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1 Introduction

When searching for a match, circumstances can influence whom you meet.1 However,

whom to meet is also affected by individuals’ choices. As a result, matching is not

purely random nor perfectly assortative.2 In this paper we propose a parsimonious way

to model the choice of whom to meet that endogenizes the degree of randomness in

matching, and show that this allows for better identification of preferences.

We blend the stochastic discrete choice literature with the frictionless matching

environment of Becker (1973) with two-sided heterogeneity, and assume that agents

choose whom to contact in a probabilistic way, and the strategies chosen are a discrete

probability distribution of interests over types. Each element of this distribution rep-

resents the probability with which an agent will target (i.e. ask out) each potential

match based on its expected payoff.

When agents choose the probability of asking someone out, they know the distribu-

tion over types and their preferences over them (i.e. we all know what are the attributes

we are looking for in a person), but they don’t know where to find a particular type. In

order to do so, agents exert search effort and pay an associated cost in order to locate

their preferred types more accurately (just as in real life we sort through people and

then decide who to ask out).

Paying a higher search cost allows agents to locate a particular type more accurately,

resulting in a more targeted probability distribution of interests (i.e. they assign higher

probabilities to specific types). As such we associate a proportional search cost with

a measure of distance between an “uninformed” strategy where agents simply contact

any type with the same probability, and the agent’s strategy of choice.3

1Where you live, where you study, etc. see e.g. Belot and Francesconi (2013).
2The empirical marriage literature documents an abundance of matches between inferior and su-

perior partners (see survey by Chiaporri and Salanie (2015)). One reason for apparent mismatch may
be that the econometrician does not observe all the match-relevant characteristics (see Choo and Siow
(2006) and Galichon and Salanie (2012)). Another important reason is search frictions. Matches be-
tween inferior and superior types may form if one of the partners cannot afford to wait for their best
match and decides to settle for an inferior one (see Eeckhout (1999), Shimer and Smith (2000), Adachi
(2003)).

3We borrow our cost specification from the literature on discrete choice under information frictions,
see Cheremukhin et al. (2015) and Matejka and McKay (2015).
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When choosing their probability distribution of interests, agents have a productive

motive (they want to maximize actual payoffs), and they have a strategic motive (they

want to maximize the odds of forming a match), because payoffs are irrelevant if you

target someone that has no interest in matching with you (the odds of forming a match

are zero). Thus, people act strategically not only when deciding whether to form a

match or wait for a better option (like in Eeckhout (1999)), but also when choosing

whom to contact.

The interaction between the productive and the strategic motive determines the

meeting rates in the model. The relative strength of the two motives depends on the

search cost. When exerting effort to find the best partner is not very costly, it is easy

for agents to locate their preferred types accurately, and reciprocity of interest is the

paramount determinant of who meets whom: The strategic motive dominates.

When exerting search effort is costly, agents won’t be able to locate their preferred

partners with accuracy, so the likelihood of contacting an inferior (or superior) partner

increases. In this case, payoffs become the driving force behind who meets whom. In

the unique equilibrium, every agent’s strategy is to chase the partner that would yield

the highest payoff: The productive motive dominates the strategic motive.

This property can be used for empirical identification of agents’ preferences. In par-

ticular, it can be used to estimate whether agents preferences are vertical—attraction

is based on a commonly agreed upon ranking—or horizontal—people are attracted to

agents with similar characteristics.4 The existing literature finds it hard if not im-

possible to distinguish between these cases empirically.5 Both cases lead to identical

assortative stable matching in the frictionless case. In contrast, the equilibrium match-

ing rates predicted by our model differ markedly for these two cases. When preferences

are horizontal, the strategic and productive motives pull agents in the same direction, as

look-alikes both get the highest payoff from each other and their interests are also more

likely to be mutual. In this case, a stochastic version of assortative matching is pre-

served in equilibrium and the shape of the observed matching rate and the underlying

4See Banerjee et al. (2013) and references therein.
5See Hitsch et al. (2010) and related studies.
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payoff function are highly correlated.

However, in the case of vertical preferences, there is common agreement on the

ranking of agents and everybody tries to chase the top type despite the lower likelihood

of mutual interest. The productive and the strategic motive pull in opposite directions.

