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Abstract

What is the prescription of Ramsey capital taxes for the heterogeneous-agent incomplete-

market economy in the long run? Aiyagari (1995) addressed the question, showing that a

positive capital tax should be imposed to implement the steady-state allocation that satisfies

the so-called modified golden rule. In his analysis of the Ramsey problem, a critical assump-

tion implicitly made is the existence of steady-state allocations at the optimum. This paper

revisits the issue and finds sharply different results. We demonstrate that the optimal Ramsey

allocation may feature no steady state. The key to our results is embedded in the hallmark

of incomplete-market models that the risk-free rate is lower than the time discount rate at

the steady state in competitive equilibrium.
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1 Introduction

The heterogeneous-agent incomplete-market (HAIM hereafter) model considers an environment

in which households are subject to uninsurable idiosyncratic shocks and borrowing restrictions.

In response, households buffer their consumption against adverse shocks via precautionary sav-

ings. During the past two decades, the HAIM model has become a standard workhorse for policy

evaluations in the current state-of-the-art macroeconomics that jointly addresses aggregate and

inequality issues.1

Given the importance and popularity of the HAIM model, it is natural to ask: What is the

prescription of Ramsey capital taxation for the HAIM economy in the long run? The first attempt

to answer this question is the work of Aiyagari (1995). Assuming its existence, he showed that the

so-called “modified golden rule” (MGR hereafter) has to hold in the Ramsey steady state.2 On

the other hand, in the steady state, the after-tax gross return on capital, which is equated to the

risk-free gross interest rate, R, is always less than the time discount rate, 1/β. Aiyagari (1995)

thus reached the conclusion that a positive capital tax should be imposed to implement the steady-

state allocation that satisfies the MGR. Agents overaccumulate capital relative to the level implied

by the MGR because of their precautionary savings motive. The imposition of positive capital

taxation provides a remedy to restore production efficiency — the MGR. The finding by Aiyagari

(1995) is important in the optimal taxation literature and it represents a distinct departure from

the celebrated result of no capital tax in the long run prescribed by Chamley (1986) and Judd

(1985).

Aiyagari (1995) addressed the issue mainly under the setting of endogenous government spend-

ing. However, he argued that his finding remains intact under the setting of exogenous rather than

endogenous government spending.3 In both settings, Aiyagari (1995) implicitly assumed that the

shadow price of resources converges to a finite limit in the steady state.

This paper revisits the same issue and finds sharply different results. Working with the power

utility function, we demonstrate at the optimum: (i) There is no Ramsey steady state with R < 1/β

if the elasticity of intertemporal substitution (EIS) is weakly less than 1;4 (ii) if the EIS is larger

1It is also known as the Bewley-Huggett-Aiyagari model. For surveys of the literature, see Heathcote, Storesletten,
and Violante (2009), Guvenen (2011), and Quadrini and Rı́os-Rull (2015).

2The Ramsey steady state is defined as a situation where the optimal Ramsey allocation features the steady-state
property in the long run. Our definition of the steady state is an interior one. See Definitions 3 and 4 for details.

3See his footnote 15.
4The non-existence of a Ramsey steady state does not imply the non-existence of a steady state in competitive

equilibrium. It simply means that the Ramsey planner forgoes the steady-state allocation at the optimum.
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than 1, a Ramsey steady state with R < 1/β is possible, but the shadow price of resources must

diverge in the steady state. Result (i) questions the existence of a Ramsey steady state, the

basic premise of the Aiyagari (1995) analysis. Result (ii) contradicts Aiyagari’s (1995) implicit

assumption on the convergence of the shadow price of resources. Both results cast doubt on the

implementation of the MGR at the optimum.

Our analysis departs from Aiyagari (1995) in one important way — the primal Ramsey ap-

proach, which allows us to explicitly account for the first-order condition with respect to aggregate

consumption. This margin over aggregate consumption is overlooked by the analysis of Aiyagari

(1995).5 After counting the margin, we show that the social benefit of having one extra unit of

aggregate consumption must diverge if R < 1/β holds in the steady state. This very diverging

feature could make the Ramsey steady state fail to exist. Put differently, we show that once the

additional margin over aggregate consumption is reckoned in the analysis, the assumed Ramsey

steady state in Aiyagari (1995) can be at odds with the margin over aggregate consumption at

the optimum. In addition, we demonstrate that our results remain robust, regardless of whether

government spending is endogenously determined or exogenously given.

It is well known that the steady-state outcome in competitive equilibrium, R < 1/β, represents

the hallmark of the HAIM model.6 The fundamental force that drives the divergence described

above is exactly embedded in this hallmark. Indeed, we show that the divergent force will exist

(vanish) if and only if R < 1/β (R = 1/β) holds in the steady state. Intuitively, unlike individual

households in the face of uncertain labor income, the Ramsey planner in the HAIM economy faces

no uncertainty in allocating aggregate resources. The strict inequality of R < 1/β then dictates

that the market discounts resources at a lower rate than the planner discounts utility, implying

the existence of room for the planner to improve welfare by front-loading aggregate consumption

and/or back-loading aggregate labor through policy tools. This existence of room for improving

welfare persists as long as R < 1/β holds in the steady state. Thus, unless there is a counterbalance

to offset it, the persistence can lead to “extremes” to upset the Ramsey steady state. Interestingly,

we find whether the counterbalance exists has to do with the value of the EIS. Thanks to our

primal Ramsey approach, the effect of optimally adjusting aggregate consumption/labor and the

5Aiyagari (1995) formulated the Ramsey problem in terms of the dual approach and thus did not explore this
margin.

6Ljungqvist and Sargent (2012, p.9) explained that the outcome of R < 1/β in the steady state can be thought
of as follows: It lowers the rate of return on savings enough to offset agents’ precautionary savings motive so as to
make their asset holdings converge rather than diverge in the limit.
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role of the EIS can be clearly addressed in our analysis.7

The existence of a Ramsey steady state is commonly assumed for the Ramsey problem in the

extant literature. However, this assumption is not innocuous for the HAIM environment according

to our finding. The warning is particularly relevant and strong since the key to our results exactly

underlies the hallmark feature of the HAIM economy — the steady-state risk-free rate is lower

than the time discount rate.

1.1 Methodology — Primal Ramsey Approach

In order to consider the social benefit of having one extra unit of aggregate consumption, the primal

approach to the Ramsey problem is adopted. As aforementioned, the explicit accounting for the

margin over aggregate consumption is critical to our analysis. Importantly, the primal approach

will enable us to directly compare our model with the representative-agent (RA hereafter) model

and make our results transparent and more clear.

One difficulty encountered in formulating the Ramsey problem in the HAIM model is in regard

to how to properly formulate the implementability condition. Werning (2007) extends the Ramsey

primal approach from the RA to the heterogeneous-agent framework. However, agent types are

permanently fixed in the Werning model, while agent types evolve stochastically over time in the

HAIM model. Park (2014) extended the work of Werning (2007) to a complete-market environment

in which agent types evolve stochastically. We extend her approach to the incomplete-market

environment, or more specifically, to the HAIM economy.

Our primal approach formulates the household problem as a time zero trading problem as in

the Arrow-Debreu complete-market economy; however, there is the imposition of two additional

constraints — one for incomplete markets and the other for borrowing constraints — to account

for the key features of the HAIM economy. This approach of modeling incomplete markets is

pioneered by Aiyagari, Marcet, Sargent, and Seppala (2002), who named the additional constraints

for incomplete markets as measurability conditions. The later work by Chien, Cole, and Lustig

(2011) extends this approach to heterogeneous-agent models in the context of asset pricing. The

advantage of this time zero setting allows us to trace the evolution of stochastic agent types over

time through the Lagrangian multipliers associated with these additional constraints. Moreover,

it helps us to set up the primal approach to the Ramsey problem. Similar to an RA model or a

complete-market model, there is only a single implementability condition. However, due to the

7We provide a more detailed explanation after presenting our main result, Proposition 2.
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fact that the Ramsey planner also encounters the same incomplete-market frictions as faced by

households, the single implementability condition is not sufficient for the characterization of the

Ramsey problem. This causes our HAIM Ramsey problem to fundamentally depart from the RA

Ramsey problem.

1.2 Related Literature

The literature on optimal capital taxation is vast. Here we focus only on a subset of the studies

framed in a heterogeneous-agent environment with incomplete markets or market frictions.

Our work is closely related to the recent study by Chien and Wen (2017), who utilized an

analytically tractable heterogeneous-agent model to address the same issue. They demonstrated

that the planner’s desire to relax agents’ borrowing constraints may lead to an ever-increasing

accumulation of government debt, resulting in a dynamic path featuring no steady state at the

optimum. Hence, our results of no Ramsey steady state are consistent with their findings. However,

in order to have an analytical solution, their model makes a few special assumptions and deviates

from the standard HAIM model. Our paper adopts the standard HAIM model exactly.

The nature of our finding of no Ramsey steady state is to some extent the same as the work

of Straub and Werning (2014). They pointed out that the common assumption that endogenous

multipliers associated with the Ramsey problem converge in the limit is not necessarily true and

could thus lead to incorrect optimal policy prescriptions in the long run. Aiyagari’s (1995) assump-

tion on the Ramsey steady state may be subject to the same problem. We explicitly address it. It

should be noted that the mechanism for our non-convergence of endogenous multipliers originates

from incomplete markets. Such a mechanism is absent from the environment studied by Straub

and Werning (2014).

