, Chapter 17) for details.
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analytically tractable with closed-form solutions, and it implies that the Ramsey planner

has the potential to use government debt to achieve individual allocative efficiency in this

economy.

Nonetheless, the trade-off mechanism uncovered in this paper does not hinge on this

special property of our model. The trade off between individual allocative efficiency (per-

taining to self-insurance) and aggregate allocative efficiency (pertaining to MGR) is driven

entirely by capital taxation under precautionary saving motives. Because capital tax dis-

courages households to save, it mitigates the over-accumulation of capital but at the same

time tightens individuals’ borrowing constraints. Hence, such a trade off should exist in

any incomplete-market heterogenous-agent models with capital accumulation and endoge-

nously determined interest rate. We show that government debt is an ideal tool to address

this trade-off problem, as implicitly revealed in the model of Gottardi, Kajii, and Nakajima

(2015), but made clear in this paper.

3.4 Conditions to Support a Competitive Equilibrium

Since government policies are in the aggregate state space of the competitive equilibrium

and hence affect the distributions (such as the average) of all endogenous economic variables,

the Ramsey problem is to pick a competitive equilibrium through policies that attains the

maximum of the expected household lifetime utility V defined in (3). Note that V depends

on the distributions (see below and Wen (2015)).

This subsection expresses the necessary conditions, in terms of the aggregate variables

and distributions characterized by the cutoff θ∗t , that the Ramsey planner must respect in

order to construct a competitive equilibrium. We first show that the individual allocations

and prices in the competitive equilibrium can be expressed as a function of the aggregate

variables and the cutoff θ∗t . The idea of such an expression is straightforward since the

cutoff θ∗t is a sufficient statistics for describing the distribution of individual variables. To

facilitate the expression, we first show the properties of aggregate consumption (or average

consumption across households). By aggregating the individual consumption decision rules
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(9), the aggregate consumption is determined by

Ct = D(θ∗t )xt, (18)

where the aggregate marginal propensity of consumption (the function D) is given by

D(θ∗t ) ≡

∫

θ≤θ∗t

θ

θ∗t
dF(θ) +

∫

θ>θ∗t

dF(θ) > 0. (19)

Then, we can express the individual consumption and individual asset holding as a functions

of Ct and θ∗t by plugging equation (18) back to equations (9) and (10). To fully describe

the conditions necessary for constructing a competitive equilibrium, we rely on the following

proposition:

Proposition 3. Given initial capital K1, initial government bond B1, and initial capital

tax rate {τk,1}, the sequences of aggregate allocations {Ct, Nt, Kt+1, Bt+1}, and a sequence

of distribution statistics {θ∗t } (with the associated R and D functions defined in equation

(13) and (19), respectively) can be supported as a competitive equilibrium if and only if the

resource constraint (16), asset market clearing condition

Bt+1 =

(

1

D(θ∗t )
− 1

)

Ct −Kt+1, (20)

and the following implementability condition holds:

R(θ∗t )θ
∗
t ≥ Nt +

θ∗t−1

β

(

1−D(θ∗t−1)
)

. (21)

Proof. See Appendix A.3

Note that the implementability condition essentially enforces the flow government budget

constraint. This proposition demonstrates that the Ramsey planner can construct a com-

petitive equilibrium by choosing sequences of aggregate allocations {Ct, Nt, Kt+1, Bt+1} as

well as a sequence of distribution statistics {θ∗t } subject to the aggregate resource constraint,

asset market clearing condition and implementability condition.
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4 Optimal Ramsey Allocation

Armed with Proposition 3, we are ready to write down the Ramsey planner’s problem.

4.1 Ramsey Problem

We first rewrite the lifetime utility function, V , as a function of aggregate variables and θ∗t

by utilizing equations (9) and (18):

V =
∞
∑

t=1

βt
[

W (θ∗t ) + θ logCt −Nt

]

, (22)

where W (θ∗t ) is defined as

W (θ∗t ) ≡ θ log
1

D(θ∗t )
+

∫

θ≤θ∗t

θ log
θ

θ∗t
dF(θ). (23)

Based on Proposition 3, the Ramsey problem can be represented as maximizing the life-

time utility (22) by choosing the sequences of {θ∗t , Nt, Ct, Kt+1, Bt+1} subject to the resource

constraint (16), the asset market clearing condition (20), and the implementability condition

(21). In addition, a debt limit Bt+1 ≤ B is imposed on the Ramsey planner to facilitate our

analysis on the role of government debt, which most of the existing literature has ignored

and assumed away by implicitly letting B = ∞.

Therefore, the Lagrangian of the Ramsey problem is given by

L = max
{θ∗t ,Nt,Ct,Kt+1,Bt+1}

∞
∑

t=0

βt
[

W (θ∗t ) + θ logCt −Nt

]

(24)

+βtµt (F (Kt, Nt) + (1− δ)Kt −Gt − Ct −Kt+1)

+βtλt

(

R(θ∗t )θ
∗
t −Nt −

θ∗t−1

β

(

1−D(θ∗t−1)
)

)

+βtφt

(

Kt+1 +Bt+1 −

(

1

D(θ∗t )
− 1

)

Ct

)

+βtνB
t (B − Bt+1)

where µt, λt and φt denote the multipliers for the resource constraints, the implementability
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conditions and the asset market clearing conditions, respectively. In addition, the multiplier

of the bond boundary condition is denoted by νB
t .

