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1 Introduction

This paper considers a dynamic neoclassical economy in which privately informed idiosyncratic

labor productivity shocks evolve stochastically over time. The stochastic nature of these produc-

tivity shocks accounts for a variety of uninsurable risks to the value of human capital over the

course of people’s lives. We obtain a new martingale property under a fairly general assumption

for the stochastic process of idiosyncratic labor productivity shocks. We then apply the finding

to (i) the characterization of constrained efficient intertemporal wedges in the aggregate, and (ii)

the extension of the so-called immiseration to an environment more general than the extant lit-

erature. Despite the vast amount of work and progress achieved in the literature, it is surprising

that relatively little is known about the property of constrained efficient allocations chosen by the

social planner at the aggregate level while dealing with information frictions at the individual level.

A main contribution of our paper is to shed light on the constrained efficient allocations at the

aggregate level via the use of the new martingale property.

We study a social planning problem in which the planner intends to provide an efficient in-

surance contract to each agent of the economy, subject to agents’ incentive compatibility (IC)

constraints caused by information frictions in a dynamic stochastic framework. This class of prob-

lems seeks the optimal trade-off between insurance and incentives and has been studied intensively

in two related strands of the literature: dynamic contracts (DC) and new dynamic public finance

(NDPF).1 Instead of the conventional recursive formulation in the literature, however, we use a

multiplier approach to reformulate the social planning problem in a sequential fashion. Following

Fernandes and Phelan (2000), we first decompose agents’ lifetime IC constraints into a sequence of

temporary ones for all possible states at all times. We then encode the bite of these temporal IC

constraints by their associated Lagrange multipliers. The accumulation of these multipliers evolves

to ensure the satisfaction of agents’ incentive compatibility over time and, at the same time, it

endogenously determines stochastic Pareto-Negishi weights placed on an agent in the planner’s

1For reviews on DC, see Part V in Ljungqvist and Sargent (2012) and Pavan (2016). For reviews on NDPF,
see Golosov, Tsyvinski, and Werning (2007); Kocherlakota (2010); Golosov, Troshkin, and Tsyvinski (2011); and
Golosov and Tsyvinski (2015). See Bergemann and Pavan (2015) for a recent symposium on DC and mechanism
design. For an overview on the theory of recursive contracts to solve for DC/NDPF problems, see Golosov, Tsyvinski,
and Werquin (2016). Kocherlakota (2010, p. 3) explicitly noted that the optimal tax problem in NDPF is isomorphic
to a dynamic contracting problem between a risk-neutral principal and a risk-averse agent who is privately informed
about her type.
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objective. Under a fairly general assumption for the stochastic process of idiosyncratic labor pro-

ductivity shocks, we show that the evolution of the Pareto-Negishi weight associated with agents’

consumption is a nonnegative martingale.

The extant literature obtains a nonnegative martingale property in the following way; see

Kocherlakota (2010, chapter 3). First it derives the so-called inverse Euler equation from the

optimization of the social planning problem. This equation captures the social planner’s desire to

smooth the marginal cost of utility production over time. Next, it uses the inverse Euler equation

to show that the marginal cost of utility production is a martingale under the restriction that

βR = 1, where β is a discount factor and R a gross rate of return from saving. Our martingale

property is derived directly from the IC constraints and so is independent of the optimization of

the social planning problem. Importantly, it does not build on the restriction βR = 1.

The focus of the DC/NDPF literature has been on the micro individual rather than the macro

aggregate allocation. This is true despite most of the literature considers the scenario where “the

social planner does all the saving in the economy by choosing the amount of aggregate savings

” (Golosov, Troshkin, and Tsyvinski (2011, p.157)). Moreover, it is important to bring micro

individual behavior to bear on macro economic aggregates, since the economy-wide aggregate

variables of an economy remain the central focus of macroeconomics. We apply our nonnegative

martingale finding to the characterization of constrained efficient in the aggregate for the dynamic

Mirrleesian economy. We address the optimal allocation over time for the economy as a whole in

terms of the intertemporal aggregate wedge. Chien, Cole, and Lustig (2011) adopted the multiplier

approach and worked with an isoelastic utility over consumption in a positive analysis of asset

pricing. They showed that the intertemporal prices for the macro aggregate of an economy depend

on a specific moment of the distribution of accumulative multipliers. We obtain a similar result in

our normative analysis: The constrained efficient intertemporal wedges for the macro aggregate of

our dynamic Mirrleesian economy depend on a specific 1/σ moment of the Pareto-Negishi weights

placed on consumption, where 1/σ denotes the intertemporal elasticity of substitution (IES). In

particular, distortion for aggregate saving is negative or positive, depending on whether the IES is

elastic or inelastic.

We also apply our nonnegative martingale finding to the extension of the so-called immiseration

to a more general environment. Thomas and Worrall (1990) and Atkeson and Lucas (1992) obtained
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the immiseration result in i.i.d. and endowment economies. Kocherlakota (2010, chapter 3) applied

Doob’s (1953) martingale convergence theorem to the inverse Euler equation to derive immiseration

under a more general environment. However, it requires imposing the restriction βR = 1. Using

our obtained nonnegative martingale result, we demonstrate that immiseration still holds under

Markov or more general stochastic processes and in a neoclassical production economy without the

restriction βR = 1.2

Related literature

Our paper is related to several strands of the literature. We briefly discuss them below.

Werning (2007) has formulated dynamic Mirrleesian taxation by encoding IC constraints through

multipliers on these constraints. However, there is de facto no variation of multipliers over time

in the Werning framework. This is because he assumed that agents’ heterogeneity in their char-

acteristics remains invariant over time. Park (2014) extended the Werning model to allow for

stochastic agent types but within a Ramsey rather than Mirrleesian framework; moreover, the

issues investigated are different.

The use of the multiplier approach to solving macroeconomic models was pioneered by Kehoe

and Perri (2002), building on an earlier work by Marcet and Marimon (1999). Chien, Cole, and

Lustig (2011) used stochastic accumulative multipliers to characterize allocations and aggregate

prices, providing a tractable and computationally efficient algorithm for computing equilibria in the

context of asset pricing. In repeated moral hazard environments, Mele (2014) demonstrated a more

efficient computational algorithm with the recursive multiplier and with the first-order approach.

In an environment similar to ours but working with a continuum of agent types, Kapička (2013)

adopted the first-order approach to successfully overcome the complexity caused by the persistence

of shocks as well as the large numbers of shock values.3 Our approach differs because it characterizes

intertemporal aggregate wedges completely through a specific moment of the Pareto-Negishi weight

distribution. Our method fits into the literature of replacing primal state variables with dual ones.

Messner, Pavoni, and Sleet (2016) argued that the dual approach is applicable to a large class of

2In this paper, we abstract from addressing the issue of implementation. For the implementation of constrained
efficient allocations in dynamic Mirrleesian economies, see Kocherlakota (2010, chapter 4). The work provides
a recipe for implementing constrained efficient allocations as part of a competitive equilibrium. Albanesi and
Sleet (2006) and Golosov and Tsyvinski (2006) put forth simple implementations in certain specific stochastic
environments.

3See also Pavan, Segal, and Toikka (2014). These authors worked with a continuum of agent types in the context
of DC and extended the approach pioneered by Myerson (1981) to dynamic settings.
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economies and often leads to an easy characterization of constrained efficient allocations.

Espino, Kozlowski, and Sánchez (2015) studied the partnership interaction with private in-

formation and capital accumulation in a two-agent production economy. They found that the

incentive of misreporting vanishes for the agent with dominating ownership and, hence, the immis-

eration result applies only to the dominated agent. Espino (2005) envisioned a private information

economy with heterogeneous agents in terms of their discount factor and showed that the immis-

eration result is avoided if the economy does not collapse in the long run. In terms of quantitative

studies, Veracierto (2014) considered a similar private information environment with aggregate un-

certainty and assumed log utility functions in both consumption and leisure. His result indicated

that the idiosyncratic information friction has no effect on aggregate fluctuations quantitatively.

The study is consistent with our finding that the intertemporal prices are not distorted with a

unitary value of the IES. Given labor supply, Farhi and Werning (2012) quantitatively explored

the welfare effect of introducing optimal capital taxation prescribed by the inverse Euler equation.

The evolution of agents’ private information is governed by an exogenous process in our paper as in

much of the DC/NDPF literature. Makris and Pavan (2016) considered an environment in which

agents’ privately informed productivity evolves endogenously as a result of learning by doing. They

addressed dynamic optimal taxation, showing that some of the results established on the basis of

exogenous processes may be overturned.

There are other papers related to our work. We comment on and make comparisons with them

as we proceed.

The rest of the paper is organized as follows. Section 2 describes a dynamic Mirrleesian econ-

omy. Section 3 proves the nonnegative martingale property. We then apply this property to

the characterization of constrained efficient intertemporal aggregate wedges in Section 4 and the

extension of immiseration to a more general environment in Section 5. Section 6 concludes.

2 Model economy

We consider a dynamic neoclassical economy in which privately informed idiosyncratic skill (labor

productivity) shocks evolve stochastically over time. The stochastic nature of these skill shocks

accounts for a variety of uninsurable risks to the value of human capital over the course of people’s
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lives. The environment is similar to that in Kocherlakota (2010). For simplicity, our exposition

focuses on the first-order Markov process for skill shocks. We show in Lemma 2 that our results

remain valid for a fairly general stochastic process of skill shocks.

2.1 Economic environment

2.1.1 Preferences and skill shocks

Time is discrete, indexed by t = 0, 1, ..., T , where T = ∞ is allowed. The economy is populated

by a continuum of either finitely lived (T < ∞) or infinitely lived (T = ∞) agents with a unit

measure.

Agents are ex ante identical but ex post heterogeneous. Ex post heterogeneity arises because

agents have different histories with regard to their realization of idiosyncratic skill shocks over time.

This is the only heterogeneity across agents. Realized skill shocks are the private information of

agents and so are unknown to the social planner. An agent’s skill shock at time t, denoted by θt,

takes positive values in a finite set Θ and is realized at the beginning of the time period. We attach

positive probabilities to all elements of Θ. The skills at t = 0 are drawn from a distribution over Θ,

and then θt follows a first-order Markov process independently and identically across agents at each

point in time. We let θt = (θ0, θ1, ..., θt) designate the history of events for an agent up through

and until time t and let πt(θ
t) denote its unconditional probability as of time 0. Because of the

independence of skill shocks across agents, a law of large numbers applies so that the probability

πt(θ
t) also represents the fraction of the population that experiences θt at time t. We call an

agent with history θt simply “the agent θt.” For s > t, the probability of having θs conditional on

the realization of θt is denoted by πs(θ
s|θt) =

∏s−1
j=t π(θj+1|θj), where π(θj+1|θj) is the conditional

probability of θj+1 given θj. We set the initial skill to 1 for all agents before they draw θ0. There

are no aggregate shocks.