Gottardi, Kajii, and Nakajima (2015) considered an environment deviating from the standard

HAIM economy, in that there is risky human capital in addition to physical capital. They derived

qualitative and quantitative properties for the solution to the Ramsey problem, showing that

the interaction between market incompleteness and risky human capital accumulation provides a

justification for taxing physical capital. Instead, we stick to the standard HAIM economy and show

that assuming the existence of a Ramsey steady state could be problematic due to incomplete-

market frictions.

Conesa, Kitao, and Krueger (2009) considered optimal capital taxation in a HAIM-type econ-

omy but put it in a life-cycle framework. The quantitative part of their study largely focuses on
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the steady-state welfare. In an overlapping generations model with two-period-lived households,

Krueger and Ludwig (2018) characterized the optimal capital tax of the Ramsey problem in a

HAIM-type economy. They provided a full analytical solution for logarithmic utility. Our results

indicate that the Ramsey steady state might fail to exist within the framework where agents are

infinitely-lived.

Acikgoz (2013) and Dyrda and Pedroni (2016) numerically solved optimal fiscal policy for the

transition and the steady state of the HAIM economy. In contrast to our findings, the numerical

results of both papers feature a Ramsey steady state in the long run. It is not clear what explains

such a contrasting result exactly. However, according to our analysis, the sources of the difference

could be the implicit assumptions of the existence of a steady state in their numerical analyses.

In particular, our paper signals a warning about the existence of Ramsey steady state, which is

commonly assumed in the literature.

Dávila, Hong, Krusell, and Rı́os-Rull (2012) characterized constrained efficiency for the HAIM

economy. To decentralize the constrained efficient allocation, the planner is required to know each

agent’s realized shocks in order to impose individual-specific capital taxes. We consider flat tax

rates applied uniformly to all agents as in the typical Ramsey problem and, as such, the constrained

efficient allocation is infeasible to the Ramsey planner.

The rest of the paper is organized as follows. Section 2 introduces our model economy, and

Section 3 characterizes its competitive equilibrium. Section 4 formulates the Ramsey problem, and

Section 5 addresses the Ramsey steady state. Section 6 checks the robustness of our results, and

Section 7 concludes.

2 Model Economy

The model economy mainly builds on Aiyagari (1994). There is a unit measure of infinitely-lived

households that are subject to idiosyncratic labor productivity shocks. There are no aggregate

shocks. Markets are incomplete in that there are no state-contingent securities available for house-

holds to insure their idiosyncratic shocks. In addition, all households are subject to exogenous

borrowing constraints at all times.

Time is discrete and the horizon is infinity, indexed by t = 0, 1, 2, .... Time 0 is a planning

period and actions begin in time 1. All households are ex ante identical and endowed with the

same asset holdings at time 0. Ex post heterogeneity arises from time 1 on because households
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experience different histories of the idiosyncratic shock realization. Let θt ∈ Θ (a finite set) denote

the incidence of the idiosyncratic labor productivity shock at time t, and let θt denote the history

of events for the idiosyncratic shock of a household up through and until time t. The shock θt is

independently and identically distributed across households, and the sequence {θt} follows a first-

order Markov process over time. We let πt(θ
t) denote the unconditional probability of θt being

realized as of time zero and π(θt|θt−1) denote the conditional probability of the Markov process.

Note that πt(θ
t) = π(θt|θt−1)πt−1(θ

t−1). Because of the independence of productivity shocks across

households, a law of large numbers applies so that the probability πt(θ
t) also represents the fraction

of the population that experiences θt at time t. We call a household that has the history θt simply

“the household θt.” We also introduce additional notations: θt+1 ≻ θt means that the left-hand-side

node is a successor node to the right-hand-side node; and for s > t, θs � θt (θs ≻ θt) represents

the set of successor shocks after θt up to θs including (excluding) θt.

Households maximize their lifetime utility

U =

∞∑

t=1

βt
∑

θt

[
u(ct(θ

t))− v

(
lt(θ

t)

θt

)]
πt(θ

t),

where β ∈ (0, 1) is the discount factor, ct(θ
t) and lt(θ

t) denote the consumption and the labor

supply for a household θt at time t, and lt(θ
t)/θt is the corresponding “raw” labor supply. The

assumptions on the functions u(.) and v(.) are standard.

There is a standard neoclassical constant returns to scale production technology, denoted by

F (K,L), that is operated by a representative firm, where K and L are aggregate capital and labor.

The firm produces output by hiring labor and renting capital from households. The firm’s optimal

conditions for profit maximization at time t satisfy

wt = FL(Kt, Lt),

qt = FK(Kt, Lt),

where wt and qt are the wage rate and the capital rental rate, and FL and FK denote the marginal

product of labor and capital. All markets are competitive.

The government is required to finance an exogenous stream of government spending {Gt} and

it can issue one-period government bonds and levy flat-rate, time-varying labor and capital taxes
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at rates τl,t and τk,t, respectively. The flow government budget constraint at time t is read as

τl,twtLt + τk,t(qt − δ)Kt +Bt+1 = Gt +RtBt, (1)

where Rt is the risk-free gross interest rate between time t − 1 and t, and Bt is the amount of

government bonds issued at time t− 1. The government is assumed to fully commit to a sequence

of taxes imposed and debts issued, given the initial amount of government bond B1 at time 0. This

setup for the government is standard for the Ramsey problem. Section 6 considers an alternative

setup where {Gt} becomes endogenously determined rather than exogenously given.

Given (1), the time 0 government budget constraint is given by

B1 =
∑

t≥1

Pt [τl,twtLt + τk,t (qt − δ)Kt −Gt] .

3 Characterization of Competitive Equilibrium

This section characterizes the competitive equilibrium of the model economy, paving the way for the

formulation of the Ramsey problem in the next section. We first describe the household problem.

3.1 Household Problem

We express the household problem as a time zero trading problem as in an Arrow-Debreu complete-

market economy but with the imposition of additional constraints to account for the key features

of the HAIM economy. As noted in the Introduction, this method facilitates the formulation of

the primal Ramsey problem for the HAIM economy.

3.1.1 Measurability Conditions and Borrowing Constraints

Two key features of the HAIM economy are (i) incomplete markets — no state-contingent claims on

idiosyncratic shocks, and (ii) borrowing constraints — a lower bound on household asset holdings.

We show how to embed these two features into a time zero trading problem for the household.

Let pt(θ
t) = Ptπt(θ

t) denote the Arrow-Debreu price for a state-contingent claim that delivers

one unit of consumption in the event of θt at time t, where Pt is the time zero price of one unit of

consumption delivered at time t. We set P0 = 1 as a normalization. Given the history of shocks θt
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at time t, the asset holdings with complete markets can be written as

pt(θ
t)at(θ

t) =
∑

s≥t

∑

θs�θt

ps(θ
s) [cs(θ

s)− ŵsls(θ
s)] , (2)

where ŵs ≡ (1 − τl,s)ws is defined as the after-tax wage rate at time s and at(θ
t) is the amount

of the state-contingent claim held by the household θt at the beginning of time t. Equation (2)

embodies the property that at each time t and each history θt, the value of a household’s net asset

holdings is equal to the present value of current and future consumption net of after-tax labor

income earned.

However, markets are incomplete rather than complete and households do not have access to

state-contingent markets in the HAIM economy. This implies that the asset holdings at time t+1

are only measurable up to the events prior to the realization of shock θt+1. Formally, households

face the following measurability conditions: for ∀t ≥ 0 and θt,

at+1(θ
t, θt+1) = at+1(θ

t, θ̃t+1) for all θ̃t+1, θt+1 ∈ Θ,

which practically impose constraints on a household’s asset holdings.

For ease of exposition, we rewrite the measurability condition as: for ∀t ≥ 0 and θt,

at+1(θ
t, θt+1)

Rt+1
=

at+1(θ
t, θ̃t+1)

Rt+1
≡ ât+1(θ

t) for all θ̃t+1, θt+1 ∈ Θ, (3)

where Rt+1 is the risk-free gross interest rate between time t and t+1. That is, ât+1(θ
t) is defined so

that Rt+1ât+1(θ
t) = at+1(θ

t, θt+1) = at+1(θ
t, θ̃t+1) for all θ̃t+1, θt+1 ∈ Θ. This makes sense because

households can only hold a one-period risk-free asset; and their asset holdings at the beginning

of time t + 1 deflated by their asset return, the risk-free gross rate, must be equal to the end of

time t asset holdings, which is denoted by ât+1(θ
t). The property holds, regardless of whether the

realized idiosyncratic shock at time t + 1 is θt+1 or θ̃t+1. Note that the one-period risk-free asset

held by households can be either K (capital) or B (government bond), or both; K and B are

perfect substitutes in the view of households.

Households also face the following borrowing restrictions for ∀t ≥ 0:

at+1(θ
t+1) ≥ a = 0 , for all θt+1,
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where a is an exogenously given borrowing limit. As far as this paper is concerned, we assume

a = 0.

Since there is no aggregate uncertainty, the following must hold:

Pt

Pt+1

= Rt+1 = 1 + (1− τk,t+1)(qt+1 − δ), (4)

where the after-tax gross rate of return on capital is equal to the risk-free gross rate, which con-

stitutes a no-arbitrage condition for trades in capital and government bonds.