The first-order conditions with respect to Kt+1, Nt, Ct, Bt+1 and θ∗t for t ≥ 1 yield,

respectively

µt − φt = βµt+1 (MPK,t+1 + 1− δ) (25)

1 + λt = µtMPN,t (26)

µt =
θ

Ct

− φt

(

1

D(θ∗t )
− 1

)

(27)

βtφt − βtνB
t = 0 (28)

∂W (θ∗t )

∂θ∗t
+ λtH(θ∗t )− λt+1J(θ

∗
t ) + φt

Ct

D(θ∗t )
2

∂D (θ∗t )

∂θ∗t
= 0 (29)

where

H (θ∗t ) ≡

(

R(θ∗t ) +
∂R(θ∗t )

∂θ∗t
θ∗t

)

(30)

J (θ∗t ) ≡

(

1−D(θ∗t )− θ∗t
∂D (θ∗t )

∂θ∗t

)

(31)

The following three lemma are useful to characterize the optimal Ramsey allocation:

Lemma 1. H (θ∗t ) = J (θ∗t ) = F(θ∗t )

Proof. Refer to Appendix A.4

Lemma 2.
∂W (θ∗t )

∂θ∗t
> 0 for all θ∗t ∈ (θL, θH) and

∂W (θ∗t )

∂θ∗t
= 0 if θ∗t = θL or θH

Proof. Refer to Appendix A.5

Lemma 3.
∂D(θ∗t )

∂θ∗t
< 0 for all θ∗t ∈ (θL, θH)

Proof. Refer to Appendix A.6

4.2 Characterization of Long-term Optimal Ramsey Allocation

We consider and discuss three possible cases of long term Ramsey allocation below. In

all cases, the condition (17) is assumed to hold; namely, the competitive equilibrium is

inefficient. The first case characterizes the first-best allocation, which we define as follows:
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Definition 2. In our model economy, the first-best allocation is defined as a situation where

both the aggregate efficiency and individual efficiency are achieved; namely, the MGR holds

and the borrowing constraints do not bind for all households in all states.

4.2.1 Case 1: First-best Steady State

Proposition 4. Suppose θH < ∞ and B is sufficiently large such that the debt limit con-

straint B ≤ B does not bind. Then there exists a first-best steady-state Ramsey allocation,

which features the following properties:

1. Individual efficiency is achieved —the optimal choice of θ∗t is a corner solution at θ∗t =

θH so that no households face a positive probability of binding borrowing constraints.

2. Aggregate efficiency is achieved —the MGR holds and there is no liquidity premium

(R = 1). The equilibrium interest rate equals 1/β.

3. Capital tax is zero and labor tax is positive at rate λ
1+λ

< 1. The government expen-

ditures as well as bond interest payments are financed solely by revenues from labor

income tax.

Proof. See Appendix A.7

The above proposition states that if the support of θ is bounded and the debt limit

for government bond does not bind, then the Ramsey planner can pick an competitive

equilibrium that achieves both aggregate efficiency and individual efficiency — the first-best

allocation under our definition. More importantly, the Ramsey planner achieves the MGR

without the need to tax capital — the buffer stock of households, as capital taxation would

undermine individual efficiency by discouraging households’ marginal propensity to save.

Instead, the Ramsey planner provides enough incentives for households to save by picking a

sufficiently high level of interest rate on government bond such that all households are fully

self-insured with zero probability of a binding liquidity constraint.

Obviously, the first-best allocation can be archived only if the Ramsey planner is capable

of supplying enough bonds to satisfy the liquidity demand by each household across all states.
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To shed light on this issue further, we study what happens if the government’s ability to

issue bond is limited.

4.2.2 Case 2: Steady State with a Binding Debt Limit

Now consider the case in which the constraint B ≤ B binds.

Proposition 5. There exists a steady-state Ramsey allocation with the following properties:

1. No individual efficiency — the optimal choice of θ∗t is interior and there is always a

non-zero fraction of households facing binding borrowing constraints in every period.

2. No aggregate efficiency — the modified golden rule does not hold and there is a positive

liquidity premium (R > 1). The equilibrium interest rate is less than 1/β.

3. Capital tax rate could be positive, zero, or negative, depending on the tightness of the

constraint on government debt.

Proof. See Appendix A.8

Obviously, a special sub-case is when government cannot issue bonds, B = 0. This sub-

case is analogous to the situation discussed in Proposition 2, where the equilibrium interest

rate is strictly less than the time discount rate. In such a situation, the Ramsey planner

cannot use government bond to manipulate the market interest rate and divert household

savings away from capital formation, it hence faces a trade off between achieving the MGR

by taxing capital (and thus sacrificing individual efficiency) and achieving full self-insurance

by subsidizing capital (and thus sacrificing the MGR).

In general, when the government is unable to supply enough bonds to meet the house-

holds’ demand for buffer-stock savings, either because θH is sufficiently large or the debt

limit B is sufficiently small, the pursuit of individual efficiency by the Ramsey planner will

necessarily lead to a binding constraint on government debt. In this case, there is a steady

state where neither individual efficiency nor social efficiency is achieved.