The period utility of agents is given by4

4Additive separability between consumption and labor in the instantaneous utility is standard in NDPF; see, for
example, Kocherlakota (2005); Golosov, Tsyvinski, and Werning (2007); Werning (2007); and Farhi and Werning
(2012). It is a critical assumption for the derivation of the so-called inverse Euler equation in NDPF; see Kocherlakota
(2010, p. 54). Most papers in DC consider endowment economies (see Ljungqvist and Sargent (2012, Part V)) or
quasilinear payoffs (see Bergemann and Pavan (2015), and Pavan (2016)).
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u(ct)− v(nt),

where u(.) is strictly concave and strictly increasing in consumption ct, while v(.) is strictly convex

and strictly increasing in labor supply nt. Both u(.) and v(.) are continuously differentiable. We

impose standard Inada conditions to ensure that both consumption and labor supply are positive.

In particular, we impose limc→0 u
′(c) = +∞. To facilitate and simplify the analysis, we make the

following assumption throughout the paper:

Assumption 1. The disutility function of labor takes the form v(n) = nγ

γ
, where γ > 1.

This is a popular functional form for v(.), and the reciprocal of γ − 1 is the Frisch elasticity of

labor supply. Lemma 2 later shows that we can dispense with this assumption for a key result of

our paper.

Agents are assumed to maximize their expected discounted utility

EU =
T∑
t=0

∑
θt

βtπt(θ
t)

[
u
(
ct(θ

t)
)
− v

(
lt(θ

t)

θt

)]
, (1)

where β ∈ (0, 1) denotes the discount factor and lt = θtnt is the effective labor supply at time t.

2.1.2 Production technology

The production technology is neoclassical, denoted by F (Kt, Lt), whereKt and Lt =
∑

θt lt(θ
t)πt(θ

t)

are aggregate capital and aggregate effective labor, respectively. The resource constraints of the

economy are given by

Ct +Kt+1 ≤ F (Kt, Lt) + (1− δ)Kt, ∀t, (2)

where Ct =
∑

θt ct(θ
t)πt(θ

t) denotes aggregate consumption and δ is the depreciation rate for

capital. The initial capital stock K0 is exogenously given; all agents are initially endowed with

K0 units of capital at time t = 0. We exclude government expenditures to focus on the insurance

issue.
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2.2 Planning problem

We turn to the planning problem facing the society.

2.2.1 Temporary incentive-compatibility constraints

Although realized skill shocks and their history are the private information of agents, following

the seminal work of Mirrlees (1971) and most of the DC/NDPF literature, effective labor supply

lt = θtnt and consumption ct (and so saving) are publicly observable. We consider a social planner

that offers each agent an insurance contract with commitment.5 Applying the revelation principle

allows us to restrict attention to contracts with a direct mechanism whereby agents are induced

to tell the truth about their skill types. Thus, each agent reports her skill types over time and

receives an allocation as a function of this report so that the allocation is required to satisfy the

IC constraints:

T∑
t=0

∑
θt

βtπt(θ
t)

[
u
(
ct(θ

t)
)
− v

(
lt(θ

t)

θt

)]
≥

T∑
t=0

∑
θt

βtπt(θ
t)

[
u
(
ct(θ̂

t)
)
− v

(
lt(θ̂

t)

θt

)]
,∀θt, θ̂t.

(3)

Kocherlakota (2010) shows that the set of allocations {ct(θt), lt(θt)} achievable by the society are

exactly the ones that satisfy the IC constraints (3) and the resource constraints (2).

The IC constraints above are in terms of lifetime utility as of t = 0. Fernandes and Phelan

(2000) showed that when idiosyncratic shocks are discrete and the probability of each shock is

strictly positive (both conditions are met in our setting), the lifetime IC constraints are equivalent

to a sequence of the temporary IC constraints, each of which rules out one-shot deviations at a

time:

5As time passes, information about agent types (skills) may be revealed. The social planner is assumed to commit
itself to the contract without exploiting information revelation as time passes. It is known that the society is better
off with such a commitment than without it; see, for example, Laffont and Tirole (1988).
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u
(
ct(θ

t)
)
− v

(
lt(θ

t)

θt

)
+

T∑
s=t+1

∑
θs|θt

βs−tπs(θ
s|θt)

[
u (cs(θ

s))− v
(
ls(θ

s)

θs

)]

≥ u
(
ct(θ

t−1, θ̂t)
)
− v

(
lt(θ

t−1, θ̂t)

θt

)

+
T∑

s=t+1

∑
θs|θt

βs−tπs(θ
s|θt)

[
u
(
cs(θ

s; θ̂t)
)
− v

(
ls(θ

s; θ̂t)

θs

)]
, ∀t, θt, θ̂t, (4)

where (θs; θ̂t) denotes (θ0, θ1, ..., θt−1, θ̂t, θt+1, ..., θs). However, the proof of Fernandes and Phelan

(2000) builds on bounded period utility and allowing for unbounded period utility is important for

our long-run analysis. Appendix A.1 shows that, even if period utility is unbounded, the following

condition can uphold the result of Fernandes and Phelan (2000):6

lim
t→∞

sup
δ
βtwt(δ(θ

t)) = 0, (5)

where wt(δ(θ
t)) ≡

∑∞
s=1

∑
θt+s|θt β

sπt+s(θ
t+s|θt)

[
u (ct+s(δ(θ

t+s)))− v
(
lt+s(δ(θt+s))

θt+s

)]
and δ(.) de-

notes a reporting strategy of agents.

While u(.) may be unbounded, we consider only bounded v(.) under Assmption 1 (which is a

reasonable imposition, say, all agents are endowed with a unit of time each time period). Thus,

if T is finite or T = ∞ with bounded u(.), it is evident that condition (5) will be satisfied. If

T = ∞ but with unbounded u(.), Golosov, Tsyvinski, and Werquin (2016, section 2.4.2) showed

that condition (5) will still be satisfied if u(.) takes the constant relative risk aversion (CRRA)

form (including a logarithmic utility function).7 In our applications, we do assume that u(.) takes

the CRRA form; see Assumption 2 in Section 4.

The replacement of the lifetime IC constraints (3) by a sequence of the temporal IC constraints

(4) is important to our analysis, which will be clear later on.

6Sleet and Yeltekin (2010) gave the same condition but without its formal proof.
7Golosov, Tsyvinski, and Werquin (2016) addressed the question of whether the solution from the Bellman

equation achieves the supremum of the primal maximization problem in dynamic Mirrleesian economies. It turns
out that condition (5) can ensure a positive answer; see Golosov, Tsyvinski, and Werquin (2016, propositon 4).
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2.2.2 Social planner’s problem

The social planner chooses allocations {ct(θt), lt(θt)} to maximize the objective (1), subject to the

sequence of the temporal IC constraints (4) and the resource constraints of the economy (2).

Let {βtπt(θt)ψ(θt−1, θt, θ̂t)} be the Lagrange multipliers on the temporal IC constraints (4) and

{µt} on the resource constraints (2). Incorporating these constraints into the objective (1) yields

the following Lagrangian:

L =
T∑
t=0

∑
θt

βtπt(θ
t)

[
u
(
ct(θ

t)
)
− v

(
lt(θ

t)

θt

)]
+

T∑
t=0

∑
θt,θ̂t

βtπt(θ
t)ψ(θt−1, θt, θ̂t)

×

 u (ct(θ
t))− v

(
lt(θt)
θt

)
+
∑T

s=t+1

∑
θs|θt β

s−tπ(θs|θt)
[
u (cs(θ

s))− v
(
ls(θs)
θs

)]
−u
(
ct(θ

t−1, θ̂t)
)

+ v
(
lt(θt−1,θ̂t)

θt

)
−
∑T

s=t+1

∑
θs|θt β

s−tπ(θs|θt)
[
u
(
cs(θ

s; θ̂t)
)
− v

(
ls(θs;θ̂t)

θs

)]


+
T∑
t=0

µt [F (Kt, Lt) + (1− δ)Kt − Ct −Kt+1] .

If T < ∞, the Lagrangian L is well defined; however, this may not be true if T → ∞. When

T → ∞, the Lagrange multipliers in the Lagrangian L belong to an infinite dimensional space

since the set of constraints is infinity as T → ∞. A question arises: Can these multipliers be

represented as a summable sequence of real numbers in the infinite dimensional space? Papers

including Dechert (1982), Rustichini (1998), and Le Van and Cagri Saglam (2004) have addressed

the question. They extended the Lagrangian from finite to infinite dimensional spaces and provided

sufficient conditions for a positive answer. Utilizing results of these papers, Appendix A.2 presents

a justification for the Lagrangian L in which multipliers can be represented as a summable sequence

of real numbers.

With the imposition of Assumption 1, Appendix A.3 shows that one can rewrite the “raw”

Lagrangian L and express it as

L =
T∑
t=0

∑
θt

βtπt(θ
t)

[
φc(θ

t)u
(
ct(θ

t)
)
− φl(θt)v

(
lt(θ

t)

θt

)]
(6)

+
T∑
t=0

µt [F (Kt, Lt) + (1− δ)Kt − Ct −Kt+1] ,
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where φc(θ
t) and φl(θ

t) are the Pareto-Negishi weights placed on the agent θt, and their evolutions

are governed by

φc(θ
t) = 1 +

t∑
s=0

∑
θ̂s

[
ψ(θs−1, θs, θ̂s)−

πt(θ
t; θ̂s)

πt(θt)
ψ(θs−1, θ̂s, θs)

]
, (7)

φl(θ
t) = 1 +

t∑
s=0

∑
θ̂s

ψ(θs−1, θs, θ̂s)−
t−1∑
s=0

∑
θ̂s

πt(θ
t; θ̂s)

πt(θt)
ψ(θs−1, θ̂s, θs)

−
∑
θ̂t

π(θ̂t|θt−1)
π(θt|θt−1)

ω(θt, θ̂t)ψ(θt−1, θ̂t, θt), (8)

where ω(θt, θ̂t) =
(
θt
θ̂t

)γ
. One can construct a saddle-point functional equation (an analog of the

Bellman equation) to solve for the problem represented by the Lagrangian L with its associated

motions (7)-(8). This approach is known as the “recursive Lagrangian” and was proposed and

developed by Marcet and Marimon (1999, 2016) for solving dynamic incentive problems. As they

explained, given backward state variables and shocks at time t, the accumulative multiplier on

the forward-looking constraints at time t such as φc(θ
t) and φl(θ

t) in (7)-(8) is all that needs to

be remembered from the past by the planner at time t according to the approach. Marcet and

Marimon (2016) provided a sufficiency condition guaranteeing that solutions from the recursive

Lagrangian are solutions to the original planning problem. This condition is satisfied as long as

the value function of the saddle-point functional equation is differentiable in the accumulative

multiplier, a condition that is commonly met or imposed in most economic applications.8 It is

worth noting that our planning problem represented by (1), (2), and (4) fits well into the structure

of Example 1 (intertemporal participation constraints) considered by Marimon and Werner (2016).

For more on the approach, see remarks in Section 3.2.