3.1.2 Formulating and Solving the Household Problem

At each time and history, the value of a household’s net asset holdings is equal to the present

value of current and future consumptions net of labor incomes earned. Therefore, we can represent

the asset holding restrictions, such as measurability and borrowing constraints, equivalently as the

restrictions imposed on the whole sequence of consumption and labor choices. This is exactly what

we do next.

Using (2), we can restate the measurability conditions as

Pt−1ât(θ
t−1)πt(θ

t) =
∑

s≥t

∑

θs�θt

ps(θ
s) [cs(θ

s)− ŵsls(θ
s)] , ∀t ≥ 1, θt, (5)

where we have replaced at(θ
t) with Rtât(θ

t−1) as defined in (3) and used pt(θ
t) = Ptπt(θ

t) and the

result of Pt−1 = PtRt in (4). If markets were complete, then households would only face a single

constraint (7) below. The presence of the additional constraints represented by (5) is due to the

incompleteness of markets. As to the borrowing constraints, they can be expressed as

∑

s≥t

∑

θs�θt

ps(θ
s) [cs(θ

s)− ŵsls(θ
s)] ≥ 0, ∀t ≥ 1, θt. (6)

Finally, the household’s time 0 budget constraint is expressed as8

â1 =
∑

t≥1

∑

θt

pt(θ
t)
[
ct(θ

t)− ŵtlt(θ
t)
]
, (7)

with â1 = K1 + B1, where K1 and B1 are the economy’s initial capital and government bond,

8When t = 1, the left side of (5) equals P0â1π1(θ
1) = â1π1(θ

1), where we have utilized P0 = 1. It then gives
â1 =

∑
θ1 â1π1(θ

1) from the ex ante viewpoint at time 0.
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respectively. All households by assumption have the same initial asset holdings â1.

Given prices {ŵt, pt(θ
t)}, the household chooses a sequence of consumption {ct(θ

t)}, labor

{lt(θ
t)}, and asset holdings {ât+1(θ

t)} to maximize the lifetime utility as of time zero, subject to the

time 0 budget constraint (7), the measurability conditions (5), and the borrowing constraints (6).

Let χ be the multiplier on the time 0 budget constraint, νt(θ
t) the multiplier on the measurability

condition in the event of θt at time t, and ϕt(θ
t) the multiplier on the borrowing constraint in

the event of θt at time t. Incorporating all the constraints through these multipliers gives the

household’s Lagrangian:

L̃ = min
{χ,v,ϕ}

max
{c,l,â}

∞∑

t=1

βt
∑

θt

[
u(ct(θ

t))− v

(
lt(θ

t)

θt

)]
πt(θ

t)

+χ

{
â1 −

∞∑

t=1

∑

θt

pt(θ
t)
[
ct(θ

t)− ŵtlt(θ
t)
]
}

+

∞∑

t=1

∑

θt

νt(θ
t)




∑

s≥t

∑

θτ�θt

ps(θ
s) [cs(θ

s)− ŵsls(θ
s)]− Pt−1ât(θ

t−1)πt(θ
t)





+

∞∑

t=1

∑

θt

ϕt(θ
t)




∑

s≥t

∑

θs�θt

ps(θ
s) [cs(θ

s)− ŵsls(θ
s)]



 .

Using Abel’s summation formula, the Lagrangian L̃ can be rewritten as9

L = min
{χ,v,ϕ}

max
{c,l,â}

∞∑

t=1

βt
∑

θt

[
u(ct(θ

t))− v

(
lt(θ

t)

θt

)]
πt(θ

t)

−
∞∑

t=1

∑

θt

ζt(θ
t)pt(θ

t)
[
ct(θ

t)− ŵtlt(θ
t)
]

+χâ1 −

∞∑

t=1

∑

θt

νt(θ
t)Pt−1ât(θ

t−1)πt(θ
t),

where ζt(θ
t) is called the “cumulative multiplier,” and its motion is given by

ζt+1(θ
t+1) = ζt(θ

t)− νt+1(θ
t+1)− ϕt+1(θ

t+1) with ζ0 = χ > 0, ∀t ≥ 0, θt. (8)

Obviously, ζt(θ
t) is a cumulative sum of all Lagrangian multipliers in the past history from the

measurability conditions and the borrowing constraints; it encodes the frequency and severity of

9See Ljungqvist and Sargent (2012, p.821) for the formula.
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both types of constraints over time.10

From the Lagrangian L, the FOCs (first-order conditions) with respect to consumption ct(θ
t)

and labor lt(θ
t) are given by

βtu′(ct(θ
t)) = ζt(θ

t)Pt, (9)

βtv′
(
lt(θ

t)

θt

)
1

θt
= ζt(θ

t)ŵtPt, (10)

while the FOC with respect to asset holdings ât+1(θ
t) is given by

∑

θt+1≻θt

νt+1(θ
t+1)π(θt+1|θt) = 0. (11)

From the FOCs (9)-(10), we see that the value of ζt(θ
t) cannot be negative.

The last FOC requires that the mean of multipliers on the measurability condition across

idiosyncratic states θt+1 be equal to zero, given θt. If markets were complete instead, households

could have a short position on the consumption claims at time t contingent on shock θt+1 being

high at time t+1 (“save less for a high state”), and could have a long position on the consumption

claims at time t contingent on shock θt+1 being low at time t + 1 (“save more for a low state”).

However, markets are incomplete and households cannot save at time t depending on whether

shock θt+1 at time t + 1 is high or low. As such, the best choice for ât+1(θ
t) at time t is to satisfy

an average — that is, the condition (11). Combining the FOCs (9) and (11) with the motion (8)

actually enforces the household’s Euler equation

u′(ct(θ
t)) ≥ β

Pt

Pt+1

∑

θt+1≻θt

u′(ct+1(θ
t+1))π(θt+1|θt), (12)

where the equality holds if the borrowing constraint does not bind for all possible subsequent θt+1

states at time t+ 1.

3.2 Competitive Equilibrium

A competitive equilibrium of the model economy is defined in the standard way.

10Note that the household problem is a standard convex programming problem since the constraint set is convex
even with the incorporation of the measurability conditions and the borrowing constraints. Thus, the resulting
first-order conditions are necessary and sufficient. In addition, this approach of defining recursive multipliers as
in (8) was proposed and developed by Marcet and Marimon (1999, 2017) for solving dynamic incentive problems.
Both Aiyagari, Marcet, Sargent, and Seppala (2002) and Chien, Cole, and Lustig (2011) adopted this approach.
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Definition 1. Given the initial capital K1, initial government bond B1, and sequences of tax rates,

government spending, and government bonds {τl,t, τk,t, Gt, Bt+1}
∞
t=1, a competitive equilibrium is se-

quences of prices {wt, qt, Pt}
∞
t=1, sequences of aggregate allocations {Ct, Lt, Kt+1}

∞
t=1 and individual

allocation plans {ct(θ
t), lt(θ

t), ât+1(θ
t)}∞t=1, such that:

1. Given the sequence {wt, Pt, τl,t}, {ct(θ
t), lt(θ

t), ât+1(θ
t)} solve the household problem.

2. Given the sequence {wt, qt}, {Lt, Kt} solve the representative firm’s problem.

3. The no-arbitrage condition holds: Pt

Pt+1
= 1 + (1− τk,t+1)(qt+1 − δ).

4. The time 0 government budget constraint holds:

B1 =
∞∑

t=1

Pt [τl,twtLt + τk,t (qt − δ)Kt −Gt] .

5. All markets are clear for all t:

Bt+1 +Kt+1 =
∑

θt

ât+1(θ
t)πt(θ

t),

Lt =
∑

θt

lt(θ
t)πt(θ

t),

Ct =
∑

θt

ct(θ
t)πt(θ

t),

F (Kt, Lt) = Ct +Gt +Kt+1 − (1− δ)Kt.

3.3 Characterizing Competitive Equilibrium

This subsection characterizes the competitive equilibrium in terms of the aggregate allocations and

the cumulative multipliers of the household problem. This step is critical for the primal Ramsey

approach in the HAIM economy. To facilitate the characterization, we work with the popular

power utility function:

Assumption 1.

u(c) =
1

1− α
c1−α, α > 0; v

(
l

θ

)
=

1

γ

(
l

θ

)γ

, γ > 1.

It is known that 1/α represents the consumption elasticity of intertemporal substitution (EIS).

As will be seen, the value of the consumption EIS plays an important role for our main result.

12



With the imposition of Assumption 1, the FOC for consumption (9) yields

ct(θ
t) = (

ζt(θ
t)Pt

βt
)−

1

α .

Summing ct(θ
t) over θt gives the aggregate consumption at time t:

Ct =
∑

θt

ct(θ
t)πt(θ

t) =
∑

θt

(
ζt(θ

t)Pt

βt
)−

1

απ(θt) = (
Pt

βt
)−

1

α

∑

θt

ζt(θ
t)−

1

απt(θ
t).

So, the consumption of a household with the history of events θt at time t can be expressed as

ct(θ
t) =

ζt(θ
t)

−1

α

Ht

Ct, (13)

where

Ht =
∑

θt

ζt(θ
t)

−1

α πt(θ
t).

The formula (13) characterizes the consumption sharing rule, given ζt(θ
t) and Ct. We refer to Ht

as the “consumption aggregate multiplier,” which is a specific moment of the distribution of the

individual cumulative multiplier ζt(θ
t).11

From (10), we have

lt(θ
t) = (

θγt ζt(θ
t)ŵtPt

βt
)

1

γ−1 .