More specifically, the result of this case shows that if the individual efficiency cannot be

achieved, then the aggregate efficiency must also be sacrificed. This point can be seen clearly
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by the set of first order conditions by the Ramsey planner. With a binding constraint on the

debt limit, the Ramsey planner can no longer meet the household need for precautionary

savings by supplying enough bonds. Hence, the planner has to face the trade-off between

aggregate efficiency and individual efficiency. Once the debt limit binds, the planner could try

to push for aggregate efficiency by taxing capital and thus deteriorating individual efficiency,

or push for individual efficiency by subsidizing capital and further deteriorating aggregate

efficiency, or leaving both margins unsatisfied. This trade-off shows up in the Ramsey optimal

conditions (25) and (29), which represent aggregate and individual efficiency conditions,

respectively. The strictly binding constraint on debt limit implies that the multiplier νB
t >

0, which in turn implies a positive multiplier φ. The positive multiplier φ distorts both

individual and social efficiency conditions.

This trade-off suggests that it is not optimal to tax capital income simply to achieve

the aggregate efficiency, as Aiyagari would argue. In other words, the modified golden rule

is not optimal in this case, and the capital tax could be either positive, zero or negative,

depending on the model parameters.5 Intuitively, if the over-accumulation problem is not

as severe as the self-insurance problem, the social planner may subsidize capital income to

encourage more saving; otherwise, the social planner may tax capital to discourage saving.

As shown in the proof A.8, the sign of τk,t+1 depends on the value of the liquidity premium

R(θ∗t ) and the ratio µt+1

µt−φt
, both are related to the tightness of the borrowing constraint and

the debt limit constraint. This is in sharp contrast to Aiyagari’s analysis where he argues

that it is always optimal to tax capital as long as there is over-accumulation of capital. We

show here that it is not the case because individual efficiency matters to the social planner

and maybe more so than aggregate efficiency — as it is the root problem of aggregate

efficiency. Hence, the tightness of the household borrowing constraints and government

borrowing constraint matter for Ramsey planner, but such issues (especially the debt limit

constraint) are commonly ignored and not studied in the literature.

5The sign of capital tax should depend on the trade off between individual efficiency and aggregate
efficiency, or the elasticities of individual inefficient and aggregate inefficiency with respect to changes in the
risk free interest rate (which relates to the after-tax capital return in equilibrium). These elasticities in turn
depend on the utility function, production technology, and the density distribution function of idiosyncratic
shocks.
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Aiyagari (1994, 1995) argue that the equilibrium interest rate has to be lower than 1/β.

Otherwise, individual’s asset demand goes to infinity, which cannot be a competitive equilib-

rium. But how close to 1/β the interest rate can be is never studied in the literature. In our

model, however, household’s asset demand remains finite even if the interest rate equals 1/β,

provided that the upper bound θH is finite. This property of our model makes individual

allocative efficiency feasible (achievable) since household’s marginal utility of consumption

does not follow a supermartingale process when r = 1/β, thus a finite stock of precaution-

ary savings may be sufficient for households to buffer idiosyncratic shocks without being

borrowing-constrained. As aforementioned, this finitely-valued asset demand property at

r = 1/β has to do with an important feature of our model that the expected shadow price of

consumption goods is the same across households under quasi-linear preferences. Nonethe-

less, household’s asset demand can be unbounded in our model at r = 1/β if preference

shocks are unbounded. This situation would be similar to that in the Aiyagari model.

To shed light on the situation with infinite demand for government bond at r = 1/β in

the original Aiyagari model, we can simply let θH → ∞ in our model. As θH goes to infinity,

the asset demand under r = 1/β must also be infinite in order to achieve full self-insurance,

as shown in the asset market clear condition below, which pins down the optimal level of

aggregate bond demand Bt+1 (see the Appendix A.7):

Bt+1 =

(

θH

θ
− 1

)

Ct −Kt+1, (32)

which goes to infinity as θH goes to infinity under finite values of aggregate consumption

and capital stock.

Next we discuss the Ramsey allocation under the conditions θH = ∞ and B = ∞.

4.2.3 Case 3: Possibility of No Ramsey Steady State

We define two concepts of steady state. A finitely-valued steady state and an infinitely-valued

steady state. The former is the case where all variables in the model take finite values in the

long run. Otherwise, if any variable in the model goes to infinity in the long run, we call it

an infinitely-valued steady state. Based on these definitions, we have the following
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Proposition 6. There may not exist a Ramsey steady state if θH = ∞ and B = ∞.

Proof. See Appendix A.9

In the Appendix A.9, we first prove that there does not exist any finitely-valued Ramsey

steady state, and then we show that an infinitely-valued Ramsey steady state may also not

exist.

The Ramsey planner may choose a long-term allocation featuring no steady state because

of the strong motive to pursue individual efficiency, which is infeasible when θH = ∞.

Without debt limits, the Ramsey planner may attempt to issue an ever increasing amount

of government debt to archive the allocation of individual efficiency, as shown in equation

(29). Given that θH is infinite, the only path to approach the individual allocative efficiency

is through supplying an ever-increasing amount of government bond. However, an increasing

amount of bond also makes the government budget constraint harder and harder to satisfy

because of the increasing burden of interest payment. This implies an increasing value of the

multiplier on the implementability condition, λt. In addition, the increasing bond position

also makes the resource constraint tighter and tighter for the Ramsey planner over time, so

that the multiplier on resource constraint µt is also increasing over time. The everlasting

endeavor of relaxing borrowing constraints may induce the Ramsey planner to play a Ponzi

game. Also, as in the previous case, there is no clear direction on the sign of capital tax

in the long run. It all depends on the trade off between individual and aggregate allocative

efficiencies.