2.2.3 Interpretation of (7) and (8)

Consider φc(θ
t) in (7). Suppose that an agent’s history is θs−1 and her type realized at time s is

θs. The multiplier ψ(θs−1, θs, θ̂s) ≥ 0 is associated with the temporal IC constraint that she mimics

8If the condition fails to hold, Lagrange multipliers associated with binding constraints may not be unique.
This feature of non-uniqueness is a manifestation of a more general problem, which is not confined to the recursive
Lagrangian method. See Marimon and Werner (2016) for discussions and their resolution of the problem.
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θ̂s, while the multiplier ψ(θs−1, θ̂s, θs) ≥ 0 is associated with the temporal IC constraint that she

is mimicked by θ̂s. Note that the multiplier ψ(θs−1, θs, θ̂s) enters (7) with a plus sign, whereas the

multiplier ψ(θs−1, θ̂s, θs) enters (7) with a minus sign. Thus, the assigned Pareto-Negishi weight

φc(θ
t) for an agent will increase over time if she is capable of mimicking others, whereas it will

decrease over time if others are capable of mimicking her. These adjustments in φc(θ
t) are to enforce

IC constraints in response to the evolution of skill shocks over time. It is clear that φc(θ
t) = 1

would hold all the time if the friction of private information were absent. The evolution of φc(θ
t)

simultaneously determines the welfare weights that the planner places on an agent’s utility u(.)

over time in the objective (6).9 A similar interpretation applies to φl(θ
t) in (8).

As is clear from (7) and (8), the Pareto-Negishi weight at time t is a function of all past

realized values of the multipliers ψ(.) and so it encodes the frequency and severeness of the binding

of temporal IC constraints across states and over time. It is worth mentioning that the evolution

of {φc(θt), φl(θt)} in (7) and (8) represents a generalization of Eq. (36) on Mirrleesian taxation in

Werning (2007), in that while agent types are permanently fixed in the Werning framework, they

are stochastically evolving in our framework.

The evolution of the consumption Pareto-Negishi weight φc(θ
t) is key to the results of this

paper. We elaborate on it a bit more. Given the initial value φc(θ
−1) = 1, (7) can be expressed

recursively as

φc(θ
t) = φc(θ

t−1) + ε(θt), (9)

where

ε(θt) =
∑
θ̂t

[
ψ(θt−1, θt, θ̂t)− ψ(θt−1, θ̂t, θt)

π(θ̂t|θt−1)
π(θt|θt−1)

]

−
∑
θ̂t−1

π(θ̂t−1|θt−2)
π(θt−1|θt−2)

ψ(θt−2, θ̂t−1, θt−1)

[
π(θt|θ̂t−1)
π(θt|θt−1)

− 1

]
. (10)

The first summation in (10) is anticipated in view of (7). As to the second summation, its rise

is somewhat subtle. Note first that if idiosyncratic shocks were to evolve as an i.i.d. process,

π(θt|θ̂t−1) = π(θt|θt−1) would hold and hence the second summation would vanish for sure. In our

9Multiplying both sides of (7) by πt(θ
t), we see that the term πt(θ

t)φc(θ
t) given in the objective (6) stems from

(i) the first term of L (the original objective) and (ii) the second term of L (the IC constraints).
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Markov environment, π(θt|θ̂t−1) 6= π(θt|θt−1) in general and so this second summation is not zero in

general. The likelihood ratio π(θt|θ̂t−1)
π(θt|θt−1)

in (10) then serves as a statistical reference for the planner.

If π(θt|θ̂t−1)
π(θt|θt−1)

< 1, the ratio signals that θt is more likely to be linked to θt−1 (true type at time t− 1)

than θ̂t−1 (other types at time t − 1); as such, other things being equal, the agent θt is rewarded

by the planner with a higher φc(θ
t) according to (9). By contrast, if π(θt|θ̂t−1)

π(θt|θt−1)
> 1, the ratio signals

that θt is more likely to be linked to θ̂t−1 than θt−1; as such, other things being equal, the agent

θt is punished by the planner with a lower φc(θ
t) according to (9). This kind of rewards and

punishments is ex post in nature and due to the across-time link of Markov idiosyncratic shocks

in agent types. It invokes the planner’s “threat keeping,” a terminology used by Fernandes and

Phelan (2000), to ensure that there are no gains at time t (today) for any agent who deviated at

time t− 1 (yesterday). As explained by Fernandes and Phelan (2000), such threat keeping would

be unnecessary for the planner if idiosyncratic shocks were i.i.d. so that there were no links in

agent types across time periods.

It has long been known from the agency problem that the principal uses the likelihood ratio

of high against low output to infer whether agents shirk or not. Hart and Holmström (1987,

p. 80) remarked: “The agency problem is not an inference problem in a strict statistical sense;

conceptually, the principal is not inferring anything about the agent’s action ..., because he already

knows what action is being implemented. Yet, the optimal sharing rule reflects precisely the

principles of inference.” The essence of their remark equally applies to our interpretation for the

second summation of (10).

This completes the description of our model.

3 Nonnegative martingale

This section proves a powerful property of φc(θ
t) over time. It is worth emphasizing that, dis-

tinct from the extant literature, this property is derived directly from the IC constraints and so

independent of the optimization of the social planning problem.10

Lemma 1. The Pareto-Negishi weight φc(θ
t) is nonnegative, has a first moment equal to 1, and

10It should be noted that our proof of Lemma 1 did use the optimal condition (13) to show that φc(θ
t) ≥ 0 for all

θt and t. However, this property is weak in that any Pareto social welfare function will satisfy it. For comparisons
with the extant literature, see Section 3.2.
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its evolution in (7) satisfies ∑
θt

φc(θ
t)π(θt|θt−1) = φc(θ

t−1). (11)

That is, {φc(θt)} is a nonnegative martingale.

Proof. See Appendix A.4.

By the property of (11), the term ε(θt) in (9) is an innovation orthogonal to φc(θ
t−1). We now

explain why ε(θt) is an innovation or, equivalently, why (11) holds.

Let us calculate Et−1(ε(θ
t)), that is, the expectation of ε(θt) conditional on information at time

t− 1:

∑
θt

ε(θt)π(θt|θt−1) =
∑
θt

∑
θ̂t

[
ψ(θt−1, θt, θ̂t)− ψ(θt−1, θ̂t, θt)

π(θ̂t|θt−1)
π(θt|θt−1)

]
π(θt|θt−1)

−
∑
θt

∑
θ̂t−1

π(θ̂t−1|θt−2)
π(θt−1|θt−2)

ψ(θt−2, θ̂t−1, θt−1)

[
π(θt|θ̂t−1)
π(θt|θt−1)

− 1

]
π(θt|θt−1),

which gives rise to

Et−1(εt(θ
t)) =

∑
θt

∑
θ̂t

ψ(θt−1, θt, θ̂t)π(θt|θt−1)−
∑
θt

∑
θ̂t

ψ(θt−1, θ̂t, θt)π(θ̂t|θt−1)

−
∑
θ̂t−1

π(θ̂t−1|θt−2)
π(θt−1|θt−2)

ψ(θt−2, θ̂t−1, θt−1)
∑
θt

[
π(θt|θ̂t−1)− π(θt|θt−1)

]
.

First, note that the first and the second components of Et−1(εt) cancel each other out because we

can interchange the indices θt and θ̂t. This result merely reflects the fact that when θt mimics

θ̂t, it must be true that θ̂t is mimicked by θt at the same time and that both the mimicking and

the mimicked share the same multiplier ψ(.). It should be noted that this symmetry between θt

and θ̂t holds for u(.) but fails to hold for v(.); see (4). As such, the separability of utility between

consumption and labor is critical. Next, note that the last component of Et−1(εt) is equal to zero

as well because
∑

θt

[
π(θt|θ̂t−1)− π(θt|θt−1)

]
= 0. As explained earlier, π(θt|θ̂t−1) 6= π(θt|θt−1) in

general in our Markov-process environment. However, the term π(θ̂t−1|θt−2)
π(θt−1|θt−2)

ψ(θt−2, θ̂t−1, θt−1) in the

last component of Et−1(εt), which is associated with the threat keeping at time t, is given from the

viewpoint of time t− 1. As a consequence, the ex post punishments and rewards associated with
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the threat keeping at time t average out.

From (7) and (8), we can express φl(θ
t) as

φl(θ
t) = φc(θ

t) +
∑
θ̂t

π(θ̂t|θt−1)
π(θt|θt−1)

ψ(θt−1, θ̂t, θt)
(

1− ω(θt, θ̂t)
)
, (12)

which describes the relationship between φc and φl. Since the second term of (12) is not zero in

general, the labor Pareto-Negishi weight φl(θ
t) fails to have a property similar to the consumption

Pareto-Negishi weight φc(θ
t) as described in Lemma 1.

Lemma 1 is proved under the imposition of Assumption 1 and the first-order Markov process

for skill shocks. The next lemma shows that the nonnegative martingale property of φc(θ
t) holds

more generally.

Lemma 2. Lemma 1 holds without the imposition of Assumption 1 and, moreover, it holds under

the stochastic process that the conditional probability of θt is given by π(θt|x(θt−1)) > 0 for all θt,

where x(θt−1) represents partial elements of θt−1 = (θ0, θ1, ..., θt−1).

Proof. See Appendix A.5.

The stochastic process described in Lemma 2 is more general than the first-order Markov

process. For concreteness, let us consider three possible cases of idiosyncratic skill shocks for the

specification of the conditional probability π(θt|.) described in the above lemma.

• Case 1: i.i.d. shocks, where x(θt−1) = ∅ and π(θt|x(θt−1)) = π(θt).

• Case 2: a first-order Markov process, where x(θt−1) = θt−1 and π(θt|x(θt−1)) = π(θt|θt−1);

this is the case we expose in the text.

• Case 3: a second-order Markov process, where x(θt−1) = (θt−1, θt−2) and π(θt|x(θt−1)) =

π(θt|θt−1, θt−2).

In all these cases, the results stated in Lemma 1 remain valid.

14



3.1 Inverse Euler equation

A central finding on capital taxation in NDPF is the so-called IEE.11 Here we show that there

exists an intimate relationship between the nonnegative martingale of φc and the IEE.

Maximizing the Lagrangian (6) subject to (7)-(8) yields the first-order conditions12

βtφc(θ
t)u′

(
ct(θ

t)
)

= µt, (13)

βtφl(θ
t)v′

(
lt(θ

t)

θt

)
1

θt
= µtFLt, (14)

µt = µt+1 (FK,t+1 + 1− δ) . (15)

The optimal conditions (13)-(15) plus the resource constraints (2) characterize the constrained

efficient individual allocation {ct(θt), lt(θt)}. The optimal conditions (13)-(15) show that the con-

strained efficient individual allocation depends on the Pareto weights {φc, φl}, which are determined

by (7) and (8). If the friction of private information were absent, φc(θ
t) = φl(θ

t) = 1 would hold

all the time and (13)-(15) would reduce to the familiar first-order conditions.

Combining Eqs. (13) and (15) gives

1

u′ (ct+1(θt+1))
=
β (FK,t+1 + 1− δ)

u′ (ct(θt))

φc(θ
t+1)

φc(θt)
, (16)

which in turn gives

∑
θt+1

1

u′ (ct+1(θt+1))
π(θt+1|θt) =

β (FK,t+1 + 1− δ)
u′ (ct(θt))

∑
θt+1

φc(θ
t+1)

φc(θt)
π(θt+1|θt).