Similarly, the labor supply of a household with the history of events θt at time t can be expressed

as

lt(θ
t) =

θ
γ

γ−1

t ζt(θ
t)

1

γ−1

Jt

Lt, (14)

where

Jt =
∑

θt

θ
γ

γ−1

t ζt(θ
t)

1

γ−1πt(θ
t).

We refer to Jt as the “labor aggregate multiplier.”

Utilizing (9) and (13), we obtain

Pt = βtC−α
t Hα

t , (15)

11Similar expressions for consumption can be seen in Nakajima (2005), Werning (2007), and Park (2014).
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and hence from (4) we have

Pt+1

Pt

=
1

Rt+1
= β

(
Ct+1

Ct

)−α(
Ht+1

Ht

)α

. (16)

From (10), (14), and (15), the after-tax wage rate is equal to

ŵt =
Lγ−1
t J1−γ

t

C−α
t Hα

t

. (17)

Equations (13) through (17) show that one can express the individual allocations {ct(θ
t), lt(θ

t)}

and the market prices {Pt, ŵt} of the competitive equilibrium in terms of the aggregate allocations

{Ct, Lt}, the individual cumulative multipliers {ζt(θ
t)}, and the aggregate multipliers {Ht, Jt}. The

following proposition demonstrates that the Ramsey planner can pick a competitive equilibrium

by choosing aggregate allocations plus asset holdings and individual multipliers that satisfy a set

of conditions.

Proposition 1. Impose Assumption 1. Given the initial capital K1, government bond B1, cap-

ital tax rate τk,1, and a stream of government spending {Gt}, sequences of aggregate allocations

{Ct, Lt, Kt+1}, asset holdings {ât+1 (θ
t)}, and cumulative multipliers {ζt (θ

t)} (with the associated

aggregate multipliers, Ht and Jt) can be supported as a competitive equilibrium if and only if they

satisfy the following conditions:12

1. Resource constraints: F (Kt, Lt) + (1− δ)Kt −Kt+1 ≥ Ct +Gt, ∀t ≥ 1.

2. Implementability condition:

∞∑

t=1

∑

θt

βtπt(θ
t)
[
C1−α

t Hα−1
t ζt(θ

t)
−1

α − Lγ
t J

−γ
t θ

γ

γ−1

t ζt(θ
t)

1

γ−1

]
≥ â1.

3. Measurability conditions:

∑

s≥t

∑

θs�θt

βsπs(θ
s)
[
C1−α

s Hα−1
s ζs(θ

s)
−1

α − Lγ
sJ

−γ
s θ

γ

γ−1

s ζs(θ
s)

1

γ−1

]

= βt−1C−α
t−1H

α
t−1ât(θ

t−1)πt(θ
t), ∀t ≥ 1, θt.

12The initial capital tax rate, τk,1 should be a choice variable for the Ramsey planner. However, given that
the initial capital is pre-installed and that households are homogeneous at time zero, taxing the initial capital is
essentially the same as allowing a lump-sum tax. As is standard in the literature, we restrict the planner’s ability
of choosing τk,1.
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4. Borrowing constraints:

∑

s≥t

∑

θs�θt

βsπs(θ
s)
[
C1−α

s Hα−1
s ζs(θ

s)
−1

α − Lγ
sJ

−γ
s θ

γ

γ−1

s ζs(θ
s)

1

γ−1

]
≥ 0, ∀t ≥ 1, θt.

5. The evolution of ζt(θ
t) satisfies

∑
θt+1≻θt ζt+1(θ

t+1)π(θt+1|θt) ≤ ζt(θ
t), ∀t ≥ 1, θt.

6. Conditional on θt at time t, if the borrowing constraint does not bind for all possible subsequent

θt+1 states at time t+ 1, then

∑

θt+1≻θt

ζt+1(θ
t+1)π(θt+1|θt) = ζt(θ

t),

and this property holds for all θt and all t ≥ 1.

The proofs of our results, including Proposition 1, are all relegated to the Appendix. Results

similar to Proposition 1 but in different contexts can be seen in Aiyagari, Marcet, Sargent, and

Seppala (2002, Proposition 1), Werning (2007, Proposition 1), and Park (2014, Proposition 1).

The first paper considers an RA economy without capital; the second paper focuses on an economy

without idiosyncratic shocks; and the third paper envisions a complete-markets framework in the

presence of market frictions according to Kehoe and Levine (1993). None of them address the

HAIM economy, which is the focus of this paper.

4 Ramsey Problem

Different government policies result in different competitive equilibria. We define the Ramsey

problem formally:

Definition 2. The Ramsey problem is to choose a competitive equilibrium that attains the maxi-

mization of the household’s lifetime utility U .

On the basis of Proposition 1, the Ramsey problem can be represented as

max
{Ct,Lt,Kt+1,{ât+1(θt)},{ζt(θt)}}

∑

t≥1

βt
∑

θt


 1

1− α

(
ζ(θt)

−1

α

Ht

Ct

)1−α

−
1

γ


θ

1

γ−1

t ζt(θ
t)

1

γ−1

Jt

Lt




γ
 πt(θ

t)
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subject to Conditions 1 to 6 stated in Proposition 1 and to Ht and Jt defined earlier. The objective

of the Ramsey problem is derived by substituting the consumption sharing rule (13) and the labor

sharing rule (14) into U(.).

Note that we have formulated the Ramsey problem in terms of the sequences of the aggregate

allocations, {Ct, Lt, Kt+1}, the asset holdings, {ât+1(θ
t)}, and the cumulative multipliers, {ζt(θ

t)}.

4.1 Relaxed Ramsey Problem

The optimal allocation chosen by the Ramsey planner that satisfies Conditions 1-5 of Proposition

1 will also satisfy Condition 6 of Proposition 1. Namely, Condition 6 is not a binding constraint

in the maximization of the Ramsey problem. The detail of the proof for the claim is in Appendix

A.2. The proof is done by contradiction and here we briefly explain the basic logic of the proof.

Suppose not. That is, the borrowing constraints do not bind for all states θt+1 at time t + 1,

but for some state θt at time t Condition 6 fails with

∑

θt+1≻θt

ζt+1(θ
t+1)π(θt+1|θt) < ζt(θ

t).

Applying the FOC (9) to the above inequality yields

u′(ct(θ
t)) > β

Pt

Pt+1

∑

θt+1≻θt

u′(ct+1(θt+1))π(θt+1|θt),

which indicates that the θt household’s marginal payoff from time t consumption is higher than

the marginal payoff from time t+ 1 consumption. Since the borrowing constraints do not bind for

all states θt+1 at time t + 1, we show that it is feasible for the planner to tighten the borrowing

constraints to increase ct(θ
t) at the expense of a decrease in ct+1(θt+1) so as to enhance the θt

household’s overall payoff and, at the same time, still meet Conditions 1-5 of Proposition 1. This

then leads to a contradiction, implying that the optimal allocation chosen by the Ramsey plan-

ner that satisfies Conditions 1-5 of Proposition 1 must also satisfy Condition 6 of Proposition 1;

otherwise, there will be an alternative allocation to improve the household’s lifetime utility U .

Thus, we can ignore Condition 6 and consider the following relaxed Ramsey problem:

max
{Ct,Lt,Kt+1,{ât+1(θt)},{ζt(θt)}}

∑

t≥1

βt
∑

θt


 1

1− α

(
ζ(θt)

−1

α

Ht

Ct

)1−α

−
1

γ


θ

1

γ−1

t ζt(θ
t)

1

γ−1

Jt

Lt




γ
 πt(θ

t),
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subject to

{βtµt} : F (Kt, Lt) + (1− δ)Kt ≥ Ct +Gt +Kt+1, ∀t ≥ 1,

χP :
∑

t≥1

∑

θt

βtπt(θ
t)
[
C1−α

t Hα−1
t ζ(θt)

−1

α − Lγ
t J

−γ
t θ

γ

γ−1

t ζ(θt)
1

γ−1

]
≥ â1,

{vPt (θ
t)} :

∑

s≥t

∑

θs�θt

βsπs(θ
s)
[
C1−α

s Hα−1
s ζs(θ

s)
−1

α − Lγ
sJ

−γ
s θ

γ

γ−1

s ζs(θ
s)

1

γ−1

]

= βt−1C−α
t−1H

α
t−1ât(θ

t−1)πt(θ
t), ∀t ≥ 1, θt,

{ϕP
t (θ

t)} :
∑

s≥t

∑

θs�θt

βsπs(θ
s)
[
C1−α

s Hα−1
s ζs(θ

s)
−1

α − Lγ
sJ

−γ
s θ

γ

γ−1

s ζs(θ
s)

1

γ−1

]
≥ 0, ∀t ≥ 1, θt,

{βtξt(θ
t)} :

∑

θt+1≻θt

ζt+1(θ
t+1)π(θt+1|θt) ≤ ζt(θ

t), ∀t ≥ 1, θt,

where {βtµt}, χ
P , {vPt (θ

t)}, {ϕP
t (θ

t)} and {βtξt(θ
t)} are the multipliers on the aggregate resource

constraints, the implementability condition, the measurability conditions, the borrowing con-

straints, and the law of motion for the household’s cumulative multipliers, respectively.