This possibility of no steady state provides a warning for the literature that uses numerical

methods to compute Ramsey taxation, which often assumes the existence of a steady state

and unlimited capacity to issue government debts.

5 Endogenous Government Spending

In this subsection we allow endogenous government spending in our model, as in Aiyagari

(1995). With the assumption of endogenous government spending in household utilities,

Aiyagari (1995) argues that the Ramsey planner cares only about MGR (aggregate effi-
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ciency) in the steady state, and not about households’ borrowing constraints and their lack

of self-insurance, despite the fact that capital income tax can tighten households’ borrowing

constraints and severely affect the distributions of household income and wealth.

We show here that even with endogenous government spending, our previous results

remain robust and unchanged. In particular, the introduction of endogenous government

spending in household utilities does not eliminate the trade off problem, or automatically

ensure the existence of finitely valued steady state under Ramsey planning. Namely, the

Ramsey planner still cares about the trade off between individual efficiency (the tightness of

household borrowing constraints) and aggregate efficiency (the MGR), despite the fact that

the planner can effectively equalize all individuals’ marginal utilities through endogenous

government expenditures.

Following Aiyagari (1995), the household preference is modified into

E0

∞
∑

t=1

βt
[

θt log(ct(θ
t))− nt

(

θt−1
)

+ U(Gt)
]

, (33)

where U(G) is the utility function of government spending. The introduction of Gt into

the household utility does not alter the household problem since they take the sequence of

Gt as given. Hence, the definition of competitive equilibrium remains the same. However,

the Ramsey problem changes slightly since Gt is now an endogenous choice variable for the

government. The construction of the Ramsey problem follows the proof of Proposition 3

in exactly the same way except with one additional first-order condition with respect to

Gt ≥ 0, which is chosen by respecting the aggregate resource constraint. A non-negative Gt

could be easily ensured by the assumption of U ′(0) = ∞, which is common in the literature.
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Therefore, the Lagrangian of the Ramsey problem is modified only slightly:

L = max
{θ∗t ,Nt,Ct,Kt+1,Bt+1,Gt+1}

∞
∑

t=0

βt
[

W (θ∗t ) + θ logCt −Nt + U(Gt)
]

(34)

+βtµt (F (Kt, Nt) + (1− δ)Kt −Gt − Ct −Kt+1)

+βtλt

(

R(θ∗t )θ
∗
t −Nt −

θ∗t−1

β

(

1−D(θ∗t−1)
)

)

+βtφt

(

Kt+1 +Bt+1 −

(

1

D(θ∗t )
− 1

)

Ct

)

+βtνB
t (B − Bt+1)

The first order conditions with respect to Kt+1, Nt, Ct, Bt+1 and θ∗t are exactly identical

to those in equations (25), (26), (27), (28) and (29), respectively. The additional first-order

condition with respect to Gt is given by

U ′(Gt) = µt, (35)

which together with equation (25) gives exactly the same Ramsey Euler equation as in

Aiyagari (1995, eq.(20) p.1170). Suppose we follow Aiyagari by assuming that a Ramsey

steady state exists, then equation (25) becomes the MGR. Given MGR, if we also pretend

that the equilibrium interest rate in our model is below the time discount rate, we would

immediately obtain that capital tax should be positive.

However, the assumptions of a steady state and a low interest rate are not necessarily

consistent with all the first-order conditions. But these first-order conditions are ignored

in Aiyagari’s analysis. In particular, after taking all necessary first-order conditions into

account, we have shown previously that a finitely-valued steady state consistent with the

MGR exists if and only if θH is sufficiently small and the debt limit B is sufficiently large

so that the constraint Bt ≤ B does not bind. And even in this case we have shown that

the Ramsey planner achieves the MGR only by eliminating individual inefficiency instead

of by taxing capital. It is straightforward to see that such results continue to hold here by

following our analysis in Section 4 and the first-order conditions provided therein. It is also

true here that a steady state may violate the MGR if the debt limit constraint binds, and
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that a steady state may not even exist if θH = ∞ and B = ∞. These results are in sharp

contrast to the claims of Aiyagari (1995) under the assumption of endogenous government

spending.