By Lemma 1,
∑

θt+1

φc(θt+1)
φc(θt)

π(θt+1|θt) = 1. The above equation then leads to the IEE:

∑
θt+1

1

u′ (ct+1(θt+1))
π(θt+1|θt) =

β (FK,t+1 + 1− δ)
u′ (ct(θt))

. (17)

11On the IEE, see Golosov, Tsyvinski, and Werning (2007); Kocherlakota (2010); Farhi and Werning (2012); and
Golosov and Tsyvinski (2015).

12Werning (2007, footnote 7) noted that the social maximization in the Mirrleesian economy is a convex problem.
This can be seen after changes in variables in (3) from (c, l) to (u, v) to make the IC constraints become linear.
For more details, see Golosov, Tsyvinski, and Werquin (2016).
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The IEE result was originally derived by Diamond and Mirrlees (1978) and Rogerson (1985).

Golosov, Kocherlakota, and Tsyvinski (2003) extended the result to a general class of models and,

in particular, a general law of motion for skill shocks. Kocherlakota (2010, pp. 56-57) gave an

explanation for why it is socially optimal: (i) starting from an Euler equation, “the planner is

able to provide better risk-sharing by front-loading consumption” and (ii) moving to the IEE,

the planner “pays the second-order cost of reducing smoothing to get the first-order benefit of

improving insurance.”

The standard way of deriving the IEE is by means of the so-called “perturbation method” —a

small perturbation around the optimality.13 This method is powerful, but it may be blind about

the underlying reason for the result. We instead rely on Lemma 1, which makes clearer its origin.

If φc(θ
t) = 1 all the time (i.e., there is no information friction), we see from (16) that EE rather

than IEE would hold.

3.2 Some remarks

In an i.i.d. endowment economy with private information, Thomas and Worrall (1990) showed

that the planner’s marginal cost of delivering one more unit of promised value to agents is a

martingale. Farhi and Werning (2013) extended this result to a labor production economy in

which idiosyncratic productivity evolves as a Markov process. However, their extension builds on

the restriction that βR = 1.14 Kocherlakota (2010, chapter 3) derived a similar result under a more

general environment, but it requires the imposition of the restriction βR = 1 as well. Intuitively,

the planner’s marginal cost of the delivery is given by 1/u′(.) and her desire to smooth the marginal

cost of utility production over time implies the IEE. We can see from (17) that the IEE will lead

to a martingale process of 1/u′(.) only if the restriction βR = 1 is imposed. By contrast, our

martingale result (Lemmas 1 and 2) does not build on the restriction βR = 1. Furthermore, it

holds under Markov or more general stochastic processes and in a neoclassical production economy.

Golosov, Tsyvinski, and Werquin (2016) deemed that the feature of a martingale is a manifes-

tation of the same general principle that underlies cost smoothing over time at the optimum. Other

13See Rogerson (1985); Golosov, Kocherlakota, and Tsyvinski (2003); Golosov, Tsyvinski, and Werning (2007);
and Kocherlakota (2010).

14Without the restriction, it becomes submartingale or supermartingale, depending on whether βR ≥ 1 or βR ≤ 1;
see Farhi and Werning (2013, p. 616, Proposition 1 and the proof of Proposition 5).
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famous examples include consumption smoothing in the permanent income hypothesis (Hall, 1978)

and tax smoothing in public finance (Barro, 1979). However, it should be emphasized that the

nonnegative martingale of our Lemma 1 is a characterization of IC constraints, independent of the

optimal conditions given by (13)-(15).

Fernandes and Phelan (2000) extended privately informed idiosyncratic shocks from i.i.d. to

Markov. They solved for the resulting Mirrleesian problem by the recursive primal approach or

the so-called promised utility approach, emphasizing threat keeping as well as promise keeping

in the enforcement of agents’ IC constraints in the Markovian environment. Messner, Pavoni,

and Sleet (2016) envisioned a generalized version of the recursive Lagrangian and they called

the approach the “recursive dual” as a contrast to the recursive primal used by Fernandes and

Phelan (2000) and others. Both Messner, Pavoni, and Sleet (2016) and Marcet and Marimon

(2016) emphasized that the dual approach is particularly useful relative to the primal approach if

constraints involve forward-looking state variables such as in our case. A reason is that it involves

the complication of pinning down the initial forward-looking state in the recursive primal problem,

while the complication is often absent in the recursive dual problem. For example, consider our

planning problem. By the model specification, we have φc(θ
t) = φl(θ

t) = 1 if t = 0. However,

it is not so easy to identify the optimal initial value of promised utility at t = 0 if adopting the

recursive primal approach. More generally, the complication of the primal approach arises from

the fact that its set of the feasible state space is defined implicitly and need be recovered as part

of the solution to the problem.15 The recursive Lagrangian sidesteps this complication.

Finally, in the continuous time framework of incentive problems, papers such as Sannikov

(2008, 2014) start the moral hazard analysis by assuming that the stochastic process of output

is a martingale, for example, a Brownian motion. Golosov, Tsyvinski, and Werquin (2016) called

the approach the “martingale method.” As they exposed, the martingale assumption allows for

exploiting some fundamental theorems such as the Martingale representation theorem to facilitate

the analysis of the problems. It should be noted that we do not assume a martingale to begin with,

and that the nonnegative martingale of our Lemma 1 is not imposed from the beginning, but a

property derived from agents’ temporal IC constraints.

For the rest of the paper, we apply the nonnegative martingale finding of Lemma 1 together with

15See Proposition 8 in Golosov, Tsyvinski, and Werquin (2016).
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the first-order conditions (13)-(15) to (i) the characterization of constrained efficient intertemporal

wedges in the aggregate, and (ii) the extension of immiseration to a more general environment.

4 Intertemporal wedges in the aggregate

The focus of the DC/NDPF literature has been on the micro individual allocation16 and, therefore,

it is not surprising that relatively little is known about the general property of macro aggregate

variables at constrained efficient allocations. Moreover, even if microfounded, the economy-wide

aggregate variables of an economy remain the central focus of macroeconomics. It is thus important

to bring micro individual behavior to bear on macro economic aggregates. Within our context,

it is interesting to know how the social planner allocates the macro aggregate resources over time

when providing agents with insurance and dealing with their incentives at the micro individual

level. In this section, we apply Lemma 1 to shed light on this question.

4.1 Consumption and labor sharing rules

To proceed, we make a further assumption:

Assumption 2. The consumption utility function takes the CRRA form:

u(ct) =
c1−σt

1− σ
,

where σ > 0, ensuring that u(.) is strictly concave.

The reciprocal of σ represents the IES. As will be seen, whether the IES is elastic or inelastic is

of vital importance to the determination of aggregate constrained efficient intertemporal wedges.

Whenever addressing aggregate wedges, we always impose Assumptions 1 and 2. It is worth noting

that imposing Assumptions 1 and 2 is highly popular in many quantitative studies; see, for example,

Farhi and Werning (2013), and Golosov, Troshkin, and Tsyvinski (2016).

Under Assumptions 1 and 2, we obtain the following from (13) and (14):

ct(θ
t)

Ct
=
φc(θ

t)
1
σ

Ht

, (18)

16The IEE is a leading example.
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lt(θ
t)

Lt
=
φl(θ

t)
1

1−γ θ
−γ
1−γ
t

Jt
, (19)

where

Ht ≡
∑
θt

φc(θ
t)

1
σπt(θ

t),

Jt ≡
∑
θt

φl(θ
t)

1
1−γ θ

−γ
1−γ
t πt(θ

t).

Eqs. (18) and (19) are the consumption and labor sharing rules: The amount of consumption

and of effective labor destined for the agent θt will be completely determined, once the aggregates

(Ct, Lt) and the weights (φc(θ
t), φl(θ

t)) are known.

The result that individual allocations can be solved as a function of aggregate allocations

and Pareto-Negishi weights has been shown by Werning (2007) and Park (2014) in the Ramsey

framework. In both papers, the authors noted that a key to the result lies in the levying of linear

taxes so that marginal rates of substitution are equated with each other across agents. We show

here that the result can hold even with the levying of nonlinear taxes in Mirrleesian economies.

An important difference is that while Werning (2007) and Park (2014) restricted φc(θ
t) = φl(θ

t) in

their settings, we do not.

4.2 Intertemporal aggregate wedges

Substituting the derived ct and lt of the consumption and labor sharing rules (18)-(19) into the

individual optimal conditions, (13)-(15), gives rise to

C−σt = βC−σt+1

(
Ht+1

Ht

)σ
(FK,t+1 + 1− δ), (20)

Lγ−1t

C−σt
=

(
Hσ
t

J1−γ
t

)
FLt. (21)

The constrained efficient macro aggregate allocation is characterized by (20) and (21) together

with the resource constraints (2). Contrasting (20)-(21) with (13)-(14) clearly shows that while

the micro individual allocation (ct, lt) is dictated by the individual Pareto-Negishi weights φc and
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φl, the macro aggregate allocation (Ct, Lt) is dictated by some aggregations of the individual

Pareto-Negishi weights —that is, Ht and Jt. Since we fail to derive useful properties for Jt given

the non-martingale result of φl, we concentrate our analysis on the intertemporal wedge associated

with (20).

Let us explain the result of (20). Kocherlakota (2010, p. 49) provided an intuition for the IEE

(17) as follows. Suppose ρ(u) is the resource cost of producing u units of utility. Then the social

planner’s desire to smooth the marginal cost of utility production over time implies

ρ′(u(ct(θ
t))) =

1

β (FK,t+1 + 1− δ)
∑
θt+1

ρ′(u(ct+1(θ
t+1)))π(θt+1|θt),

which leads to the IEE (17) since ρ′(u) = 1/u′ (ρ(u)). We can understand the result of (20) in a

similar way. Under Assumption 2, the marginal cost of utility production for the agent θt at time

t is equal to 1/u′ (ct(θ
t)) = ct(θ

t)σ. Thus, the marginal cost of utility production for all agents at

time t is given by
∑

θt
ct(θ

t)σπt(θt). From the consumption sharing rule (18), ct(θ
t) = φc(θt)

1
σ

Ht
Ct

and so we have

∑
θt

ct(θ
t)σπt(θt) = Cσ

t H
−σ
t

∑
θt

φc(θ
t)πt(θt) = Cσ

t H
−σ
t ,

where the last equality has used Lemma 1. The social planner’s desire to smooth the marginal

cost of utility production for all agents over time then implies (20). Like the IEE, the condition

(20) characterizes the social planner’s behavior over time in the presence of information frictions.

The difference is that while the IEE describes the social planner’s intertemporal behavior over the

micro individual allocation, (20) describes her intertemporal behavior over the macro aggregate

allocation.

In the first-best economy without frictions, it is straightforward to see that Ht+1/Ht = 1 for

all t and, therefore, (20) would reduce to the familiar Euler equation. We can thus define the

intertemporal aggregate wedge associated with (20) by its deviation from the first-best:

Intertemporal aggregate wedge : τKt ≡ 1−
(
Ht+1

Ht

)σ
. (22)

Note that while there does not exist a representative agent in the aggregate for our friction-loaded
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economy in competitive equilibrium, there does exist one in the first-best (a frictionless or complete

markets) economy; see Guvenen (2011). Later, we expose the relation between the intertemporal

individual wedge implied by the IEE and the optimal intertemporal aggregate wedge according to

(22).