This case gives rise to a novel and surprising equilibrium pattern that reminisces neither

positive nor negative assortative matching. We call it the mixing equilibrium, and it

implies that there is a wedge between the shape of the observed matching rate and the

underlying payoff function (i.e. the correlation between them is not very high).6

Our model is not the first one to generate this wedge between the shape of the

matching rate and the underlying payoff function. This wedge can arise in models that

have a strategic motive (see Eeckhout (1999), Adachi (2003), Shimer and Smith (2000)

and Eeckhout and Kircher (2010) among many others). However, what makes the

wedge that arises in our model unique, is that its size will be endogenously determined,

unlike the existing literature where its size is add-hoc because the degree of randomness

in the matching equilibrium is built in. If this feature is built in an add-hoc way, then

it cannot be used for empirical inference of preferences. Because in our model the

degree of randomness in matching is endogenous, so is the size of this wedge, and our

theoretical results are empirically relevant.

To make this point we show how preferences can be identified from the data on

matching rates and from the data on contact rates if those are observed. We find that

the model does a very good job rationalizing the observed matching rates in the U.S.

marriage market based on income, age, and education, and for these three cases we

estimate the underlying payoffs through the lens of our model.7 Our empirical results

suggest that strategic interactions can be used to recover preferences and distinguish

between the vertical and horizontal case.

We present a bare-bones one-shot model that has the minimal ingredients to show-

case the mechanism mentioned above. We define a matching equilibrium of the model

6Our taxonomy of equilibria in this case follows that of Burdett and Coles (1999).
7Note that our model is fully equipped to analyze the complicated matching patterns that arise in

the presence of multidimensional attributes since it places no restrictions on preferences, nor does it
assume any correlation structure for the attributes.
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as the pure-strategy Nash equilibrium between agents’ probabilistic strategies. This so-

lution concept is less restrictive than the stability requirement coming from cooperative

games. Nonetheless, we prove existence of equilibrium, derive the necessary conditions

characterizing it, and show sufficient conditions for its uniqueness. Furthermore, we

show that the equilibria that emerge from a positive and finite cost are inefficient rela-

tive to the constrained Pareto allocation.

The paper proceeds as follows: Section 2 describes the model and derives the theo-

retical results. In Section 3 we provide an extensive discussion of properties of equilibria

and how they can be used to identify preferences. We apply the model to the U.S. mar-

riage market data in Section 4. Section 5 states some final remarks.

Related Literature

Our paper effectively blends two sources of randomness used in the literature. The

first source is a search friction with uniformly random meetings and impatience, as in

Shimer and Smith (2000). The second approach introduces unobserved characteristics

as a tractable way of accounting for the deviations of the data from the stark predictions

of the frictionless model, as in Choo and Siow (2006) and Galichon and Salanie (2012).

We introduce a search friction into the meeting process by endogenizing agents’ choice

of whom to contact. We build on the discrete choice rational inattention literature—i.e.,

Cheremukhin, Popova, and Tutino (2015) and Matejka and McKay (2015)—that derives

multinomial logit decision rules as a consequence of cognitive constraints that capture

limits to processing information. Therefore, the equilibrium matching rates in our

model have a multinomial logit form similar to that in Galichon and Salanie (2012).

Unlike Galichon and Salanie, the equilibrium of our model features strong interactions

between agents’ contact rates driven entirely by their conscious choices, rather than by

some unobserved characteristics with fixed distributions.

The search and matching literature has seen multiple attempts to produce interme-

diate degrees of randomness with which agents meet their best choices. In particular,

Menzio (2007) and Lester (2011) nest directed search and random matching to generate
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outcomes with an intermediate degree of randomness.8 Our paper produces equilib-

rium outcomes in-between uniform random matching and the frictionless assignment,

endogenously, without nesting these two frameworks.

Also note, that although the directed search literature, such as Eeckhout and Kircher

(2010) and Shimer (2005),9 technically involves a choice of whom to meet, the choice

is degenerate—directed by signals from the other side. The key friction in directed

search is the congestion externality, where agents on one side of the market compete

with each other to match with specific agents on the other side. Congestion slows down

matching and can produce mismatch but does not distort sorting patterns compared

with frictionless assignment. The search friction in our model results in miscoordination

between agents on opposite sides of the market, which leads to detectable distortions

of sorting patterns.

2 Model

We build on the frictionless matching environment of Becker (1973), where males and

females are heterogeneous in their type and all are searching for a match. Both males

and females know the distribution and their preferences over types on the other side of

the market, but there is noise—agents cannot locate potential partners with certainty.

However, they can pay a search cost to help locate them more accurately.