Forming the Lagrangian for the relaxed Ramsey problem and using Abel’s summation formula

gives

L = max
{Ct,Lt,Kt+1,{ât+1(θt)},{ζt(θt)}}

∑

t≥1

βtW (t) +
∑

t≥1

βtµt [F (Kt, Lt) + (1− δ)Kt −Kt+1 − Ct −Gt]

+
∑

t≥1

∑

θt

βtξt(θ
t)

[
ζt(θ

t)−
∑

θt+1≻θt

ζt+1(θ
t+1)π(θt+1|θt)

]
− χP â1

−
∑

t≥1

βtC−α
t Hα

t

[
∑

θt

ât+1(θ
t)
∑

θt+1≻θt

vPt+1(θ
t+1)π(θt+1|θt)

]
πt(θ

t),

with

W (t) ≡
∑

θt

πt(θ
t)




1

1− α

(
ζ(θt)

−1

α

Ht

Ct

)1−α

−
1

γ


θ

1

γ−1

t ζt(θ
t)

1

γ−1

Jt

Lt




γ

︸ ︷︷ ︸
Part 1

+ηt(θ
t)

(
C−α

t Hα
t

ζt(θ
t)

−1

α

Ht

Ct − Lγ−1
t J1−γ

t

θ
γ

γ−1

t ζt(θ
t)

1

γ−1

Jt

Lt

)

︸ ︷︷ ︸
Part 2




, (18)
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where

ηt+1(θ
t+1) = ηt(θ

t) + νP
t+1(θ

t+1) + ϕP
t+1(θ

t+1), η0 = χP > 0, ∀t ≥ 0, θt, (19)

which is defined as the Ramsey planner’s cumulative multiplier. The Ramsey planner cannot

complete the market as typically assumed and is thereby subject to the same market structure of

the HAIM economy — that is, the same measurability conditions and borrowing constraints as

those facing the household. These market frictions are summarized by the multipliers νt+1(θ
t+1)

and ϕt+1(θ
t+1) in the household problem and by νP

t+1(θ
t+1) and ϕP

t+1(θ
t+1) in the planner problem.

However, note that while we have the term χâ1 in the household Lagrangian L, we have the term

−χP â1 in the planner Lagrangian L. The opposite sign is due to the fact that the implementability

condition in the Ramsey problem represents the government budget constraint rather than the

household budget constraint. As such, while increasing â1 relaxes the household budget constraint,

it tightens the government budget constraint.

4.2 Comparison with the Representative-Agent Model

To gain insights into the pseudo-utility W (t) defined in (18), we compare it with the analogous

one derived in the RA model:13

WRA(t) = u(Ct)− v(Lt)︸ ︷︷ ︸
Part 1

+ χP (u′(Ct)Ct − v′(Lt)Lt)︸ ︷︷ ︸
Part 2

=
1

1− α
C1−α

t −
1

γ
Lγ
t

︸ ︷︷ ︸
Part 1

+ χP
(
C−α

t Ct − Lγ−1
t Lt

)
︸ ︷︷ ︸,

Part 2

where WRA denotes the corresponding pseudo-utility in the RA model and the second equality

holds under Assumption 1. Part 1 of WRA(t) represents the current period utility. Its Part 2, in

terms of βtWRA(t), is given by

βtχP (u′(Ct)Ct − v′(Lt)Lt) = χPβtu′(Ct)

(
Ct −

v′(Lt)

u′(Ct)
Lt

)
= χPPRA

t (Ct − ŵRA
t Lt),

where PRA
t = βtu′(Ct), that is, the time zero price of one unit of consumption delivered at time

t in the RA model, and ŵRA
t = v′(Lt)

u′(Ct)
, that is, the after-tax wage rate at time t in the RA model.

Thus, the term PRA
t (Ct − ŵRA

t Lt) shown in the above equation represents the time t net savings

13Please refer to equation (16.6.7) in Ljungqvist and Sargent (2012, p. 627).
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evaluated at the time zero price in the RA model. The implementability condition multiplier, χP ,

“measures the utility costs of raising government revenues through distorting taxes”(Ljungqvist

and Sargent (2012, p. 629)) in the RA framework. The taxes imposed by the Ramsey planner alter

the time t consumption and labor supply of the RA in competitive equilibrium and, consequently,

distort the time t net savings. The shadow price of this distortion on net savings is given by the

multiplier χP .

Part 1 of W (t) in our HAIM model also represents the current period utility. Its Part 2, in

terms of βtW (t), is given by

ηt(θ
t)βtC−α

t Hα
t

(
ζt(θ

t)
−1

α

Ht

Ct −
Lγ−1
t J1−γ

t

C−α
t Hα

t

θ
γ

γ−1

t ζt(θ
t)

1

γ−1

Jt

Lt

)
= ηt(θ

t)Pt

(
ct(θ

t)− ŵtlt(θ
t)
)
, (20)

where Pt = βtC−α
t Hα

t according to (15) and ŵt =
L
γ−1

t J
1−γ
t

C−α
t Hα

t

according to (17). Thus, the term

Pt (ct(θ
t)− ŵtlt(θ

t)) shown in the above equation represents the time t net savings of the household

θt evaluated at the time zero price in the HAIM economy. Note that the structure of W (t) is

basically the same as that of WRA(t). However, W (t) deviates from WRA(t) in two important

respects.

First, the multiplier in (20), ηt(θ
t), is no longer a constant as χP in the RA model. The Ramsey

planner has to consider the impact of its policies on each household’s net savings under incomplete

rather than complete markets. The associated shadow price is captured by the multiplier ηt(θ
t).

From the evolution of ηt(θ
t) governed by (19), we see that ηt(θ

t) starts from χP (η0 = χP ) but in

a sequence it varies not only across households but also over time, meaning that the utility cost

of implementing policy for households is not only household-specific but also time-varying. The

following lemma shows that the average value of ηt(θ
t) tends to increase over time, implying that

it could stochastically diverge to infinity in the limit.

Lemma 1. The average of ηt(θ
t),
∑

θt ηt(θ
t)πt(θ

t), is positive and, moreover, it is non-decreasing

and becomes strictly increasing if ϕP
t (θ

t) > 0 for some θt.

The second important deviation stems from the behavior of intertemporal prices. While the

time zero price of consumption delivered at time t is PRA
t = βtC−α

t in the RA model, this price

becomes Pt = βtC−α
t Hα

t in the HAIM model. As such, in the steady state, the market discounting

rate implied by PRA
t is consistent with the time discount factor β, whereas the market discounting

rate implied by Pt is lower than β, provided that Ht is increasing over time. Now consider the
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steady-state version of equation (16):

1 = βR

(
Ht+1

Ht

)α

, (21)

which tells us that Ht is increasing over time and must diverge to infinity in the limit if R < 1/β

holds in the steady state.14 Thus, the feature of an increasing and divergent Ht exactly underlies

the hallmark of the HAIM model — the risk-free rate is lower than the time discount rate in the

steady state.

The divergent tendency of both ηt(θ
t) and Ht, all else equal, makes Part 2 of W (t) converge

more slowly than Part 1. As will be seen, this asymmetric convergence between Part 1 and Part

2 of W (t) is the key to our result of no Ramsey steady state.

These two deviations of W (t) from WRA(t) are in fact the two sides of one coin. Both are

rooted in the frictions of the HAIM economy and both will vanish once markets are complete, as

in the RA model.

4.3 Optimal Conditions of the Ramsey Problem

From the Lagrangian L, the necessary FOCs with respect to ât+1(θ
t), Ct, Lt, and Kt+1 for t ≥ 1

yield, respectively, ∑

θt+1≻θt

vPt+1(θ
t+1)π(θt+1|θt) = 0, (22)

WC(t) = µt, (23)

−WL(t) = µtFL(Kt, Lt), (24)

µt = βµt+1 [FK (Kt+1, Lt+1)− δ + 1] , (25)

where the derivation of (23) has made use of (22), and WC(t) and WL(t) denote the derivatives of

W (t) with respect to Ct and Lt, respectively.
15

The explicit expressions of WC(t) and WL(t) in the FOCs of the Ramsey problem are crucial to

our analysis later. One can derive them from the pseudo-utility W (t) defined in (18). However, to

facilitate the proof and discussion hereafter, it is convenient to express WC and WL in the following

14The converse should hold as well. When Ht diverges, it means that households suffer from the frictions of
incomplete markets as in the standard scenario of the HAIM economy. Then, according to footnote 6, the outcome
of R < 1/β will result in the steady state.

15The FOC with respect to ζt(θ
t) will not be needed for the derivation of our main results.
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way. First, using the consumption sharing rule (13), WC(t) in (23) is read as

WC(t) = C−α
t



∑

θt

(
ct(θ

t)

Ct

)(
ct(θ

t)

Ct

)−α

πt(θ
t)

︸ ︷︷ ︸
Part 1

+ (1− α)Hα
t

∑

θt

(
ct(θ

t)

Ct

)
ηt(θ

t)πt(θ
t)

︸ ︷︷ ︸
Part 2


 . (26)

Second, using (13)-(15) and (17), WL(t) in (24) is read as

−WL(t) = ŵtC
−α
t



∑

θt

(
lt(θ

t)

Lt

)(
ct(θ

t)

Ct

)−α

πt(θ
t)

︸ ︷︷ ︸
Part 1

+ γHα
t

∑

θt

(
lt(θ

t)

Lt

)
ηt(θ

t)πt(θ
t)

︸ ︷︷ ︸
Part 2


 . (27)

Part 1 of WC(t) (resp. Part 1 of WL(t)) denotes the sum of households’ “normalized” marginal

utility of consumption,
(

ct(θt)
Ct

)−α

, weighted by their consumption shares (resp. labor shares). They

represent the planner’s social evaluation of increasing Ct and Lt respectively under the utilitarian

objective. We next explain the meaning of the weighted sum of ηt(θ
t) shown in Part 2 of WC(t)

and of WL(t). Summing up (20) across all households gives

Pt

∑

θt

ηt(θ
t)

[
ct(θ

t)

Ct

Ct −
lt(θ

t)

Lt

ŵtLt

]
πt(θ

t).