In the next subsection, we study the constrained efficient intertemporal aggregate allocation

characterized by (20) through the lens of the aggregate wedge defined by (22).

4.3 Constrained efficient intertemporal aggregate wedges

Applying Lemma 1, this subsection characterizes the property of the constrained efficient intertem-

poral aggregate wedge, τ ∗Kt, for all t <∞.

It is clear from the definition of the intertemporal aggregate wedge (22) that the ratio Ht+1/Ht

is crucial. The next lemma characterizes this ratio in the short run.

Lemma 3. Ht+1/Ht Q 1 for all t <∞ if σ R 1.

Proof. From Lemma 1, we have

φc(θ
t−1)

1
σ =

(∑
θt

φc(θ
t)π(θt|θt−1)

) 1
σ

.

By the power mean inequality, we have17

(∑
θt

φc(θ
t)π(θt|θt−1)

) 1
σ

R
∑
θt

φc(θ
t)

1
σπ(θt|θt−1) if σ R 1.

Combining the above results gives

φc(θ
t−1)

1
σ R

∑
θt

φc(θ
t)

1
σπ(θt|θt−1) if σ R 1,

which in turn gives

17For xi 6= xj , the inequality is read as(∑
i

xpiwi

) 1
p

>

(∑
i

xqiwi

) 1
q

if p > q,where wi > 0 and
∑
i

wi = 1.

Readers are referred to Bullen (2013) for the details.
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∑
θt−1

φc(θ
t−1)

1
σπt−1(θ

t−1) R
∑
θt

φc(θ
t)

1
σπt(θ

t) if σ R 1.

From (22), Lemma 3 leads to three possibilities:

1. σ = 1 : When σ = 1, Ht+1 = Ht holds, which implies at constrained efficient allocations that

there is no intertemporal aggregate wedge at time t and so τ ∗Kt = 0.

2. σ > 1 : When σ > 1, Ht+1 < Ht holds, which implies at constrained efficient allocations that

there is a positive intertemporal aggregate wedge at time t and so τ ∗Kt > 0.

3. σ < 1 : When σ < 1, Ht+1 > Ht holds, which implies at constrained efficient allocations that

there is a negative intertemporal aggregate wedge at time t and so τ ∗Kt < 0.

To sum up, we state:

Proposition 1. τ ∗Kt R 0 for all t <∞ if σ R 1.

The quantity of the IES (i.e. the value of 1/σ) is of great importance in various fields in eco-

nomics —for example, labor supply (Keane, 2011), consumption and saving (Attanasio and Weber,

2010), asset pricing (Ljungqvist and Sargent, 2012, chapters 13-14), and investment and business

cycles (Favilukis and Lin, 2013). However, estimations of its value vary. While works including

those of Hansen and Singleton (1982), Attanasio and Weber (1989), and Vissing-Jørgensen and

Attanasio (2003) find the IES to be well above 1, other works including those of Hall (1988),

Campbell and Mankiw (1989) and, Campbell (1999) find the IES to be close to 0. Proposition 1

prescribes τ ∗Kt ≷ 0 according to whether the IES is inelastic or elastic.

As shown earlier, the marginal cost of utility production for all agents at time t is given by∑
θt
ct(θ

t)σπt(θt) = Cσ
t H

−σ
t . The term H−σt (in addition to the standard term Cσ

t ) is related to the

cost of spreading consumption across agents over time to satisfy the IC constraints. With σ > 1

(σ < 1), the cost of spreading consumption across agents is a convex (concave) function, meaning

that the benefit of having one extra aggregate consumption is increasing (decreasing). As a result,

the planner would like to “front-load” (“back-load”) Ct and so τ ∗Kt ≷ 0. If σ = 1, the cost is linear

and hence neither front-loading nor back-loading is desirable.
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4.4 Relation with intertemporal individual wedges

Following Golosov, Tsyvinski, and Werning (2007), we define the intertemporal individual wedge

as

τkt(θ
t) ≡ 1− u′(ct(θ

t))

βRt+1

∑
θt+1

u′(ct+1(θt+1))π(θt+1|θt)
, (23)

where Rt+1 = 1 + FK,t+1 − δ is the gross rate of return from saving in competitive equilibrium.

This wedge is defined in terms of the deviation between the marginal rate of substitution and the

marginal rate of transformation. If there are no distortionary government interventions, τkt(θ
t) = 0

will hold in competitive equilibrium.

From (13) and (15), (23) gives

1

1− τ ∗kt(θt)
=
∑
θt+1

φc(θ
t)

φc(θt+1)
π(θt+1|θt). (24)

Using (20), (24) can be re-expressed as:

1

1− τ ∗kt(θt)
= β (FK,t+1 + 1− δ)

(
Ht+1

Ht

)σ (
Ct+1

Ct

)−σ∑
θt+1

φc(θ
t)

φc(θt+1)
π(θt+1|θt),

which leads to

1

1− τ ∗kt(θt)
=

1

1− τ ∗Kt

∑
θt+1

(
ct(θ

t)/Ct
ct+1(θt+1)/Ct+1

)σ
π(θt+1|θt), (25)

where we have used (18), (20) and (22). The above equation shows that the constrained efficient

intertemporal wedge in the individual τ ∗kt(θ
t) can be decomposed into two parts: (i) the optimal

distortion from the first-best in the aggregate and (ii) a spreading of the aggregate consumption

across agents over time. The first part is precisely captured by τ ∗Kt. Note that if τ ∗Kt = 0, then

τ ∗kt(θ
t) is completely dictated by the second spreading part. This decomposition establishes a

relationship between the intertemporal wedge in the aggregate and that in the individual.

In the case of logarithmic utility with fixed labor supply, Farhi and Werning (2012) showed

that the social planning problem in their setup can be decomposed into an idiosyncratic planning

problem and an aggregate planning problem, where the aggregate one is just a standard neoclas-
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sical growth model. Although somewhat similar, their decomposition differs from ours in two

dimensions. First, while they consider labor supply as fixed and given, we do not. Second, there

is no friction in their aggregate planning problem, whereas there is in ours. Atkeson and Lucas

(1992, 1995) envisioned an economy having many of the so-called component planners whose job is

to transfer aggregate resources across time for the agents in their “jurisdiction” and, at the same

time, to meet these agents’ incentive constraints in distributing the aggregate resources among

agents. An important departure from the literature in their analysis is to explicitly make a dis-

tinction between the aggregate allocation and the distribution of the aggregate allocation. The

decomposition of Eq. (25) makes a similar distinction for the constrained efficient intertemporal

wedges.

5 Immiseration

A celebrated result in the DC/NDPF literature is the so-called immiseration, in which almost

every agent’s consumption converges to zero in the limit at constrained efficient allocations even

though aggregate consumption remains high above zero. This result implies the followings: (i) An

increasingly large fraction of agents consume a decreasingly small amount of consumption over time

and their individual consumption goes to zero in the limit, and (ii) a decreasingly small fraction

of agents consume an increasingly large amount of consumption over time and their individual

consumption goes to infinity in the limit.18 Thomas and Worrall (1990) and Atkeson and Lucas

(1992) obtained the immiseration result in i.i.d. and endowment economies. Using Lemmas 1 and

2, we demonstrate that immiseration still holds under Markov or more general stochastic processes

and in a neoclassical production economy.

Note that the IEE (17) will become a nonnegative martingale if (i) the term FK,t+1 + 1− δ in

(17) is replaced by a constant gross rate of return R, and (ii) the restriction βR = 1 is imposed. As-

suming (i) and (ii), Kocherlakota (2010, Theorem 3.2) applied the martingale convergence theorem

to the IEE. Our application of the martingale convergence theorem in the following proposition

builds on Lemma 1 and imposes neither (i) nor (ii).

Proposition 2. For almost surely all θt, limt→∞ φc(θ
t) = 0 at constrained efficient allocations in

18Kocherlakota (2010, p. 68) provided an example to illustrate the coexistence of (i) and (ii).
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our dynamic Mirrleesian economy.

Proof. φc(θ
t) is a nonnegative martingale according to Lemma 1 and thus we can apply Doob’s

(1953) martingale convergence theorem: For a sample path θt of skill realizations, there exists a

finite φ∗(θt) such that φc(θ
t) converges along the sample path to φ∗(θt) and this convergence is

true for almost surely all sample paths; see Kocherlakota (2010, p. 62). Since limt→∞ φc(θ
t) =

limt→∞ φc(θ
t−1) = φ∗(θt), it is implied from (9) that limt→∞ ε(θ

t) = 0, which in turn implies that

almost surely all multipliers ψ(.) in (10) are equal to 0 in the limit. Hence, limt→∞ φl(θ
t) = φ∗(θt)

as well.

From Eqs. (13)-(14), the convergence of φl(θ
t) and φc(θ

t) suggest that as t→∞,

∣∣∣ct(θt−1, θt)− ct(θt−1, θ̂t)∣∣∣ → 0 for any θ̂t and θt,∣∣∣cs(θs)− cs(θs; θ̂t)∣∣∣ → 0 for any s > t, θs and θ̂t,∣∣∣ls(θs)− ls(θs; θ̂t)∣∣∣ → 0 for any s > t, θs and θ̂t.

The convergence result suggests that all terms on the left and the right sides of the temporal IC

constraint (4) converge, except for lt(θ
t−1, θ̂t) and lt(θ

t−1, θt). Hence, the temporal IC constraints

(4) of agents (θt−1, θt) and of agents (θt−1, θ̂t) can be rewritten as

−v
(
lt(θ

t−1, θt)

θt

)
≥ −v

(
lt(θ

t−1, θ̂t)

θt

)
+ ε̃t,1,

−v

(
lt(θ

t−1, θ̂t)

θ̂t

)
≥ −v

(
lt(θ

t−1, θt)

θ̂t

)
+ ε̃t,2,

where both ε̃t,1 and ε̃t,2 → 0 as t→∞.

With Assumption 1 and Eq. (19), the inequalities above become

(
φ∗(θt)1/(1−γ)θ

−γ/(1−γ)
t+1

Jt+1

Lt+1

θt+1

)γ

≤

(
φ∗(θt)1/(1−γ)θ̂

−γ/(1−γ)
t+1

Jt+1

Lt+1

θt+1

)γ

+ ε̃t,1,

(
φ∗(θt)1/(1−γ)θ̂

−γ/(1−γ)
t+1

Jt+1

Lt+1

θ̂t+1

)γ

≤

(
φ∗(θt)1/(1−γ)θ

−γ/(1−γ)
t+1

Jt+1

Lt+1

θ̂t+1

)γ

+ ε̃t,2.