We model this by assuming that each agent chooses a probability distribution over

types. This distribution reflects the likelihood of contacting a particular agent on the

other side. A more targeted search, or a probability distribution that is more concen-

trated on a particular group of agents, is associated with a higher cost, as the agent

needs to exert more effort in deciding whom to contact. The probability distribution

needs to satisfy two properties: 1) By the nature of the choice between a finite number

of options, the distribution must be discrete and 2) for strategic motives to play a role,

agents should be able to vary each element of the distribution and consider small devi-

8Also, see Yang’s (2013) model of “targeted” search that assumes random search within perfectly
distinguishable market segments.

9See Chade, Eeckhout and Smith (2016) for a neat summary of this literature.
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ations of each element in response to changes in the properties of the options. Hence,

this probability distribution cannot be confined to a specific family of distributions.

The choice of functions in economics that satisfy these requirements is very limited.

We use the Kullback-Leibler divergence (relative entropy) as the measure of search ef-

fort. This specification accommodates both full choice of a distribution and a discrete

choice problem. In addition, it turns out that, in our specific case of a choice among dis-

crete options, this specification enhances tractability and leads to closed-form solutions.

Specifically, the solution has the form of a multinomial logit that is well understood

and already widely used in empirical studies of discrete choice environments and of the

marriage market.

After choosing their optimal probability distribution over types, both males and

females simultaneously make a single draw from their distributions. If the draw is

reciprocated, a match is formed if it is mutually beneficial and the output from the

match is split between the two parties.

2.1 Environment

There are F females indexed by x ∈ {1, ..., F} and M males indexed by y ∈ {1, ...,M}.
Both males and females are heterogeneous in types and are actively searching for a

match.10 A match between female x and male y generates a payoff Φxy.
11 If a male

and a female match, the payoff is split between them. We normalize the outside option

of both to zero. We denote the payoff appropriated by the female εxy and the payoff

appropriated by the male ηxy, such that Φxy = εxy + ηxy.
12 The payoff and the split

generated by any potential (x, y) match are known ex-ante to female x and male y.

Each female chooses a discrete probability distribution, px (y), which reflects the

probability with which female x will target male y (seek him out). Each female x

rationally chooses her strategy while facing a trade-off between a higher payoff and

10The extension to multiple identical agents of each type is straightforward and is not discussed in
the paper.

11Note that we do not place any restrictions on the payoff function.
12For simplicity we assume that payoffs are fixed. We discuss the role played by (non)transferability

in Section 3.1.
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a higher cost of searching. Likewise, we denote the strategy of a each male qy (x).

It represents the probability of a male y targeting a female x. Each agent can vary

and choose each element of their distribution. Placing a higher probability on any

particular potential match, implies that the agent choosing the distribution has exerted

more search effort, will target a potential partner more accurately, and hence will have

a higher probability of matching with them.

A female’s total cost of searching is given by cx (κx(px(y))). This cost is a function of

the search effort, κx, and hence of the probability distribution, px(y), chosen by female

x. Likewise, we denote a male’s cost of searching by cy (κy(qy(x))), where the cost is a

function of the search effort, κy, and hence of the probability distribution, qy(x), chosen

by male y.

Figure 1 illustrates the strategies of males and females. Consider a female x = 1.

The solid arrows show how she assigns a probability p1 (y) of targeting each male

y. Similarly, dashed arrows show the probability q1 (x) that a male y = 1 assigns

to targeting a female x. Once these are selected, each male and female will make one

draw from their respective distribution to determine which individual they will actually

contact. A match is formed between male y and female x if and only if: 1) according

to the female’s draw of y from px (y), female x contacts male y; 2) according to the

male’s draw of x from qy (x), male y also contacts female x; and 3) their payoffs are

non-negative.

Since negative payoffs lead to de facto zero payoffs due to the absence of a match,

we can assume that all payoffs are non-negative:

Φxy ≥ 0, εxy ≥ 0, ηxy ≥ 0.

Each female x chooses a strategy px (y) to maximize her expected net payoff:

Yx = max
px(y)

M∑
y=1

εxyqy (x) px (y)− cx (κx (px (y))) .

The female gets her expected return from a match with male y net of the cost of

searching. The probability of a match between female x and male y is given by the
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Figure 1: Strategies of males and females

product of the distributions qy (x) px (y). Note that in equilibrium the matching rate

that female x faces from male y equals male y’s strategy qy (x). As matching rates

are equilibrium objects, they are assumed to be common knowledge to participating

parties.

The cost function is given by cx (κx) = θxκx, where θx is the marginal cost of search.