Contrasting the above with the corresponding term in the RA model, namely, PRA
t χP (Ct−ŵRA

t Lt),

we see that the role of χP has been replaced by
∑

θt ηt(θ
t) ct(θ

t)
Ct

πt(θ
t) or

∑
θt ηt(θ

t) lt(θ
t)

Lt
πt(θ

t). In

other words, they represent the shadow prices of distorting net savings in the aggregate in the

HAIM economy. Since the issue is about net savings in the aggregate, it is intuitive that these

shadow prices are weighted rather than unweighted as given by
∑

θt ηt(θ
t)πt(θ

t). Note that, unlike

the common χP in the RA model, these shadow prices may differ, depending on whether distorting

the net aggregate savings, Ct − ŵtLt, takes place via changing consumption Ct or changing labor

income ŵtLt.

5 Ramsey Steady State

After the formulation of the Ramsey problem in the previous section, we come to the central focus

of the paper: The Ramsey planner’s prescription for the allocation of the HAIM economy in the
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long run and its implication for optimal capital taxation. The HAIM model is not a representative-

agent economy but a heterogeneous-agent economy; as a result, its steady state is more involved.

We have the following definition:

Definition 3. The steady state of the HAIM economy meets two conditions:

1. Each aggregate variable converges to a non-zero finite limit.

2. The distributions of the consumption share ct(θ
t)/Ct and of the labor share lt(θ

t)/Lt across

θt are time invariant with finite bounded support.

If either of the two conditions fails to hold in the long run, we state that the economy has “no

steady state.”16 We also have:

Definition 4. The optimal solution to the Ramsey problem is defined as a Ramsey steady state if

it features the steady state of the HAIM economy.

We are ready to state our main finding.

Proposition 2. Impose Assumption 1.

1. If α ≥ 1, there is no Ramsey steady state with R < 1/β.

2. If α < 1, a Ramsey steady state with R < 1/β is possible, but (i) the corresponding shadow

price of resources, µt, must diverge in the limit, and (ii) the planner may not implement the

MGR.

Our main finding contrasts sharply with the result obtained by Aiyagari (1995), who argued

for the imposition of a positive capital tax to restore the MGR in the assumed Ramsey steady

state. Our first result listed in Proposition 2 is clearly at odds with the basic premise of Aiyagari

(1995) that a Ramsey steady state with R < 1/β exists. We show in the proof that if there exists

a Ramsey steady state with α ≥ 1, then in this steady state both the MGR and R = 1/β must

hold; otherwise, the Ramsey steady state does not exist. The second result of Proposition 2 also

deviates from that prescribed by Aiyagari (1995). As shown in the proof of Proposition 2, the only

possibility for the existence of a Ramsey steady state with R < 1/β has to come along with the

16Straub and Werning (2014) made the distinction between interior and non-interior steady states. Their interior
steady states correspond to Condition 1 in our Definition 3. It is more convenient for us to conduct the analysis
under our definition.
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divergence of µt, the shadow price of resources. This contradicts the implicit assumption made

by Aiyagari (1995) that µt converges to a finite limit. At any rate, Proposition 2 shows that the

Ramsey steady state described by Aiyagari (1995) does not arise at the optimum.

As already mentioned, the key driving force of our result stems from the asymmetric converging

rate between Part 1 and Part 2 of W (t), which originated from the frictions of the HAIM economy.

In the presence of Ht → ∞ associated with R < 1/β in the steady state, the limiting behavior

of WC(t) and −WL(t) shown in (26)-(27) is dominated by their Part 2 so that both WC(t) and

−WL(t) explode in the limit. In the proof of Proposition 2, this divergence of WC(t) or −WL(t)

causes the violation of the FOCs (23)-(25) that characterizes the optimal Ramsey allocation if

α > 1, and it causes the planner to choose a corner rather than an interior aggregate solution if

α = 1. Either way, it makes the Ramsey steady state fail to exist in the case of α ≥ 1. Thanks

to our primal approach, the divergent force embedded in WC(t) or −WL(t) can be seen clearly by

means of our derived Wt.

Intuitively, unlike households in the face of idiosyncratic income shocks, the Ramsey planner

faces no uncertainty in allocating aggregate resources. The strict inequality R < 1/β in the steady

state then indicates that the market discounting rate is lower than the preference discounting rate.

This feature of asymmetric discounting impels a desire for the planner to front-load aggregate

consumption and/or back-load aggregate labor through its policy. Such a desire persists as long

as R < 1/β holds in the steady state. Thus, unless there exists a counterbalance to offset the

planner’s desire, the persistence can lead to “extremes” to upset the Ramsey steady state. We

explain below that while a counterbalance exists in the case of α < 1, there does not in the case

of α ≥ 1; in fact, there is an enforcement to enhance the planner’s desire if α > 1.

As discussed in Section 4.2, the utility costs of implementing a policy depend on the policy

effects on the net savings of households. Let us consider the impact of changing aggregate con-

sumption on the net savings through consumption spending. There is only a term involving Ct in

Part 2 of W (t) given by (18). Expressing in βtW (t) and omitting ηt(θ
t), this term equals

βtC1−α
t Hα−1

t ζt(θ
t)

−1

α = PtCt

ζt(θ
t)

−1

α

Ht

,

which represents the θt household’s consumption spending at time t according to the consump-

tion sharing rule (13). From (15), PtCt = βtC1−α
t Hα

t and so ∂(PtCt)/∂Ct = (1 − α)βtC−α
t Hα

t .

Thus, all else equal, a drop in aggregate consumption Ct will raise, lower, or not change individual

consumption spending via altering PtCt if α is larger than, less than, or equal to 1, respectively.
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This implies that a reduction in aggregate consumption (front-loading consumption) will make

the government constraint associated with ηt(θ
t) in (18) looser, tighter, or unchanged, depending

on whether α is larger than, less than, or equal to 1, respectively. Since front-loading aggregate

consumption relaxes the government constraint if α > 1, it actually enforces the planner’s desire

to front-load aggregate consumption in the presence of R < 1/β in the steady sate. By contrast,

since front-loading aggregate consumption tightens the government constraint if α < 1, it counter-

balances the planner’s desire to front-load aggregate consumption in the presence of R < 1/β in

the steady state.17

When α = 1, neither enforcement (associated with α > 1) nor counterbalance (associated with

α < 1) occurs. We then see a clean case of front-loading aggregate consumption in the presence

of R < 1/β in the steady state. From the proof of Proposition 2, we know that µt is increasing

and divergent because Ht is increasing and divergent. If α = 1, we have WC(t) = C−1
t from (26).

Thus, given that µt increases over time, it is apparent that the optimal Ct determined by the FOC

(23), namely, C−1
t = µt, will decrease over time. In the limit we obtain Ct → 0, which violates

Condition 1 of Definition 3 for the steady state of the HAIM economy.

It is important to recognize that the Ramsey prescription suggested by Aiyagari (1995) — a

positive capital tax to enforce the MGR in the steady state — is still feasible to the Ramsey planner.

However, that prescription is inconsistent with the necessary FOCs of the Ramsey problem, and

hence it cannot be a Ramsey steady state. This analysis through the primal Ramsey approach

is overlooked by Aiyagari (1995) in his dual approach. Overall, Proposition 2 suggests that the

MGR, which obeys production efficiency, might not be the most important margin to the Ramsey

planner. This possibility is consistent with the results of Chien and Wen (2017) who found that

the Ramsey planner always intends to relax the frictions imposed by incomplete markets, so as to

aim for R = 1/β in the steady state.

17In the presence of R < 1/β in the steady state, the planner would like to back-load aggregate labor as well as
front-load aggregate consumption. However, note that back-loading aggregate labor always tightens the government
constraint associated with ηt(θ

t) in (18), regardless of the value of γ. This implies that, unlike front-loading aggregate
consumption, there always exists the counterbalance to offset the planner’s desire to back-load aggregate labor in
the presence of R < 1/β in the steady state. It explains why the violation of the FOCs in the proof of Proposition
2.is through (23) rather than (24).
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6 Endogenous Government Spending

This section checks the robustness of our findings by altering the model setup from exogenous to

endogenous government spending, which is the main setting considered by Aiyagari (1995). We

show here that even with endogenous government spending, our results are robust and remain

unchanged.

Following Aiyagari (1995), the household lifetime utility U is modified to

UG =

∞∑

t=1

βt
∑

θt

[
u(ct(θ

t))− v

(
lt(θ

t)

θt

)
+ V (Gt)

]
πt(θ

t),

where V (.) is the utility function of public consumption Gt, which is assumed common for all

households. The usual assumptions are applied to V (.). This modification of the setup does not

change the household problem since the determination of Gt is exogenous to households. However,

the Ramsey problem is changed slightly because Gt is now a choice variable to the Ramsey planner.