Pick ε̃t,1 and ε̃t,2 sufficiently small. Then if φ∗(θt) > 0, the above inequalities lead to a contradiction
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with θt+1 6= θ̂t+1 since they give

(
θ
−γ/(1−γ)
t+1

)γ
≤
(
θ̂
−γ/(1−γ)
t+1

)γ
,(

θ̂
−γ/(1−γ)
t+1

)γ
≤
(
θ
−γ/(1−γ)
t+1

)γ
.

By contrast, if φ∗(θt) = 0, no contradiction arises.

From (13), limt→∞ φc(θ
t) = 0 implies that limc→0 u

′(ct(θ
t)) = +∞. The intuition underlying

immiseration is as follows. To provide incentives for more productive people to produce more,

the planner needs to spread out consumption across heterogeneous agents over time. When φc(θ
t)

is converging, the planner accomplishes this task by immiseration: Let the consumption of an

increasingly large fraction of agents go to 0 in the limit so that, due to the Inada condition

limc→0 u
′(c) = +∞, even a tiny spreading of consumption can be a significant differentiation for

the agents.

As the proof of Proposition 2 shows, our immiseration result depends heavily on the nonnegative

martingale property stated in Lemma 1. Given that the nonnegative martingale of φc is robust to

the more general shock process as shown in Lemma 2, the immiseration result holds more generally.

5.1 Discussion

What are implications of immiseration for constrained efficient intertemporal wedges in the long

run or steady state?

Albanesi and Armenter (2012) studied the long-run properties of intertemporal distortions

in a broad class of second-best economies. They identified a sufficient condition that rules out

permanent intertemporal distortions in the second-best; that is, intertemporal distortions, even

if desirable in the short run, will no longer be desirable in the long run if the condition is met.

However, as Albanesi and Armenter (2012) acknowledged, their proposed sufficient condition does

not hold in general in economies with private information. As such, their analysis leaves open the

question of whether intertemporal distortions are permanent or temporary in dynamic Mirrleesian

economies. In terms of our framework, the question to ask is whether constrained efficient aggregate

wedges τ ∗Kt or individual wedges τ ∗kt(θ
t) will converge to 0 in the limit, even if they are non-zero in

the short run. We briefly explore whether immiseration can answer the question.
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Let us first consider the limit behavior of τ ∗Kt. Immiseration implies two opposite processes:

(i) an increasingly large fraction of agents consume a decreasingly small amount of consumption

over time, and (ii) a decreasingly small fraction of agents consume an increasingly large amount

of consumption over time. From the proof of Lemma 1, we have
∑

θt φc(θ
t)πt(θ

t) = 1. Given this

result and Proposition 2, we then have

lim
t→∞

∑
θt

φc(θ
t)πt(θ

t) = lim
t→∞

φ̃c(t)π̃(t) = 1, (26)

where π̃(t) denotes the fraction of agents who experience the second process of immiseration,

and φ̃c(t), the average Pareto-Negishi weight associated with these agents. This result implies

limt→∞ π̃(t) = limt→∞ φ̃c(t)
−1,19 which in turn implies

lim
t→∞

Ht = lim
t→∞

∑
θt

φc(θ
t)

1
σπt(θ

t) = lim
t→∞

φ̃c(t)
1
σ π̃(t) = lim

t→∞
φ̃c(t)

1
σ lim
t→∞

φ̃c(t)
−1 = lim

t→∞
φ̃c(t)

1−σ
σ , (27)

where the second equality holds because φc(θ
t) other than φ̃c(t) all go to zero in the limit. From

the inertemporal aggregate wedge defined by (22), we know that limt→∞ τ
∗
Kt = 0 if and only if

limt→∞Ht+1/Ht = 1. We have from (27)

lim
t→∞

Ht+1

Ht

=
limt→∞ φ̃c(t+ 1)

1−σ
σ

limt→∞ φ̃c(t)
1−σ
σ

=

[
lim
t→∞

φ̃c(t+ 1)

φ̃c(t)

] 1−σ
σ

. (28)

If σ = 1, it is clear from (28) that limt→∞Ht+1/Ht = 1 holds. However, since π̃(t)→ 0 as t→∞

according to Proposition 2, we have limt→∞ φ̃c(t) =∞ from (26). Thus, φ̃c(t+1)/φ̃c(t) in the limit

takes on the so-called indeterminate form with limt→∞ φ̃c(t+ 1)/φ̃c(t) =∞/∞; as such, the result

of (28) by itself cannot tell us whether limt→∞Ht+1/Ht = 1 holds as σ 6= 1.

The above finding may not be surprising. Proposition 2 implies that limt→∞ π̃(t) = limt→∞ π̃(t+

1) = 0, which in turn implies from (26) that

lim
t→∞

[π̃(t)− π̃(t+ 1)] = lim
t→∞

 φ̃c(t+1)

φ̃c(t)
− 1

φ̃c(t+ 1)

 = 0.

19limt→∞ φ̃c(t)π̃(t) = 1⇒ limt→∞ φ̃c(t) limt→∞ π̃(t) = 1⇒
limt→∞ π̃(t) = 1

limt→∞ φ̃c(t)
= limt→∞

[
1

φ̃c(t)

]
= limt→∞ φ̃c(t)

−1.
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Because limt→∞ φ̃c(t + 1) = ∞, to uphold the result above, there is no requirement that φ̃c(t +

1)/φ̃c(t) = 1 in the limit. In other words, the immiseration process of π̃(t)→ 0 and φ̃c(t)→∞ as

t→∞ by itself is not sufficiently informative to enable us to determine whether limt→∞Ht+1/Ht =

1 holds if σ 6= 1.

Note that if Ht+1/Ht = 1 holds in the limit, we will have βR = 1 in steady state according

to (20), regardless of whether σ R 1. Our analysis shows that we do have βR = 1 in steady

state if σ = 1, but we cannot be sure whether βR = 1 holds in steady state if σ 6= 1. Starting

from the IEE with a fixed labor supply, Farhi and Werning (2012) provided a formal proof for the

case of logarithmic utility —that is, βR = 1 in steady state at constrained efficient allocations if

σ = 1. In the more general CRRA utility cases, they relied on their numerical analysis to find

that βR ≷ 1 as σ ≷ 1.20 Our exposition above extends their result on the logarithmic utility case

allowing for variable labor supply. As for the more general CRRA cases, their numerical finding is

consistent with our Proposition 1 if aggregate allocations have converged to a large extent so that

(20) becomes

1 = βR

(
Ht+1

Ht

)σ
.

Since Ht+1/Ht ≶ 1 for all t < ∞ if σ ≷ 1 according to Lemma 3, we then have βR ≷ 1 as σ ≷ 1.

Of course, this analysis does not rule out the possibility that the result of Ht+1/Ht ≶ 1 if σ ≷ 1

holds in the limit, and so the result of βR ≷ 1 as σ ≷ 1 could be indeed true in steady state.

We now turn to the limit behavior of τ ∗kt(θ
t). Because limt→∞ φc(θ

t) = limt→∞ φc(θ
t+1) = 0

almost surely according to Proposition 2, the result of (24) is of little help in determining whether

limt→∞ τ
∗
kt(θ

t) = 0. Let us focus on the case of logarithmic utility with σ = 1. Since limt→∞ τ
∗
Kt = 0

if σ = 1, from (25) we have

lim
t→∞

1

1− τ ∗kt(θt)
= lim

t→∞

∑
θt+1

(
ct(θ

t)/Ct
ct+1(θt+1)/Ct+1

)
π(θt+1|θt).

The value of ct(θ
t)/Ct in the limit either goes to zero (if associated with the first process of

immiseration) or goes to infinity (if associated with the second process of immiseration). As a

result, immiseration by itself cannot tell us whether limt→∞ τ
∗
kt(θ

t) = 0 holds even for the case of

20Does a steady state exist? We do not answer the question. However, the numerical exercise of Farhi and
Werning (2012) seems to suggest it does.
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σ = 1.

6 Conclusion

This paper considers a dynamic neoclassical economy in which privately informed idiosyncratic

productivity shocks evolve stochastically over time. Instead of the conventional recursive approach

in the DC/NDPF literature, we reformulate the social planning problem in a sequential fashion

and decompose agents’ lifetime IC constraints into a sequence of temporary ones. We encode the

frequency and severeness of these temporal IC constraints by their associated Lagrange multipli-

ers, showing that the accumulation of the Lagrange multipliers serves as stochastic Pareto-Negishi

weights for efficient allocations and, more interestingly, its evolution on the consumption part is

a nonnegative martingale. We apply our findings to the characterization of constrained efficient

intertemporal wedges in the aggregate and the extension of immiseration to a more general envi-

ronment.

The focus of our applications is on intertemporal rather than intratemporal aggregate wedges.

This is mainly due to the fact that relatively few useful properties are known about the stochastic

process of the Pareto-Negishi weight associated with agents’ labor input. Recent work by Farhi

and Werning (2013) and Golosov, Troshkin, and Tsyvinski (2016) has addressed optimal labor

individual distortions in dynamic Mirrleesian economies. Following their line of investigation, it

is hoped that there will be a corresponding characterization of constrained efficient intratemporal

wedges in the aggregate in future work.
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A Appendix

A.1 Equivalence of lifetime and temporal IC constraints

We show that an allocation over consumption and labor supply satisfies the lifetime IC constraints

(3) if and only if it satisfies the sequence of temporary IC constraints (4).

That the lifetime IC constraints (3) implies the temporal IC constraints (4) is clear, since pos-

sible deviations in the lifetime include one-shot deviations in the temporal. To show the converse,

we first prove a lemma.

Lemma 4. Let an allocation {ct (θt) , lt (θt)}t,θt satisfy the temporary IC constraints (4). Then the

following inequality holds:

u
(
ct(θ̂

t−1, θt)
)
− v

(
lt(θ̂

t−1, θt)

θt

)

+
T∑

s=t+1

∑
θs|θt

βs−tπs(θ
s|θt)

[
u
(
cs(θ̂

t−1, θt, θ
s
t+1)
)
− v

(
ls(θ̂

t−1, θt, θ
s
t+1)

θs

)]

≥ u
(
ct(θ̂

t−1, θ̂t)
)
− v

(
lt(θ̂

t−1, θ̂t)

θt

)

+
T∑

s=t+1

∑
θs|θt

βs−tπs(θ
s|θt)

[
u
(
cs(θ̂

t−1, θ̂t, θ
s
t+1)
)
− v

(
ls(θ̂

t−1, θ̂t, θ
s
t+1)

θs

)]
,∀t, θ̂t−1, θt, θ̂t,

where θst+1 = (θt+1, θt+2, ..., θs). In words, the inequality states that even if agents do not report

honestly before time t (i.e., θ̂t−1 6= θt−1), it is still not profitable for agents to conduct a one-shot

deviation from honesty at time t.

Proof. Consider agents whose types until time t − 1 are given by θ̂t−1 and from time t onward

coincide with θt. Then agents’ temporal IC constraints at time t are exactly given by the inequality

stated in the lemma.

Lemma 4 corresponds to Lemma 2.1 in Fernandes and Phelan (2000), who showed that if an

allocation satisfies the lifetime IC constraint, then honesty from time t on is always the best policy

for agents, even if agents do not report honestly before time t.
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With Lemma 4 at hand, we go on to prove the converse. Our proof follows the logic in Fernandes

and Phelan (2000, Theorem 2.1) and Golosov, Tsyvinski, and Werquin (2016, Lemma 3).