Here, we are using the linear cost function for simplicity, but all of our proofs will hold

for more general cost functions. As mentioned earlier, κx reflects search effort and needs

to accommodate the full choice of a discrete distribution. One function that satisfies

these requirements is the following:13

κx =
M∑
y=1

px (y) ln
px (y)

1/M
, (1)

where px (y) must satisfy
M∑
y=1

px (y) = 1 and px (y) ≥ 0 for all y.

Note that κx is increasing in the distance between a uniform distribution {1/M} over

males and the chosen strategy, px (y). If a female agent does not want to exert any search

13In the model of information frictions used in the rational inattention literature, κx would represent
the relative entropy between a uniform prior {1/M} over males and the posterior strategy, px (y).
This definition is a special case of Shannon’s channel capacity where information structure is the only
choice variable (See Thomas and Cover (1991), Chapter 2). See also Cheremukhin et al. (2015) for an
application to stochastic discrete choice with information costs.

8



effort, she can choose a uniform distribution px (y) = 1
M

over types, the effort involved

in search is zero, and her search is random. As she chooses a more targeted strategy,

the distance between the uniform distribution {1/M} and her strategy px(y) is greater,

increasing κx and the overall cost of searching, and her search will be less random.

By increasing search effort, agents bring down uncertainty about the location of a

prospective match, which allows them to target their better matches more accurately.

Similarly, male y chooses his strategy qy (x) to maximize his expected payoff:

Yy = max
qy(x)

F∑
x=1

ηxypx (y) qy (x)− cy (κy (qy (x))) ,

where

κy =
F∑
x=1

qy (x) ln
qy (x)

1/F
, (2)

and qy (x) must satisfy
F∑
x=1

qy (x) = 1 and qy (x) ≥ 0 for all x.

2.2 Matching equilibrium

Definition 1. A matching equilibrium is a set of strategies of females, {px (y)}Fx=1,

and males, {qy (x)}My=1, that simultaneously solve problems of males and females.

The equilibrium of the matching model can be interpreted as a pure-strategy Nash

equilibrium of a strategic form game. In what follows we shall apply the results

for concave n-person games from Rosen (1965). The game consists of the set of

players, the set of actions and the players payoffs. The set of players is given by

I = {x ∈ {1, ..., F} , y ∈ {1, ...,M}}. The set of actions s ∈ S is given by the cartesian

product of the sets of strategies of females px (y) ∈ Sx and males qy (x) ∈ Sy, where

Sx =

{
px (y) ∈ RM , px (y) ≥ 0,

M∑
y=1

px (y) ≤ 1

}
,

Sy =

{
qy (x) ∈ RF , qy (x) ≥ 0,

F∑
x=1

qx (x) ≤ 1

}
.
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The payoffs ui (s) = {Yx (s) , Yy (s)} are defined as follows:

Yx (px (y) , qy (x)) =
M∑
y=1

εxyqy (x) px (y)− cx

(
M∑
y=1

px (y) ln
px (y)

1/M

)
,

Yy (qy (x) , px (y)) =
F∑
x=1

ηxypx (y) qy (x)− cy

(
F∑
x=1

qy (x) ln
qy (x)

1/F

)
.

Theorem 1. A matching equilibrium exists.

Proof. Note that the strategy set of each player is a unit simplex and therefore a non-

empty, convex and compact set. For a pure-strategy Nash equilibrium to exist, each

payoff function ui (s) needs to be continuous in the strategies s, and u (si, s−i) needs to

be quasi-concave in si. Indeed, under the assumption that cost functions are continuous,

non-decreasing and (weakly) convex, the payoff functions are continuous and concave

in the own strategies of players. For the case of a linear cost function, these restrictions

are trivially satisfied.

To show uniqueness, we need to introduce some additional notation. Note that for

each player i ∈ I the strategy set can be represented as Si = {si ∈ Rmi , hi (si) ≥ 0},
where hi is a concave function.

The functions hx (px (y)) =

[
px (1) , ..., px (M) , 1−

M∑
y=1

px (y)

]
and hy (qy (x)) =[

qy (1) , ..., qy (F ) , 1−
F∑
x=1

qy (x)

]
are concave. Following Rosen, define the gradient

∇u (s) = [∇1u1 (s) , ...,∇mum (s)]T and Hessian: U (s) = ∇i∇jui (s). Then, if the con-

straints hi are concave and the symmetrize Hessian U (s) + UT (s) is negative definite

for all s ∈ S, then the payoff functions are diagonally strictly concave for s ∈ S. We

can then use the result that if hi are concave functions, if there exist interior points

s̃i ∈ Si such that hi (s̃i) > 0, and if the payoff functions are diagonally strictly concave

for all s ∈ S, then the game has a unique pure strategy Nash equilibrium.