As long as Gt is non-negative (which could be ensured by assuming V ′(0) = ∞), Gt can be chosen

to satisfy the time t resource constraint so that Proposition 1 still applies. The Lagrangian for the

Ramsey problem is modified as

LG = max
{Ct,Lt,Kt+1,{ât+1(θt)},{ζt(θt)},Gt}

∑

t≥1

βt[W (t) + V (Gt)]

+
∑

t≥1

βtµt [F (Kt, Lt) + (1− δ)Kt −Kt+1 − Ct −Gt]

+
∑

t≥1

∑

θt

βtξt(θ
t)

[
ζt(θ

t)−
∑

θt+1≻θt

ζt+1(θ
t+1)π(θt+1|θt)

]
− χP â1

+
∑

t≥1

βtC−α
t Hα

t

[
∑

θt

ât+1(θ
t)
∑

θt+1≻θt

vPt+1(θ
t+1)π(θt+1|θt)

]
πt(θ

t),

which is identical to the Lagrangian L, except for the replacement of W (t) by W (t) + V (Gt). The

FOCs with respect to aggregate consumption, labor, and capital remain the same as before. The

additional FOC with respect to Gt is given by

V ′(Gt) = µt, (28)

which together with the FOC (25) does imply the MGR if the Ramsey steady state is assumed.
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This is essentially the procedure for obtaining the MGR in Aiyagari (1995); see Equation (20) of

his Proposition 1 on page 1170.

However, the introduction of endogenous Gt does not alter the fundamental force that drives our

main result. The marginal social benefit of having one extra unit of aggregate consumption, namely,

WC(t), could still diverge in the long run given that the Ramsey outcome of Rβ = 1 is infeasible in

the steady state. With the additional government tool — the endogenous government spending —

the extra output can be spent either on government spending or on private consumption, and hence

the marginal benefits to the social welfare by exercising these two options have to be equalized at

the optimum. Indeed, putting (23) and (28) together gives rise to V ′(Gt) = WC(t). This equality

casts doubt on the convergence assumption of Gt to a positive value in the steady state because it

is inconsistent with the divergence of WC(t).

7 Conclusion

This paper revisits the long-standing issue of Ramsey capital taxation in the HAIM economy. Our

results show that the conventional wisdom on the issue may be problematic. In particular, we find

that the policy prescription of taxing capital to restore the MGR in the steady state may not be

optimal for the Ramsey problem. Instead, the Ramsey planner might choose an outcome featuring

no steady state if the situation where the risk-free rate is lower than the time discount rate persists.

As this persistence is a key feature of the HAIM environment, assuming the existence of a Ramsey

steady state is not innocuous.
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A Appendix

A.1 Proof of Proposition 1

“Only if ” part: Condition 1 of Proposition 1 — the resource constraints — is implied by a

competitive equilibrium since it is part of the definition. Note also that Conditions 5 and 6 of

Proposition 1 are implied by (8) and (11) from the household problem in competitive equilibrium.

The remaining proof is to show that the time 0 budget constraint (7), the measurability con-

ditions (5) and the borrowing constraints (6) in the household problem can be re-expressed as

Conditions 2-4 of Proposition 1. Substituting (4), (13)-(14) and (16)-(17), all of which build on

the household’s optimal behavior, into (5)-(7), we obtain Conditions 2-4.

“If ” part: Suppose the sequence of asset holdings {ât+1(θ
t)}

∞
t=1, aggregate allocations {Ct, Kt+1, Lt}

∞
t=1,

and cumulative multipliers {ζt(θ
t)}

∞
t=1 with the associated aggregate multipliers {Ht, Jt}

∞
t=1 satisfy

Conditions 1-6 stated in Proposition 1. We show that a competitive equilibrium of the HAIM

economy can be constructed in the following way.

First, we pick prices and taxes defined below:

qt = FK(Kt, Lt), (29)

wt = FL(Kt, Lt), (30)

Pt = βtC−α
t Hα

t , (31)

1− τk,t+1 =

Pt

Pt+1
− 1

FK(Kt+1, Lt+1)− δ
=

1
β

(
Ct

Ct+1

)−α (
Ht

Ht+1

)α
− 1

FK(Kt+1, Lt+1)− δ
, (32)

1− τl,t =
Lγ−1
t J1−γ

t

FL(Kt, Lt)C
−α
t Hα

t

. (33)

Note that (29)-(30) correspond to the profit-maximization conditions of the representative firm

and that (32) ensures that the no-arbitrage condition (4) holds.

Second, we show that the household problem can be solved. Let the individual consumption and

labor allocations be given by (13) and (14). Then, individual consumption and labor allocations

together with prices defined in (29)-(33) satisfy the first-order conditions, (9) and (10), of the

household problem. To derive the household’s Euler equation, we combine individual consumption

allocations, prices defined in (29)-(33), and Conditions 5-6. The time 0 budget constraint (7), the
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measurability conditions (5), and the borrowing constraints (6) in the household problem can be

obtained by using (29)-(33) plus Conditions 2-4.

Third, we need to make sure that all markets clear. Plugging in individual consumption al-

locations (13) into Condition 1 implies that the market clearing condition of the good market is

satisfied. The labor market clearing condition is achieved by aggregating (14) across all households.

For the asset market, we pick {Bt+1}
∞
t=1 such that

Bt+1 =
∑

θt

ât+1(θ
t)−Kt+1,

which ensures that the asset market clears in each time period.

The last condition to be met in the competitive equilibrium is the government budget constraint.

From (7), we have

B1 +K1 = â1 =
∑

t≥1

Pt

∑

θt

[
ct(θ

t)πt(θ
t)− ŵtlt(θ

t)πt(θ
t)
]

=
∑

t≥1

Pt [Ct − wtLt + τl,twtLt]

=
∑

t≥1

Pt [Ct + qtKt − F (Kt, Lt) + τl,twtLt] ,

where the derivation has made use of ŵt = wt(1− τl,t) and F (Kt, Lt) = wtLt + qtKt. Utilizing the

resource constraint and the no-arbitrage condition (4) then gives

B1 +K1 =
∑

t≥1

Pt [qtKt −Kt+1 + (1− δ)Kt + τl,twtLt −Gt]

=
∑

t≥1

Pt [(1 + (1− τk,t) (qt − δ))Kt −Kt+1 + τk,t (qt − δ)Kt + τl,twtLt −Gt]

=
∑

t≥1

Pt

[
Pt−1

Pt

Kt −Kt+1 + τk,t (qt − δ)Kt + τl,twtLt −Gt

]

= P0K1 +
∑

t≥1

Pt [τk,t (qt − δ)Kt + τl,twtLt −Gt] ,

which leads to the time 0 government budget constraint since we normalize P0 = 1.
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A.2 Proof of Relaxed Ramsey

We claim in the text that the optimal allocation chosen by the Ramsey planner that satisfies

Conditions 1-5 of Proposition 1 will also satisfy Condition 6 of Proposition 1. This claim enables

us to consider the relaxed rather than the original Ramsey problem. We now verify the claim. The

proof is done by contradiction.

Suppose there is an original optimal allocation {{ζt (θ
t)}, Ht, Jt, Ct, Lt, Kt+1, {ât+1 (θ

t)}}
∞
t=1 that

satisfies Conditions 1-5 but fails Condition 6 of Proposition 1. That is, there exist θ̂t at time t and

all its possible subsequent θ̂t+1 states at time t+ 1 that borrowing constraints do not bind and

x
(
θ̂t
)
≡ ζt(θ̂

t)−
∑

θ̂t+1≻θ̂t

ζt+1(θ̂
t+1)π(θ̂t+1|θ̂

t) > 0. (34)

We construct an alternative v allocation
{
{ζvt (θ

t)}, Hv
t , J

v
t , C

v
t , L

v
t , K

v
t+1, {â

v
t+1 (θ

t)}
}∞
t=1

that

deviates from the original allocation such that Conditions 1-5 of Proposition 1 still hold but only

tightens (34), i.e.,

x
(
θ̂t
)
> xv

(
θ̂t
)
≡ ζvt (θ̂

t)−
∑

θ̂t+1≻θ̂t

ζvt+1(θ̂
t+1)π(θ̂t+1|θ̂

t) ≥ 0. (35)

We shall prove that the alternative v allocation surpasses the original optimal allocation in the

household’s lifetime utility U . This then leads to a contradiction, implying that the optimal

allocation of the relaxed Ramsey problem must also satisfy Condition 6 of Proposition 1; otherwise,

there will be an alternative allocation to improve U .

To provide a clear exposition, we decompose the whole proof into three parts:

Part 1 : Construct the v allocation by making a (ǫ1, ǫ2)-variation to the original allocation.

First, we choose {ζvs (θ
s)} such that

ζvs (θ
s) =

ζs(θ
s)− ǫ1 if θs = θ̂t at s = t,

ζs(θ
s) + ǫ2 if θs =

(
θ̂t, θ̂t+1

)
at s = t+ 1,

ζs(θ
s) otherwise,

(36)

where ǫ1, ǫ2 > 0. Due to the strict inequality of (34), it is feasible to have (ǫ1, ǫ2) so that the chosen

{ζvs (θ
s)} according to (36) satisfies (35). The corresponding aggregate multipliers associated with

{ζvs (θ
s)} are denoted by Hv

t and Jv
t . Given (36), these aggregate multipliers are identical to the
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original ones except at time t and t+ 1, that is, Hv
s = Hs and Jv

s = Js if s /∈ {t, t+ 1} .