Multiplying both sides of the inequality in Lemma 4 by βtπt(θ
t) gives

βtπt(θ
t)

[
u
(
ct(θ̂

t−1, θt)
)
− v

(
lt(θ̂

t−1, θt)

θt

)]

+
T∑

s=t+1

∑
θs

βsπs(θ
s)

[
u
(
cs(θ̂

t−1, θt, θ
s
t+1)
)
− v

(
ls(θ̂

t−1, θt, θ
s
t+1)

θs

)]

≥ βtπt(θ
t)

[
u
(
ct(θ̂

t−1, θ̂t)
)
− v

(
lt(θ̂

t−1, θ̂t)

θt

)]

+
T∑

s=t+1

∑
θs

βsπs(θ
s)

[
u
(
cs(θ̂

t−1, θ̂t, θ
s
t+1)
)
− v

(
ls(θ̂

t−1, θ̂t, θ
s
t+1)

θs

)]
,∀t, θ̂t−1, θt, θ̂t.

Adding the term
∑t−1

s=0

∑
θt β

sπs(θ
s)
[
u
(
cs(θ̂

s)
)
− v

(
ls(θ̂s)
θs

)]
to both sides of the above inequality

yields

t−1∑
s=0

∑
θt

βsπs(θ
s)

[
u
(
cs(θ̂

s)
)
− v

(
ls(θ̂

s)

θs

)]

+
T∑
s=t

∑
θs

βsπs(θ
s)

[
u
(
cs(θ̂

t−1, θst )
)
− v

(
ls(θ̂

t−1, θst )

θs

)]

≥
t∑

s=0

∑
θs

βsπs(θ
s)

[
u
(
cs(θ̂

s)
)
− v

(
ls(θ̂

s)

θs

)]

+
T∑

s=t+1

∑
θs

βsπs(θ
s)

[
u
(
cs(θ̂

t, θst+1)
)
− v

(
ls(θ̂

t, θst+1)

θs

)]
,∀θ̂t−1, θ̂t.

This states that if an allocation satisfies the temporal IC constraints (4), then, from the perspective

of time 0, a reporting strategy with honesty from time t + 1 on (the right side of the inequality)

cannot be better off than a reporting strategy with honesty from time t on (the left side of the

inequality). Starting from time 0, induction with T <∞ then implies
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T∑
s=0

∑
θs

βsπs(θ
s)

[
u (cs(θ

s))− v
(
ls(θ

s)

θs

)]

≥
T∑
s=0

∑
θs

βsπs(θ
s)

[
u(cs(θ̂

s))− v

(
ls(θ̂

s)

θs

)]
, (29)

which states that if an allocation satisfies the temporal IC constraints (4), then, from the perspec-

tive of time 0, a reporting strategy with honesty up to time T (the left side of the inequality) cannot

be worse off than any other reporting strategy up to time T (the right side of the inequality).

If T <∞, the proof is done with the derivation of (29). Below we consider T =∞.

We add the term βT
∑∞

s=1

∑
θs β

sπT+s(θ
T+s)

[
u
(
cT+s(θ

T+s)
)
− v

(
lT+s(θ

T+s)

θT+s

)]
to both side of

(29), and add and subtract the term βT
∑∞

s=1

∑
θs β

sπT+s(θ
T+s)

[
u(cT+s(θ̂

T+s))− v
(
lT+s(θ̂

T+s)

θT+s

)]
to and from the right side of (29). It then yields

∞∑
s=0

∑
θs

βsπs(θ
s)

[
u (cs(θ

s))− v
(
ls(θ

s)

θs

)]

≥
∞∑
s=0

∑
θs

βsπs(θ
s)

[
u
(
cs(θ̂

s)
)
− v

(
ls(θ̂

s)

θs

)]

+βT
∞∑
s=1

∑
θT+s

βsπT+s(θ
T+s)

[(
u
(
cT+s(θ

T+s)
)
− v

(
lT+s(θ

T+s)

θT+s

))
−

(
u(cT+s(θ̂

T+s))− v

(
lT+s(θ̂

T+s)

θT+s

))]
.

Note that if the last term of the above inequality vanishes as T →∞, then its right side converges

to the right side of the lifetime IC constraints (3) with T =∞ and, therefore, the above inequality

reduces to the lifetime IC constraints (3). The condition (5) is sufficient to ensure that this last

term converges to zero as T →∞.

A.2 Justifying Lagrangian L

Let `∞ be the set of sup-norm bounded sequences. Le Van and Cagri Saglam (2004) considered

the following optimization problem:

min f(x) s.t. g(x) ≤ 0 with x ∈ `∞,

where f : `∞ → R ∪ {+∞}, g(x) = {gt(x)}∞t=0 with each gt : `∞ → R ∪ {+∞}, and f and gt are

convex functions. They define D = {x ∈ `∞ | f(x) < +∞} and Γ = {x ∈ `∞ | gt(x) < +∞,∀t}.

32



Let x = {ct(θt), lt(θt), Kt+1}∞t=0 and g(x) = {g1t(x), g2t(x)}∞t=0 with

g1t(x) = Vt(θ
t; θ̂t)−

u (ct(θt))− v( lt(θt)
θt

)
+

∞∑
s=t+1

∑
θs|θt

βs−tπs(θ
s|θt)

[
u (cs(θ

s))− v
(
ls(θ

s)

θs

)] ,

g2t(x) = Ct +Kt+1 − F (Kt, Lt)− (1− δ)Kt,

where Vt(θ
t; θ̂t) denotes the right-hand side of (4). To fit into the Le Van and Cagri Saglam (2004)

optimization problem, we minimize −EU instead of maximize EU of (1). However, because of

the term Vt(θ
t; θ̂t), g1t(x) in our problem may not be a convex function as assumed in Le Van and

Cagri Saglam (2004). As noted by Werning (2007, footnote 7) and exposed by Golosov, Tsyvinski,

and Werquin (2016), a way of transforming our problem into a convex problem is to change variables

from (c, l) into (u, v) and then minimize the resource cost associated with providing (u, v). (We do

not repeat the details here.) Below we focus on the issue of presenting multipliers in the infinite

dimensional space as a summable sequence of real numbers.

It is important to recognize that f and gt are functions from `∞ to R∪{+∞} in the optimization

problem. Dechert (1982) considered the situation where f and gt are functions from `∞ to R.

Le Van and Cagri Saglam (2004) extended it to the situation where f and gt are functions from

`∞ to R ∪ {+∞}. This extension is important for our analysis, in that f and gt could go to +∞

in the long run within our framework (namely, − log c goes to infinity as c→ 0 in the case of the

so-called immiseration ; see Lemma 2 and its discussion).

To present multipliers in the infinite dimensional space as a summable sequence of real numbers,

both Dechert (1982) and Le Van and Cagri Saglam (2004) put restrictions on the asymptotic

behavior of the objective functional f(x) and the constraint functions g(x). For a pair x, y ∈ `∞

and T ∈ N, define xT (x, y) = xt if t ≤ T and xT (x, y) = yt if t > T . Consider the following

assumptions:

Assumption C. Continuity: limT→∞ f(xT (x, y)) = f(x).

Assumption S. Slater condition: ∃x0 ∈ `∞ such that supt gt(x0) < 0.

Assumption B. Uniform boundedness: ∃M <∞ such that for all T large enough, ‖ g(xT (x, y)) ‖≤

M .

Assumption AI. Asymptotically insensitive: for all N, limt→∞
[
gt(x

N(x, y))− gt(y)
]

= 0.
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Assumption ANA. Asymptotically non-anticipatory: limT→∞ gt(x
T (x, y)) = gt(x), ∀t.

Restricting: (i) x in Assumption C such that x ∈ D, (ii) x0 in Assumption S such that x0 ∈ D,

and (iii) x and y in Assumptions B, AI, and ANA such that x, y ∈ Γ and xT (x, y) ∈ Γ for all T

large enough, Le Van and Cagri Saglam (2004) showed that the above assumptions together ensure

the representation of multipliers in the infinite dimensional space as a summable sequence of real

numbers. They also showed that the solution to the optimization problem can be found by seeking

the saddle point of the associated Lagrangian.

We now show that all the assumptions above are met by our model.

Assumption C. Continuity: limT→∞ f(xT (x, y)) = f(x).

Given

f(x) = −
T∑
t=0

∑
θt

βtπt(θ
t)

[
u
(
ct(θ

t)
)
− v

(
lt(θ

t)

θt

)]
,

consider any x′, x′′ ∈ D such that ∀T , xT (x′, x′′) ∈ D. By the definition of xT (x′, x′′),

f
(
xT (x′, x′′)

)
= −

T∑
t=0

∑
θt

βtπt(θ
t)

[
u
(
c′t(θ

t)
)
− v

(
l′t(θ

t)

θt

)]
−

∞∑
t=T+1

∑
θt

βtπt(θ
t)

[
u
(
c′′t (θ

t)
)
− v

(
l′′t (θ

t)

θt

)]
.

Assumption C requires that the second part of the above expression (i.e., the one involves x′′) go

to zero as T →∞. This requirement is satisfied under the condition (5).

Assumption ANA. Asymptotically non-anticipatory: limT→∞ gt(x
T (x, y)) = gt(x), ∀t.

Except for applying to g1t(x
T (x, y)) rather than f(xT (x, y)), the logic of proving limT→∞ g1t(x

T (x, y)) =

g1t(x), ∀t is the same as that of verifying Assumption C.

As to limT→∞ g2t(x
T (x, y)) = g2t(x), ∀t, it is obvious.

Assumption AI. Asymptotically insensitive: for all N, limt→∞
[
gt(x

N(x, y))− gt(y)
]

= 0.

Given N, it is clear that gt(x
N(x, y)) = gt(y) if t is large enough.

Assumption B. Uniform boundedness: ∃M <∞ such that for all T large enough, ‖ g(xT (x, y) ‖≤

M .

By the definition of Γ, Assumption B is satisfied.

Assumption S. Slater condition: ∃x0 ∈ `∞ such that supt gt(x0) < 0.

This is a regularity condition or a maintained assumption of our model.
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Finally, note that Le Van and Cagri Saglam (2004) results build on the premise that x ∈ `∞.

However, because of the so-called immiseration (see Lemma 2), consumption for a zero measure

of agents can go to infinity in the long run in our model; see Section 5. This violates the premise

that x ∈ `∞.

Chari, Christiano, and Kehoe (1996) faced a problem similar to the one we face here. They

addressed the optimality of the Friedman rule in economies with distorting taxes. In the case

of money in the utility function models, they found that the Friedman rule holds exactly only if

the value of real money balances in the utility function is infinity. Chari, Christiano, and Kehoe

(1996) acknowledged that the infinite value of real money balances might cause a problem for the

optimal allocation. To get around this technicality, they first set an upper bound for the value

of real money balances and then said that the Friedman rule is optimal if the optimal allocation

converges toward the Friedman rule as the upper bound is relaxed.