6 Conclusion

This paper uses a tractable model to address a long-standing problem in the optimal Ramsey

capital taxation literature. The tractability of our model enables us to solve the Ramsey

problem analytically along the entire transitional path. We show that the conventional wis-

dom on Ramsey tax policy and its underlaying intuition and rationales do not hold in our

model and may thus be misrepresented in the literature in general. We reveal the trade-off

mechanisms and conditions for the Ramsey planner to improve aggregate allocative efficiency

and individual allocative efficiency through the tools of government debt and taxes. We show

clearly in a transparent way that government debt plays an important role in determining

the optimal Ramsey outcome. The planner always intends to supply enough bond to relax

individuals’ borrowing constraints and through which to achieve the modified golden rule

by crowding out capital. Capital tax is not the vital tool to achieve aggregate allocative

efficiency despite over-accumulation of capital. Thus the optimal capital tax can be zero,

positive, or even negative, depending on the Ramsey planner’s ability to issue debt. We

prove that the modified golden rule fails to hold whenever the government encounters a debt

limit and that taxing capital is not necessarily optimal even in this case. In contrast to

the arguments of Aiyagari (1995), the planner does not levy capital tax solely to satisfy the

modified golden rule. Instead, the planner may even subsidize capital to encourage more

precautionary savings despite over-accumulation of capital. Finally, the desire to relax indi-

viduals’ borrowing constraints by the planner may lead to an increasing debt accumulation,

resulting in a dynamic path featuring no steady state. Hence, numerical approaches to solve

the Ramsey problem by assuming the existence of a finitely-valued steady state may be

incorrect.
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A Appendix

A.1 Proof of Proposition 1

Denoting {βtλt(θ
t), βtµt(θ

t)} as the Lagrangian multipliers for constraints (6) and (7), re-

spectively, the first-order conditions for {ct (θ
t) , nt (θ

t−1) , at+1 (θ
t)} are given, respectively,

by
θt

ct (θt)
= λt

(

θt
)

(36)

1 = wt

∫

λt

(

θt
)

dF(θt) (37)

λt

(

θt
)

= βrt+1Et

[

λt+1

(

θt+1
)]

+ µt(θ
t), (38)

where equation (37) reflects the fact that labor supply nt(θ
t−1) must be chosen before the

idiosyncratic taste shocks (and hence before the value of λt(θ
t)) are realized. By the law of

iterated expectations and the iid assumption of idiosyncratic shocks, equation (38) can be

written as (using equation (37))

λt(θ
t) = β

rt+1

wt+1
+ µt(θ

t), (39)

where 1
w
is the marginal utility of consumption in terms of labor income.

We adopt a guess-and-verify strategy to derive the decision rules. The decision rules

for an individual’s consumption and savings are characterized by a cutoff strategy, taking

as given the aggregate states (such as interest rate and real wage). Anticipating that the

optimal cutoff θ∗t is independent of individual’s history of shocks, consider two possible cases:

Case A. θt ≤ θ∗t . In this case the urge to consume is low. It is hence optimal to save so

as to prevent possible liquidity constraints in the future. So at+1(θ
t) ≥ 0, µt(θ

t) = 0 and the

shadow value

λt(θ
t) = β

rt+1

wt+1

≡ Λt,

where Λt depends only on aggregate states. Notice that λt (θ
t) = λt is independent of

the history of idiosyncratic shocks. Equation (36) implies that consumption is given by

ct(θ
t) = θtΛ

−1
t . Defining xt(θ

t−1) ≡ rtat(θ
t−1) + wtnt(θ

t−1) as the gross income of the
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household, the budget identity (6) then implies at+1(θ
t) = xt(θ

t−1)−θtΛ
−1
t . The requirement

at+1(θ
t) ≥ 0 then implies

θt ≤ Λtxt ≡ θ∗t , (40)

which defines the cutoff θ∗t .

We conjecture that the cutoff is independent of the idiosyncratic state, then the optimal

gross income xt is also independent of the idiosyncratic state. The intuition is that xt

is determined before the realization of θt and all households face the same distribution of

idiosyncratic shocks. Since the utility function is quasi-linear, the household is able to adjust

labor income to meet any target level of liquidity in hand. As a result, the distribution of

xt is degenerate. This property simplifies the model tremendously.

Case B. θt > θ∗t . In this case the urge to consume is high. It is then optimal not to save,

so at+1(θ
t) = 0 and µt(θ

t) > 0. By the resource constraint (6), we have ct(θ
t) = xt, which by

equation (40) implies ct(θ
t) = θ∗tΛ

−1
t . Equation (36) then implies that the shadow value is

given by λt(θ
t) = θt

θ∗t
Λt. Since θt > θ∗, equation (39) implies µt(θ

t) = Λt

[

θt
θ∗t

− 1
]

> 0. Notice

that the shadow value of goods (the marginal utility of income), λt(θ
t), is higher under case

B than under case A because of the binding borrowing constraint.

The above analyses imply that the expected shadow value of income,
∫

λt(θ)dF(θ), and

hence the optimal cutoff value θ∗, is determined by equation (37) by plugging in the expres-

sions for λt (θ
t) under case A and B, which immediately gives equation (12). Specifically,

combining Case A and Case B, we have

λt(θ
t) = β

rt+1

wt+1
for θ ≤ θ∗t

λt(θ
t) =

θt
θ∗t
β
rt+1

wt+1
for θt ≥ θ∗t ,

the aggregate Euler equation is therefore given by

1

wt

=

∫

λt(θ)dF(θ) = β
rt+1

wt+1

[

∫

θ≤θ∗t

dF(θ) +

∫

θ>θ∗t

θ

θ∗
dF(θ)

]

= β
rt+1

wt+1
R(θ∗t ),

which is equation (12). This equation reveals that the optimal cutoff depends only on
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aggregate states and is independent of individual history.