Second, we choose Cv
t and Lv

t such that

Cv
t

Hv
t

=
Ct

Ht

and
Lv
t

Jv
t

=
Lt

Jt

for all t. (37)

Thus, Cv
s = Cs and Lv

s = Ls if s /∈ {t, t+ 1} . Note that the intratemporal and intertemporal

shadow prices, (Lv
t )

γ−1 (Jv
t )

1−γ /
(
C

v

t

)−α
(Hv

t )
α and βt

(
C

v

t

)1−α
(Hv

t )
α−1 , are identical to those in

the original allocation for all t by our choice.

Third, we choose Kv
t such that

Kv
t+1 = F (Kv

t , L
v
t ) + (1− δ)Kv

t − Cv
t −Gt for all t. (38)

Fourth, we choose asset holdings {âvt+1(θ
t)} as follows:

âvs+1 (θ
s)πs+1

(
θs+1

)
=





âs+1 (θ
s)πs+1 (θ

s+1) if θs 6= θ̂t,

âs+1 (θ
s)πs+1 (θ

s+1) + Ω (θs) if θs = θ̂t,
(39)

where

Ω
(
θ̂t
)
≡ β

∑

θ̂t+1

π(θ̂t+1|θ̂t)





(
Ct+1

Ct

)1−α (
Ht+1

Ht

)α−1 (
ζvt+1(θ̂

t, θ̂t+1)
−1

α − ζt+1(θ̂
t, θ̂t+1)

−1

α

)

−
L
γ

t+1
J
−γ

t+1

C−α
t Hα

t

θ̂
γ

γ−1

t+1

(
ζvt+1(θ̂

t, θ̂t+1)
1

γ−1 − ζt+1(θ̂
t, θ̂t+1)

1

γ−1

)



 .

According to (36), both
(
ζvt+1(θ̂

t, θ̂t+1)
−1

α − ζt+1(θ̂
t, θ̂t+1)

−1

α

)
and

(
ζvt+1(θ̂

t, θ̂t+1)
1

γ−1 − ζt+1(θ̂
t, θ̂t+1)

1

γ−1

)

in Ω
(
θ̂t
)
are functions of ǫ2, and the value of Ω

(
θ̂t
)
is negative.

Note that there are two degrees-of-freedom for (ǫ1, ǫ2). As such, it is feasible for us to pick

(ǫ1, ǫ2) such that the chosen {ζvs (θ
s)} according to (36) satisfies the following condition:

[
ζvt (θ̂

t)
−1

α − ζt(θ̂
t)

−1

α −
Lγ
t J

−γ
t

C1−α
t Hα−1

t

θ̂
γ

γ−1

t

(
ζvt (θ̂

t)
1

γ−1 − ζt(θ̂
t)

1

γ−1

)]
+ Ω

(
θ̂t
)
= 0, (40)

where the term in the square brackets is positive and a function of ǫ1.

Part 2: Verify that the v allocation satisfies Conditions 1 to 5 of Proposition 1 and (35).

First, Condition 1 is satisfied according to (38). Condition 2, the implementability condition,

is satisfied given equation (40). Indeed, if we multiply (40) by βtC1−α
t Hα−1

t , then the resulting

sum of net savings between state θ̂t and all subsequent states θ̂t+1 remains unchanged in terms of
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present value. Condition 3, the measurability conditions, holds for all time periods and all states

by the construction of the asset holdings according to (39). The asset holdings, âvs+1 (θ
s) , do not

change if θs 6= θ̂t. The measurability condition for âvt+1(θ̂
t) if θs = θ̂t is also satisfied according to

(39) since the variation term, Ω
(
θ̂t
)
, does not depend on θ̂t+1.

Next, we verify whether Condition 4, the borrowing constraints, holds. The borrowing con-

straints for θs, s ≤ t, are satisfied owing to (40). For θs, s > t + 1, and θt+1 6= θ̂t+1, the

borrowing constraints still hold as the associated allocations are irrelevant to the variation. For

θ̂t+1, its corresponding borrowing constraint becomes tighter. This is because Ω
(
θ̂t
)
< 0 leads to

âvt+1(θ̂
t) < ât+1(θ̂

t), which implies less wealth inherited from time t to t + 1. However, since for{
θ̂t, θ̂t+1

}
the borrowing constraints are not binding at time t + 1, this variation does not violate

the borrowing constraint at θ̂t+1 provided that the (ǫ1, ǫ2)-variation is sufficiently small.

Finally, Condition 5 is satisfied by our construction of the v allocation.

Part 3: Compare the lifetime utility U under the original allocation and the v allocation.

Note that the lifetime utility U is concave in ζvt (θ
t)

−1

α
Ct

Ht
(individual consumption) and convex in

θ
1

γ−1

t ζvt (θ
t)

1

γ−1 Lt

Jt
(individual labor) and, therefore, the (ǫ1, ǫ2)-variation in the v allocation enhances

U .

A.3 Proof of Lemma 1

Using (22), we have from (19):

∑

θt+1

ηt+1(θ
t+1)π(θt+1|θt) = ηt(θ

t) +
∑

θt+1

ϕP
t+1(θ

t+1)π(θt+1|θt) ≥ ηt(θ
t),

which implies that ηt(θ
t) is non-decreasing on the average, and this average becomes strictly in-

creasing if ϕP
t (θ

t) > 0 for some θt. Since η0 = χP > 0, the value of
∑

θt ηt(θ
t)πt(θ

t) is clearly

positive.

A.4 Proof of Proposition 2

Suppose there is a Ramsey steady state. By the FOCs of the Ramsey problem, namely, (23)

through (25), there are two possible cases for the existence of the Ramsey steady state: (a) µt

itself converges to a finite positive limit, and (b) µt diverges but the growth rate of µt,
µt+1

µt
,

converges to a finite positive limit.

First, let us consider the case (b). There are three subcases, depending on the value of α.
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1. α = 1. WC(t) is reduced to C−1
t , which is a finite constant in the steady state. This implies

that the FOC (23) cannot hold since µt diverges in the limit. Thus, we have a contradiction

with the existence of the Ramsey steady state.

2. α > 1. From (24) with FL(Kt, Lt) being a finite constant in the steady state, we see that the

divergence of µt implies the divergence of −WL(t) as well. According to −WL(t) given by

(27), the divergence of −WL(t) cannot be due to the terms ŵt = wt(1−τl,t), C
−α
t , or Part 1 of

−WL(t), because all of them are finite constants in the steady state. Its occurrence must be

due to Part 2 of −WL(t) because limt→∞Ht = ∞ or the weighted sum of ηt(θ
t) stochastically

diverges to infinity in the limit. The same divergent force with respect to Ht or the weighted

sum of ηt(θ
t) also causes WC(t) in (26) to explode. However, WC(t) diverges to negative

infinity because (1 − α) < 0. Since µt diverges to positive rather than negative infinity, this

leads to the violation of the FOC (23) that needs to be satisfied at the maximization of the

Ramsey problem. Again, we have a contradiction with the existence of the Ramsey steady

state.

3. α < 1. Both WC(t) in (26) and −WL(t) in (27) are increasing sequences that are driven by

the common force that limt→∞ Ht = ∞ or the weighted sum of ηt(θ
t) stochastically diverges

to infinity in the limit. It is thus possible to have a steady state in which the FOCs (23)-(25)

are all satisfied and µt+1/µt converges to a finite limit. However, depending on the value of

µt+1/µt in the limit, we see from (25) that there is no guarantee that the Ramsey planner

will implement the MGR in the steady state.

We conclude (i) if α ≥ 1, there is no possibility for the existence of a Ramsey steady state in

which the growth rate of µt converges to a finite limit, and (ii) if α < 1, there is the possibility for

the existence of a Ramsey steady state in which the growth rate of µt converges to a finite limit,

but the planner may not implement the MGR.

Next, we address the case (a) where µt itself converges to a finite limit. Because µt itself

converges to a finite limit, the MGR holds in this Ramsey steady state by the FOC (25). A finite

limit of µt also implies that WL(t) must converge in the limit according to the FOC (24). As

noted in Section 4.3, the term
∑

θt ηt(θ
t) lt(θ

t)
Lt

πt(θ
t) in −WL(t) of (27) represents the shadow price

of distorting net aggregate savings via changing labor income. Given that the government policy

tools are distortive and hence that the first-best aggregate allocation is infeasible to the Ramsey

planner, the constraints associated with ηt(θ
t) of W (t) defined in (18) will bite in the Ramsey
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steady state. Consequently, analogous to χP > 0 at the optimum in the RA model, we will have
∑

θt ηt(θ
t) lt(θ

t)
Lt

> 0 in the Ramsey steady state in the HAIM economy. With this positive shadow

price, by (27), one of the necessary conditions for the convergence of WL(t) is that Ht must be

finite in the limit. A finite limit of Ht then leads to R = 1/β by equation (21) in this Ramsey

steady state. Finally, from (16) and (4), we obtain the steady-state Euler equation in competitive

equilibrium:

1 = β [(1− τk,t+1)(FK − δ) + 1] ,

which together with the MGR leads to a zero capital tax in this Ramsey steady state.
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