Following the approach idea of Chari, Christiano, and Kehoe (1996), we can modify the La-

grangian L with the inclusion of an additional constraint

ct(θ
t) ≤ c̄,∀t, θt,

where c̄ denotes a very large but finite number. As in Chari, Christiano, and Kehoe (1996), we

first work with the maximization problem without the imposition of this additional constraint. We

then check if this constraint would bind for some θt at some t and what would happen if we relax

c̄ to, say, 2c̄ when the constraint does bind. In this way we can work within the environment of

x ∈ `∞ and, at the same time, accommodate our analysis to the force of immiseration.

A.3 Deriving Lagrangian L

This appendix gives the details of deriving the Lagrangian (6).

The part of the “raw” Lagrangian L associated with the temporary IC constraints (4) can be
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decomposed into three components:

T∑
t=0

∑
θt

∑
θ̂t

βtψ(θt−1, θt, θ̂t)πt(θ
t)

[
u
(
ct(θ

t)
)
− v

(
lt(θ

t)

θt

)
− u

(
ct(θ

t−1, θ̂t)
)

+ v

(
lt(θ

t−1, θ̂t)

θt

)]
︸ ︷︷ ︸

Component A

+

T∑
t=0

∑
θt

∑
θ̂t

βtψ(θt−1, θt, θ̂t)πt(θ
t)

T∑
s=t+1

∑
θs|θt

βs−t
πs(θ

s)

πt(θt)

[
u (cs(θ

s))− v
(
ls(θ

s)

θs

)]
︸ ︷︷ ︸

Component B

−
T∑
t=0

∑
θt

∑
θ̂t

βtψ(θt−1, θt, θ̂t)πt(θ
t)

T∑
s=t+1

∑
θs|θt

βs−t
πs(θ

s)

πt(θt)

[
u
(
cs(θ

s; θ̂t)
)
− v

(
ls(θ

s; θ̂t)

θs

)]
︸ ︷︷ ︸

Component C

.

Each component involves elements that take the form of u (.) − v (.) and can be further rear-

ranged as follows:

1. Component A:

T∑
t=0

∑
θt

∑
θ̂t

βtψ(θt−1, θt, θ̂t)πt(θ
t)

[
u
(
ct(θ

t)
)
− v

(
lt(θ

t)

θt

)
− u

(
ct(θ

t−1, θ̂t)
)

+ v

(
lt(θ

t−1, θ̂t)

θt

)]

=

T∑
t=0

∑
θt

∑
θ̂t

βtπt(θ
t)

 u (ct(θ
t))
(
ψ(θt−1, θt, θ̂t)− ψ(θt−1, θ̂t, θt)

πt(θ
t−1,θ̂t)

πt(θt)

)
−v
(
lt(θ

t)
θt

)(
ψ(θt−1, θt, θ̂t)− ψ(θt−1, θ̂t, θt)

π(θ̂t|θt−1)
π(θt|θt−1)

(
θt
θ̂t

)γ)
 .

2. Component B:

T∑
t=0

∑
θt

∑
θ̂t

βtψ(θt−1, θt, θ̂t)πt(θ
t)

T∑
s=t+1

∑
θs|θt

βs−t
πs(θ

s)

πt(θt)

[
u (cs(θ

s))− v
(
ls(θ

s)

θs

)]

=

T∑
t=0

∑
θt

βtπt(θ
t)

[
u
(
ct(θ

t)
)
− v

(
lt(θ

t)

θt

)] t−1∑
s=0

∑
θ̂s

ψ(θs−1, θs, θ̂s).

3. Component C:

T∑
t=0

∑
θt

∑
θ̂t

βtψ(θt−1, θt, θ̂t)πt(θ
t)

T∑
s=t+1

∑
θs|θt

βs−t
πs(θ

s)

πt(θt)

[
u
(
cs(θ

s; θ̂t)
)
− v

(
ls(θ

s; θ̂t)

θs

)]

=

T∑
t=0

∑
θt

βtπt(θ
t)

[
u
(
ct(θ

t)
)
− v

(
lt(θ

t)

θt

)] t−1∑
s=0

∑
θ̂s

ψ(θs−1, θ̂s, θs)
πt(θ

t; θ̂s)

πt(θt)
.
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Putting together these three components with the objective (1), we obtain the Lagrangian (6) with φc(θ
t)

and φl(θ
t) given by (7) and (8).

A.4 Proof of Lemma 1

First, rearranging (13), we have φc(θ
t) =

u′(c∗t (θt))
−1∑

θt u
′(c∗t (θ

t))−1πt(θt)
, where 1

u′
is nonnegative; so φc(θ

t) is

nonnegative. Second, consider epsilon defined in equations (9) and (10) and calculate Et−1(ε(θ
t)).

(i.e., the expectation of ε conditional on information at date t− 1):

Et−1(ε(θ
t)) =

∑
θt

ε(θt)π(θt|θt−1)

=
∑
θt

∑
θ̂t

[
ψ(θt−1, θt, θ̂t)− ψ(θt−1, θ̂t, θt)

π(θ̂t|θt−1)
π(θt|θt−1)

]
π(θt|θt−1)

−
∑
θt

∑
θ̂t−1

π(θ̂t−1|θt−2)
π(θt−1|θt−2)

ψ(θt−2, θ̂t−1, θt−1)

[
π(θt|θ̂t−1)
π(θt|θt−1)

− 1

]
π(θt|θt−1)

=
∑
θt

∑
θ̂t

ψ(θt−1, θt, θ̂t)π(θt|θt−1)−
∑
θt

∑
θ̂t

ψ(θt−1, θ̂t, θt)π(θ̂t|θt−1)

−
∑
θ̂t−1

π(θ̂t−1|θt−2)
π(θs−1|θt−2)

ψ(θt−2, θ̂t−1, θt−1)
∑
θt

[
π(θt|θ̂t−1)− π(θt|θt−1)

]
= 0.

We provide an intuition for the last equality (i.e., equal to zero) in the main text. Applying the

zero conditional expectation result of ε(θt) to equation (7), we obtain

∑
θt

φc(θ
t)π(θt|θt−1) = φc(θ

t−1).

Finally, applying the law of iterated expectation to (11), we obtain

E[φc(θ
t)] = E[Et−1(φc(θ

t))] = E[φc(θ
t−1)]

= E[Et−2(φc(θ
t−1))] = E[φc(θ

t−2)]

= ... = E[φc(θ
0)]

= φc(θ
0) = 1
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Therefore, φc(θ
t) has a finite first moment.

A.5 Proof of Lemma 2

The proof of part (1) is obvious. Under the period utility function u(ct)− v(nt), the nonnegative

martingale of {φc(θt)} has to do with the consumption part of the utility only. We prove part (2)

as follows:

Following the derivation in Appendix A.3, we obtain

T∑
t=0

∑
θt

βtπt(θ
t)

[
u
(
ct(θ

t)
)
φc(θ

t)− v
(
lt(θ

t)

θt

)
φl(θ

t)

]
, (30)

where

φc(θ
t) = 1 +

t∑
s=0

∑
θ̂s

(
ψ(θs−1, θs, θ̂s)− ψ(θs−1, θ̂s, θs)

πt(θ
t; θ̂s)

πt(θt)

)

and

φl(θ
t) = 1+

t∑
s=0

∑
θ̂s

ψ(θs−1, θs, θ̂s)−
t−1∑
s=0

∑
θ̂s

ψ(θs−1, θ̂s, θs)
πt(θ

t; θ̂s)

πt(θt)
−
∑
θ̂t

ψ(θt−1, θ̂t, θt)
π(θ̂t|x(θt−1); t)

π(θt|x(θt−1); t)

(
θt

θ̂t

)γ
.

We then have

φc(θ
t)− φc(θt−1) =

t∑
s=0

∑
θ̂s

(
ψ(θs−1, θs, θ̂s)− ψ(θs−1, θ̂s, θs)

πt(θ
t; θ̂s)

πt(θt)

)

−
t−1∑
s=0

∑
θ̂s

(
ψ(θs−1, θs, θ̂s)− ψ(θs−1, θ̂s, θs)

πt−1(θ
t−1; θ̂s)

πt−1(θt−1)

)
,

where the first term on the right-hand side can be re-expressed as

t−1∑
s=0

∑
θ̂s

(
ψ(θs−1, θs, θ̂s)− ψ(θs−1, θ̂s, θs)

π(θt|x(θt−1; θ̂s); t)πt−1(θ
t−1; θ̂s)

π(θt|x(θt−1); t)πt−1(θt−1)

)

+
∑
θ̂t

(
ψ(θt−1, θt, θ̂t)− ψ(θt−1, θ̂t, θt)

π(θ̂t|x(θt−1); t)

π(θt|x(θt−1); t)

)
.

38



Thus, we obtain

φc(θ
t) = φc(θ

t−1) + ε(θt),

where

ε(θt) =
∑
θ̂t

(
ψ(θt−1, θt, θ̂t)− ψ(θt−1, θ̂t, θt)

π(θ̂t|x(θt−1); t)

π(θt|x(θt−1); t)

)

−
t−1∑
s=0

∑
θ̂s

ψ(θs−1, θ̂s, θs)
πt−1(θ

t−1; θ̂s)

πt−1(θt−1)

(
π(θt|x(θt−1; θ̂s); t)

π(θt|x(θt−1); t)
− 1

)
.

For concreteness, we consider three possible cases of idiosyncratic shocks for the specification of the

conditional probability π(θt|x(θt−1; θ̂s); t), where the notation (θt−1; θ̂s) denotes that the elements

of θt−1 corresponding to θ̂s are replaced by θ̂s.

• Case 1: i.i.d. shocks where π(θt|x(θt−1; θ̂s); t) = π(θt) for s ≤ t− 1.

• Case 2: a first-order Markov process where π(θt|x(θt−1; θ̂s); t) = π(θt|θ̂t−1) for s = t− 1, and

π(θt|x(θt−1; θ̂s); t) = π(θt|θt−1) for s < t− 1.

• Case 3: a second-order Markov process where π(θt|x(θt−1; θ̂s); t) = π(θt|θ̂t−1, θt−2) for s = t−1,

π(θt|x(θt−1; θ̂s); t) = π(θt|θt−1, θ̂t−2) for s = t− 2, and π(θt|x(θt−1; θ̂s); t) = π(θt|θt−1, θt−2) for

s < t− 2.

Let the first and the second components of ε(θt) be ε1(θ
t) and ε2(θ

t). Using the logic of proving

Lemma 1 in Appendix A.4, it can be shown that

∑
θt

ε1(θ
t)π(θt|x(θt−1); t) =

∑
θt

ε2(θ
t)π(θt|x(θt−1); t) = 0. (31)

We are ready to show that φc(θ
t) is a nonnegative martingale. First, except for a more general

shock process, the Lagrangian associated with (30) is identical to the Lagrangian (6). Hence,

following the same arguments as in Appendix A.4, φc(θ
t) > 0. In addition, Eq. (31) indicates

∑
θt

φc(θ
t)π(θt|θt−1) = φc(θ

t−1),
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which implies that the unconditional mean of φc(θ
t) equals 1 as well. This completes the proof.
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