We also immediately obtain

xt = θ∗t

(

β
rt+1

wt+1

)−1

= θ∗tR(θ∗t )wt,

which leads to equation (8). By the discussion of case A and B as well as utilizing equation

(8), the decision rules of household consumption and saving can then be summarized by

equations (9) and (10), respectively. Finally, the decision rule of household labor supply,

equation (11), is decided residually to satisfy household budget constraint.

Furthermore, to ensure that nt(θ
t−1) > 0, consider the worst situation where nt(θ

t−1)

takes its minimum value. Given xt = rtat(θ
t−1) + wtnt(θ

t−1), nt(θ
t−1) is at its minimum if

µt = 0 and at(θ
t−1) takes the maximum possible value, at(θ

t−1) =
θ∗t−1−θL

θ∗t−1

xt−1. So nt(θ
t−1) >

0 if

xt − rt
θ∗t−1 − θL

θ∗t−1

xt−1 > 0, (41)

which is independent of θt. In the steady state the condition for positive n becomes 1 −

r θ∗−θL
θ∗

> 0, or equivalently (by using equation (12)),

βR (θ∗) >
θ∗ − θL

θ∗
, (42)

which is satisfied if the precautionary saving motive in the model is strong enough so that

the interest rate r ≡ 1
βR(θ∗)

is low enough. This condition is ensured as long as the variance

of θt is large enough. This condition is assumed to hold throughout the paper.

A.2 Proof of Proposition 2

In the Laissez-faire economy, the capital taxes, labor taxes and government bonds are all

equal to zero. In this Laissez-faire competitive equilibrium, the capital-labor ratio Kt

Nt
satisfies

two conditions. The first condition is derived from the resource constraint (16), which can

be expressed as

F (Kt, Nt) + (1− δ)Kt = Ct +Kt+1 +Gt = xt +Gt,
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where the last equality utilizes the definition of xt. Dividing both sides of the equation by

Kt gives
(

Kt

Nt

)α−1

+ (1− δ) =
1

1−D(θ∗t )
+ gk,t, (43)

where xt/Kt is substituted out by 1
1−D(θ∗t )

and gk,t is defined as Gt/Kt.

The second condition is derived by combining equation (12) and the no-arbitrage condi-

tion, rt = 1 + qt − δ, which gives

1 = β

(

1 + α

(

Kt

Nt

)α−1

− δ

)

R(θ∗t ), (44)

where the marginal product of capital qt is replaced by α
(

Kt

Nt

)α−1

. Since the capital-to-

labor ratio must be the same in both equations, conditions (43) and (44) imply the following

equation in the steady state:

αβ

(1−D(θ∗))
+ β(1− α)(1− δ) + αβgk =

1

R(θ∗)
, (45)

which solves for the steady-state value of θ∗.

It can be shown easily that both R(θ∗) and D(θ∗) are monotonically decreasing in θ∗,

thus the right hand side (RHS) of equation (45) increases monotonically in θ∗ and the left

hand side (LHS) of equation (45) decreases monotonically in θ∗.

It remains to show if the RHS and the LHS cross each other at an interior value of

θ∗ ∈ [θL, θH ]. The RHS of equation (45) reaches its minimum value of 1 when θ∗ = θH and

its maximum value of θ̄/θL > 1 when θ∗ = θL. The LHS of equation (45) takes the maximum

value of infinity when θ∗ = θL and the minimum value of αβ

1− θ
θH

+ β(1 − α)(1 − δ) + αβgk

when θ∗ = θH . Thus, an interior solution exists if and only if

αβ

1− θ
θH

+ β(1− α)(1− δ) + αβgk < 1.

Clearly, θ∗ = θL cannot constitute a solution for any positive value θL > 0. On the other

hand, θ∗ = θH may constitute a solution if the above condition is violated. For example, if
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θH is small and close enough to the mean θ, then the above condition does not hold since

its LHS approaches infinity when θH → θ̄. On the other hand, if θH → ∞, as in the case of

Pareto distribution, then 1− θ
θH

→ 1. In this case, the LHS is less than 1 if gk = 0 or small

enough.

Therefore, an interior solution for θ∗ exists if the upper bound of the idiosyncratic shock

is large enough. Otherwise we have the corner solution θ∗ = θH . Finally, if θ
∗ is an interior

solution, then R(θ∗) > 1 and r < 1/β by equation (12).

A.3 Proof of Proposition 3

A.3.1 The ”only if” Part

Assume that we have the allocation {θ∗t , Ct, Nt, Kt+1, Bt+1}. With this allocation, we can

directly construct the prices, taxes and individual allocations in the competitive equilibrium

in the following 7 steps:

1. wt and qt are set by (1) and (2), which are wt = MPN,t and qt = MPK,t, respectively.

2. Given Ct and θ∗t , the total liquidity in hand can be set by equation (18), xt =
Ct

D(θ∗t )
.

3. The individual consumption and asset holdings, ct(θt) and at+1(θt), are pinned down

by equation (9) and (10).

4. τn,t is determined by equation (8), which implies τn,t = 1− xt

R(θ∗t )θ
∗

tMPN,t
. Hence, wt can

be expressed as:

wt =
xt

R(θ∗t )θ
∗
t

=
Ct

D(θ∗t )R(θ∗t )θ
∗
t

.