Theorem 2. The matching equilibrium is unique if

10



a) cost functions are non-decreasing and convex;

b) ∂cx(κx)
∂κx

∣∣∣
p∗x(y)

= θx > εxyp
∗
x (y);

c) ∂cy(κy)

∂κy

∣∣∣
q∗y(x)

= θy > ηxyq
∗
y (x).

Proof. If the cost functions c (κ) are (weakly) increasing and (weakly) convex in κ, then

the payoffs of all males and females are continuous and also concave in their strategies.

Assuming that the cost functions are twice continuously differentiable functions, the

Hessian of this game is the matrix of all second derivatives. The diagonal elements are

all non-positive, consistent with concavity of the payoffs:
∂2Yx
∂px∂px

= − ∂cx
∂κx

(κx)
1

px (y)
− ∂2cx
∂κx∂κx

(κx)

(
1 + ln

px (y)

1/M

)2

≤ 0,

∂2Yy
∂qy∂qy

= − ∂cy
∂κy

(κy)
1

qy (x)
− ∂2cy
∂κy∂κy

(κy)

(
1 + ln

qy (x)

1/F

)2

≤ 0.

The off-diagonal elements are all non-negative:
∂2Yx
∂px∂qy

= εxy ≥ 0,

∂2Yy
∂qy∂px

= ηxy ≥ 0.

The remaining cross-derivatives are all zero. Note also that the Hessian is itself

symmetric, so there is no need to symmetrize it. To guarantee that the Hessian is

negative definite, we require the following diagonal dominance conditions:

∣∣∣∣ ∂2Yx
∂px∂px

∣∣∣∣ > ∣∣∣∣ ∂2Yx
∂px∂qy

∣∣∣∣ ,∣∣∣∣ ∂2Yy
∂qy∂qy

∣∣∣∣ > ∣∣∣∣ ∂2Yy
∂qy∂px

∣∣∣∣ .
Diagonal dominance conditions postulate that diagonal elements of the Hessian are

larger in absolute value than any off-diagonal elements, which in turn guarantees that

the Hessian of the game is negative definite. It is clear that when the cost functions

are linear, these conditions simplify to θx
1

px(y)
> εxy and θy

1
qy(x)

> ηxy. While Rosen’s

version requires that these conditions hold globally for all s ∈ S, which would imply

θx > εxy and θy > ηxy, these conditions could be relaxed to require diagonal dominance
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to be satisfied only along the equilibrium path. For this we note that since the con-

straints are given by unit simplexes (for which the index equals 1 and every KKT point

is complementary and non-degenerate), we can invoke the generalized Poincare-Hopf

index theorem of Simsek, Ozdaglar, and Acemoglu (2007), which in this case implies

that the equilibrium is unique if the Hessian is negative definite at the equilibrium point.

Thus, the equilibrium is unique if diagonal dominance conditions hold only along the

equilibrium path, i.e. if conditions (b) and (c) are satisfied.

Note that the assumptions we make to prove uniqueness are by no means restric-

tive. The assumption that cost functions are non-decreasing and convex is a natural

one. The additional “diagonal dominance” conditions in our case can be interpreted

as implying that the search cost should be sufficiently high for the equilibrium to be

unique. If these conditions do not hold, then there can be multiple equilibria. This is

a well-known outcome of the assignment model, which is a special case of our model

under zero search costs. In a frictionless environment, the multiplicity of equilibria is

eliminated by requiring that the matching be “stable,” a solution concept from cooper-

ative games requiring that there is no profitable pairwise deviation. In our framework,

checking for pairwise deviations would require that all males know the location of all

females and vice versa. Since locating agents is costly in our model, we use the Nash

equilibrium solution concept, which implies that the equilibrium outcome generically

does not satisfy “stability.”

Under the assumptions on the cost functions made earlier, we can also obtain a

characterization result. The derivatives of the constrained payoff functions with respect

to own strategies are
∂Yx
∂px

= εxyqy (x)− ∂cx
∂κx

(κx)

(
1 + ln

px (y)

1/M

)
− λx,

∂Yy
∂qy

= ηxypx (y)− ∂cy
∂κy

(κy)

(
1 + ln

qy (x)

1/F

)
− λy.