Given wt, the interest rate rt+1 can be backed out by the Euler equation (12):

rt+1 =
wt+1

wt

1

βR(θ∗t )
=

D(θ∗t )R(θ∗t )θ
∗
t

D(θ∗t+1)R(θ∗t+1)θ
∗
t+1

Ct+1

Ct

1

βR(θ∗t )
=

D(θ∗t )θ
∗
t

D(θ∗t+1)R(θ∗t+1)θ
∗
t+1

Ct+1

βCt

.

Given the expression of rt+1, the capital tax τk,t+1 is chosen to satisfy the no-arbitrage

condition: rt+1 = 1 + (1− τk,t+1)MPK,t+1 − δ.
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5. Finally, set nt(θt−1) to satisfy equation (11), which implied by the individual household

budget constraint.

6. Define At+1 as the aggregate asset holding in period t. Integrating (10) gives

At+1 ≡

∫

at+1(θt)dF (θt) =

∫

max

{

θ∗t − θt
θ∗t

, 0

}

xtdF (θt) =

(

1

D(θ∗t )
− 1

)

Ct,

where the last equality utilizes equation (18). The above equation together with the

condition defined in equation (20) gives the competitive equilibrium asset market clear-

ing condition (14).

7. The implementability condition suggests that

R(θ∗t )θ
∗
t ≥ Nt +

θ∗t−1

β

(

1−D(θ∗t−1)
)

.

Multiplying both side of the above equation with Ct

D(θ∗t )R(θ∗t )θ
∗

t
leads to

Ct

D(θ∗t )
≥

Ct

D(θ∗t )R(θ∗t )θ
∗
t

Nt +
θ∗t−1

D(θ∗t )R(θ∗t )θ
∗
t

1

β

(

1−D(θ∗t−1)
)

Ct.

Using the relationship constructed in steps 2, 4 and 6 for xt, Ct, At+1, wt and rt into

the above equation gives

Ct + At+1 ≥ wtNt + rtAt,

which together with the resource constraint and asset market clearing condition enforce

the government budget constraint.

Step 1 ensures that the representative firm’s problem is solved. Steps 2 to 5 guarantee

the individual household problem is solved. Steps 6 and 7 ensure the asset market clearing

condition and government budget constraint are satisfied, respectively. The labor market

clearing condition is satisfied by the Walras law.
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A.3.2 The ”if” Part

Note that the resource constraint and asset market clearing condition are trivially implied

by a competitive equilibrium, since they are part of the definition. The implementability

condition is constructed as follows. First we rewrite the government budget constraint as

Gt ≤ F (Kt, Nt)− (1− τk,t)qtKt − (1− τn,t)wtNt +Bt+1 − rtBt

Combining this equation with the resource constraint (16), no-arbitrage condition and asset

market clearing condition (14) implies

(1− τn,t)wtNt + rtAt ≤ Ct + At+1,

and hence leads to the following equation:

Ct + At+1 ≥ wtNt + rtAt. (46)

The equilibrium conditions (8), (18) and (12) suggest that wt and rt can be expressed as

wt =
xt

R(θ∗t )θ
∗
t

=
Ct

D(θ∗t )R(θ∗t )θ
∗
t

and

rt =
wt

wt−1

1

βR(θ∗t−1)
=

D(θ∗t−1)R(θ∗t−1)θ
∗
t−1

D(θ∗t )R(θ∗t )θ
∗
t

Ct

Ct−1

1

βR(θ∗t−1)
=

D(θ∗t−1)θ
∗
t−1

D(θ∗t )R(θ∗t )θ
∗
t

Ct

Ct−1

1

β
.

Substituting above two equations into (46) and rearranging terms, we get the implementabil-

ity condition (21).
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A.4 Proof of lemma 1

H (θ∗t ) ≡

(

1−D(θ∗t )− θ∗t
∂D (θ∗t )

∂θ∗t

)

= 1−

[

∫

θ≤θ∗t

θ

θ∗t
dF(θ) +

∫

θ>θ∗t

dF(θ)

]

+

∫

θ≤θ∗t

θ

θ∗t
dF(θ)

= 1−

∫

θ>θ∗t

dF(θ) = F(θ∗t )

J (θ∗t ) ≡

(

R(θ∗t ) +
∂R(θ∗t )

∂θ∗t
θ∗t

)

=

∫

θ≤θ∗t

dF(θ) +

∫

θ>θ∗t

θ

θ∗t
dF(θ)−

∫

θ>θ∗t

θ

θ∗t
dF(θ)

=

∫

θ≤θ∗t

dF(θ) = F(θ∗t ).