When cost functions are non-decreasing and convex, it is easy to verify that first-

order conditions are necessary and sufficient conditions for equilibrium. Rearranging

the first-order conditions for males and females, we obtain

12



p∗x (y) = exp

(
εxyq

∗
y (x)

θx

)
/

M∑
y′=1

exp

(
εxy′q

∗
y′ (x)

θx

)
,

q∗y (x) = exp

(
ηxyp

∗
x (y)

θy

)
/

F∑
x′=1

exp

(
ηx′yp

∗
x′ (y)

θy

)
. (3)

These necessary and sufficient conditions for equilibrium cast the optimal strategy of

female x and male y in the form of a best response to optimal strategies of males and

females, respectively.

3 Implications of the Model

3.1 Properties of matching equilibria

The result of Theorem 2 is intuitive. Recall that there are two motives for female x

to target male y: the productive and the strategic. The payoff of a female depends

on the product of the portion she appropriates from the output of the match and the

probability of reciprocation. While her private payoff does not depend on equilibrium

strategies, the strategic motive does.

When the search cost, θ, is very low, females (and males) are able to place a high

probability of targeting one counter-party and exclude all others. It does not matter

what portion of the payoff female x will get from a match with male y if the male places

a low probability on female x. In the extreme, any pairing of agents is an equilibrium

since no one has an incentive to deviate from any mutual reciprocation. The strategic

motive dominates and multiplicity of equilibria is a natural outcome. As the search

costs go to zero, targeting strategies become more and more precise. In the limit, in

every equilibrium each female places a unit probability on a particular male and that

male responds with a unit probability of considering that female. Each equilibrium of

this kind implements a matching of the classical assignment problem (although not all

of them are stable).

As θ increases, probability distributions become less precise, as it is increasingly

costly to target a particular counter-party. That is, the search costs dampen the strate-

gic motive and the productive motive plays a bigger role. At some threshold level of
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θ, the strategic motive is dampened enough that all agents will choose probabilities

primarily seeking a match with a higher payoff. This level of costs is characterized by

the diagonal dominance conditions of Theorem 2. Agents require the strategic motive,

characterized by the off-diagonal element of the Hessian of the game, to be lower than

the productive motive, captured by the diagonal element. Above the threshold, the

unique equilibrium has the property that each agent places a higher probability on

the counter-party that promises a higher payoff; i.e., the productive motive dominates.

When search costs go to infinity, optimal strategies of males and females approach a

uniform distribution. This unique equilibrium implements the standard uniform ran-

dom matching assumption extensively used in the literature. Thus, the assignment

model and the random matching model are special cases of our targeted search model,

when θ is either very low or very high.

Equilibrium conditions (3) also have an intuitive interpretation. They predict that

the higher the female’s private gain from matching with a male, the higher the proba-

bility of targeting that male. Males are naturally sorted in each female’s strategy by the

probability of the female targeting each male. The strategies of males have the same

properties due to the symmetry of the problem. Theorem 2 predicts that an increase

in θ reduces the interaction between search strategies of females and males. Once θ is

sufficiently high, the intersection of best responses leads to a unique equilibrium. Note

that, by the nature of the index theorem used in the proof of uniqueness, it is enough

to check diagonal dominance conditions locally in the neighborhood of the equilibrium.

There is no requirement for them to hold globally. This suggests a simple way of com-

puting the unique equilibrium. We first need to find one solution to the first-order

conditions (3) and then check that diagonal dominance conditions are satisfied.

In appendix A we analyze whether an equilibrium of the model is efficient from

the point of view of a constrained planner. We find that except for the two extreme

cases—random matching (when costs are infinite) and the frictionless limit (when costs

are zero)—the equilibria of the model are socially inefficient. While it is socially optimal

for both females and males to consider the total payoff of the match, in the decentralized

equilibrium they consider only their private payoffs. This result is reminiscent of the
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holdup problem where there are goods with positive externalities and the producer

undersupplies the good if she is not fully compensated by the marginal social benefits

that an additional unit of the good would provide to society. In our model, additional

search effort exerted by an individual male or female has a positive externality on the

whole matching market. In appendix B we show that the constrained optimum is

possible to achieve if only one side of the market searches actively.

In appendix C we consider an extension of the two-sided matching model to a

repeated setting. Following Eeckhout (1999) and Adachi (2003), we assume that at the

moment that male y and female x meet, each of them has an additional decision to

make. Each agent may choose to form a match and receive the corresponding share of

the surplus or refuse to form a match and wait for a better potential partner in future

periods if their continuation value is higher than the payoff from matching with the

proposed partner. The continuation value is assumed to be simply the expected payoff

from matching in the future discounted at the rate ρ, a patience parameter.

When the agents are unable to distinguish partners until they meet, i.e., when the

cost parameter θ approaches infinity, we obtain the Adachi (2003) model. In that

case, if the patience parameter ρ approaches 1, the model replicates the frictionless

matching outcome, as agents are able to wait as long as necessary to meet their best

match. Similarly, when agents cannot wait and match everybody that they meet, i.e.,

the patience parameter ρ is set to zero, we obtain our baseline one-shot model. In that

case, if agents are nonetheless able to perfectly distinguish among potential partners,

i.e., the parameter θ approaches zero, the model, with a refinement permitting only

stable matchings, also reproduces the frictionless matching outcome.

The repeated game with patience is instructive, as it highlights two independent

sources of search frictions: the costs of waiting and the costs of distinguishing among

agents. According to Smith et al. (1999), search costs are divided into external and

internal costs. External costs include the monetary costs of searching and contacting

partners as well as the opportunity costs of the time spent on searching. These costs

are captured by the parameter ρ in the repeated model. Internal costs include the

mental effort associated with the search process, sorting the incoming information,
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and integrating it with what the agent already knows. Modeling the internal costs

is the novel feature of our model. Internal costs are captured by the parameter θ,

which describes the agents’ ability to evaluate available information, depending on

intelligence, prior knowledge, education and training. The properties of the extended

model highlight that both internal and external costs of search are necessary to obtain

outcomes where superior agents are matched with inferior agents in equilibrium: The

agents need to be both reasonably impatient and unable to perfectly distinguish among

potential partners. Although the two types of frictions are quite different in nature, we

find that they reinforce each other: If agents can distinguish their best matches better,

the equilibrium likelihood of meeting is higher, which increases the continuation value

of waiting, just like an increase in patience.

This extension also highlights two distinguishing features of our model. First, it

emphasizes the difference between the choice of whom to meet constrained by cognitive

costs and the choice of whether to form a match or keep looking for a better one

constrained by the physical costs. Ours is an explicit model of how agents choose

whom to meet. Second, the extended model makes clear the source of the difference

between the TU (transferable utility) and the NTU (non-transferable utility) cases.

If agents are able to reject potential partners that are not good enough, then it is

important whether those potential partners can offer a larger share of the surplus in

return for forming a match. The more impatient agents are, the smaller the difference

between the TU and NTU cases. In our one-shot model, the TU case and the NTU

case are identical, as the continuation values are zero and all matches are viable.

3.2 Implications for Sorting

To better understand the effect of the productive and strategic motives on equilibrium

strategies and matching rates, it is useful to consider simple examples of payoffs. Let

us consider a matching market where there are just two males and two females, with

types high (H) and low (L). Let us also consider two specific cases of the form of the

payoff function, which in the literature are often referred to as horizontal and vertical
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preferences.14

Case one: The high-type female is better off with the high-type male, and the

low-type female is better off with the low-type male. The same property is true for

males. We shall generally refer to a payoff function where for each type the best option

on the other side is different, as the case of horizontal preferences. Case two: Both

females prefer the high-type male, and both males prefer the high-type female. We

shall generally refer to a payoff function for which everyone’s best option is the same

type as the case of vertical preferences. These definitions place restrictions only on

the structure of agents’ best options and are therefore less restrictive than existing

definitions in the literature.

In the case of horizontal preferences, the strategic and the productive motives are

aligned. The productive motive points all agents in different directions—toward their

best options—and the strategic motive ensures that the agent that implies a higher

payoff is also the one more likely to reciprocate (because agents have no incentive

to compete for the same match). However, in the case of vertical preferences, the

productive motive points all agents in the same direction, while the strategic motive

tends to drive agents to pay attention to those whom their competitors are less likely

to consider, to maximize the odds of finding a match. Thus, there is a conflict between

the two motives as they pull intentions in different directions.

If preferences are horizontal and the search costs are low, our model can have two

different equilibrium patterns. The first pattern is where the high type is more likely to

target the high type and the low type to target the low type (HH, LL). This is the case of

positive assortative matching (PAM). The second pattern is when the high type is more

likely to target the low type, because the low type is more likely to reciprocate (HL,

LH). This is the case of negative assortative matching (NAM). However, if search costs

are high, only the PAM equilibrium survives, because the productive motive dominates.