A.5 Proof of lemma 2

We first show that
∂W (θ∗t )

∂θ∗t
= 0 if θ∗t = θL or θH :

∂W (θ∗t )

∂θ∗t
= −

∂D (θ∗t )

∂θ∗t

θ

D (θ∗t )
−

∫

θ≤θ∗t

θ

θ∗t
dF(θ) =

[

θ

D (θ∗t ) θ
∗
t

− 1

]
∫

θ≤θ∗t

θ

θ∗t
dF(θ)

=











[

1− θ
θ

θH
θH

]

θ
θH

= 0 if θ∗t = θH
[

1− θ
θL

]

0 = 0 if θ∗t = θL

Next, we show that
∂W (θ∗t )

∂θ∗t
> 0 for any θ∗t ∈ (θL, θH). Note that

D (θ∗t ) θ
∗
t =

∫

θ≤θ∗t

θdF(θ) + θ∗t

∫

θ>θ∗t

dF(θ) = θ −

∫

θ>θ∗t

(θ − θ∗t )dF(θ) < θ

→
θ

D (θ∗t ) θ
∗
t

> 1

Hence,
∂W (θ∗t )

∂θ∗t
=

[

θ

D (θ∗t ) θ
∗
t

− 1

]
∫

θ≤θ∗t

θ

θ∗t
dF(θ) > 0
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A.6 Proof of lemma 3

The definition of D is given by

D (θ∗t ) =

∫

θ≤θ∗t

θ

θ∗t
dF (θ) +

∫

θ>θ∗t

dF (θ) < 1

and hence the derivative is

∂D (θ∗t )

∂θ∗t
= −1−

∫

θ≤θ∗t

θ

θ∗2t
dF (θ) + 1 = −

∫

θ≤θ∗t

θ

θ∗2t
dF (θ) < 0

A.7 Proof of Proposition 4

From equation (28), νB
t = 0 implies that φt = 0.The first-order condition with respect to

Ct leads to a constant multiplier µt in the steady state. Given that µt is constant in steady

state, the modified golden rule holds by equation (25). A constant µt together with equation

(26) makes the multiplier λt constant in the steady state. Given Lemma 1 and Lemma 2,

the optimal decision of θ∗t is a corner solution at θH .

In this case there is no liquidity premium. θ∗t = θH implies that R(θ∗t ) = R(θH) = 1. The

steady state equilibrium interest rate is therefore 1/β by the Euler equation (12).

The labor tax rate, τn,t, is decided by equation (8), which implies (1 − τn,t) =
1

1+λt
< 1

in steady state. The steady state labor tax rate is λ
1+λ

< 1. The capital tax is pinned down

by comparing the aggregate Euler equation chosen by the Ramsey planner, which is the

modified golden rule. Or equivalently the competitive equilibrium in equation (12) is

Ct+1

Ct

=
wt+1

wt

= βR(θ∗t ) [1 + qt+1 − τk,t+1qt+1 − δ] ,

Clearly, R(θ∗t ) = 1 implies that τk,t+1 = 0 in steady state under the MGR. Therefore, the

government expenditure as well as bond interest payment are financed solely by labor tax

income. Finally, the steady state value of λt is chosen such that the steady state government

budget constraint holds:

(1−
1

1 + λ
)MPNN = G+ (

1

β
− 1)B.
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The government bond Bt is chosen by the asset market clearing condition (20). Hence, the

steady state Bt = B can be expressed as

B =

(

1

D(θH)
− 1

)

C −K =

(

θH

θ
− 1

)

C −K.

Clearly, θH cannot be too large such that B > B.

A.8 Proof of Proposition 5

In the steady state, the multiplier λt is constant. The first-order condition of θ∗t becomes

∂W (θ∗t )

∂θ∗t
= −φt

Ct

D(θ∗t )
2

∂D (θ∗t )

∂θ∗t
.

Given
∂D(θ∗t )

∂θ∗t
< 0, the optimal steady state θ∗t is an interior solution, denoted by θ∗. Hence,

by the household decision rule (10), there is a non-zero fraction of households encountering

binding borrowing constraints.

Given the steady state φt = φ > 0, equation (25) suggests that the modified golden rule

does not hold in steady state.

In this case, the labor tax as well as the capital tax could be either positive or negative.

First, the steady state τn is therefore determined by equation (8), which implies

τn = 1−
1

R(θ∗)θ∗D(θ∗)

C

MPN

.

The steady state capital tax τk is solved by comparing equation (12) and equation (25),

which can be written, respectively, as the following two Euler equations in the steady state:

1

β
= R(θ∗) [(1− τk)MPK + 1− δ]

1

β
=

µ

µ− φ
(MPK + 1− δ)

The sign of steady state capital tax rate, τk, depends on the relatively value of R(θ∗) and

µ

µ−φ
. More specifically, it depending on µ

µ−φ
S R(θ∗), suggesting that τk S 0.

36



A.9 Proof of Proposition 6

First, suppose there exists a finitely-valued steady state with θ∗t = θ∗ < θH = ∞. Then

equation (29) in steady state implies that ∂W
∂θ∗

> 0 and λt → ∞, which implies that µt → ∞

by equation (26). However, µt → ∞ leads to Ct → 0 by equation (27), which contradicts

the assumption of a finitely-valued steady state.

Second, suppose θ∗t → ∞, this implies that households must hold infinite amount of bond

to buffer the possible infinitely large idiosyncratic shocks, namely, Bt+1 → ∞. To finance an

infinite amount of debt, the government must constantly issue increasingly larger amount

of new debts to rollover the increasingly larger amount of old debts. In such a case, the

total debt must be growing forever such that strictly positive and finitely-valued aggregate

allocations {Ct, xt, Kt+1, Nt, Yt} cannot be pinned down. Also, since there is no way to pin

down the growth rate of government debt, the no-Ponzi game condition may be violated,

suggesting no equilibrium exists. Note that the bond supply could be infinity in the long

run without violating the no-Ponzi condition. But in this case there is still the possibility

that the steady state does not exist.
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