If preferences are vertical, and search costs are low, in addition to the PAM and

NAM equilibria, there is a third equilibrium pattern, which we call a mixing equilibrium.

In the mixing equilibrium, both females target the high-type male (they assign a higher

14See e.g., Hitsch et al. (2010) and Herrenbrueck et al. (2016).
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PAM NAM Mixing

Figure 2: Three types of equilibria and their sorting patterns
Note: We show by an arrow the direction in which each agent places the highest probability.

probability to him), and both males target the high-type female (they assign a higher

probability to her). Moreover, for high enough search costs, the unique equilibrium has

the mixing pattern, while the PAM and NAM equilibria disappear. These patterns are

illustrated in Figure 2.

This last result is in stark contrast with the literature on optimal assignment, which

predicts a PAM equilibrium as the only stable outcome for either horizontal or vertical

preferences. The prediction of the assignment model is driven by the strategic motive.

If search costs are low, the high types are only interested in each other, so it makes no

sense for the low types to target the high types as, despite a higher potential payoff, the

chance their interest will be reciprocated is zero. However, when search costs are high

enough, the strategic motive is dampened to the extent that the productive motive

starts to play a dominant role. The productive motive instructs people to place a

higher probability on the type that promises a higher payoff—hence, the unique mixing

equilibrium. This intuition naturally extends to richer environments with a multitude

of types and various shapes of preferences, yielding unique PAM equilibria in the case of

horizontal preferences and unique mixing equilibria in the case of vertical preferences.

This basic intuition has important implications for empirical inference. If the pro-

ductive and strategic motives are perfectly aligned, as they are for horizontal prefer-

ences, then the shape of the equilibrium matching pattern is very similar to the shape

of the payoff function. The presence of a conflict between these motives, as in the case

of vertical preferences, drives a wedge between the shape of the payoff and the shape of

the matching rates. The conflict between motives creates a large number of competing
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Figure 3: Correlation of matching rate and payoff

agents that would be able to compensate for the lower payoff by a higher probability of

reciprocation. Therefore, the pattern of who meets whom will differ substantially from

the pattern of who would be better off with whom.

To quantify this difference, we run a set of Monte Carlo simulations and compute

the correlation between the equilibrium matching rate and the underlying payoff func-

tion. For the Monte Carlo simulations, we assume three males and three females and

draw each element of the 3-by-3 payoff matrix from a uniform distribution. We make

25,000 draws. We then find all equilibria and corresponding matching rates for each

draw of the payoff function. For all draws, we compute the correlation between the

matrix of equilibrium matching rates and the payoff matrix. In Figure 3 we show the

probability density functions of correlations for three classes of payoff functions: vertical

preferences, horizontal preferences, or no clear preference pattern.

We find that, indeed, in the case of vertical preferences, the correlation is signifi-

cantly lower than that in the case of horizontal preferences. The intermediate shapes

of payoffs generate intermediate values of the correlation. Thus, when our model is the
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true data-generating process, the conflict between the productive and strategic motives

drives a substantial wedge between the shape of the underlying payoff function and

the shape of the matching rate. Consequently, the empirical researcher could easily

arrive at wrong conclusions about the shape of the underlying payoff and the optimal

frictionless allocation by simply looking at the shape of the matching rates. As we shall

discuss at the end of the empirical section, this is indeed what workhorse models of the

marriage market do.

To put this result in context, we note that both random matching models á la Shimer

and Smith (2000) and directed search models á la Eeckhout and Kircher (2010) can

produce a substantial wedge between the shape of the payoff function and the shape

of the matching rates. In the case of random matching, the distribution is uniform,

while in the case of directed search matching is fully assortative. Matching patterns in

both of these cases are accommodated by our model under extreme (very high or very

low) values of search costs. Our model also spans the continuum of matching patterns

in-between these two extremes.

To show that the wedge between the matching pattern and the payoff function

is indeed present in the data and empirically relevant, in the empirical section, we

explore three prominent examples of matching patterns in the marriage market. We

show that, when viewed through the lens of our model, they exhibit strong vertical

preferences. Also, we observe a substantial wedge between the shape of the underlying

payoff function and the matching rate.

3.3 Identification

Identifying preferences empirically, in particular, distinguishing between horizontal and

vertical preferences, is hard because both cases lead to identical assortative stable

matching in the frictionless case. The interaction between the productive and strategic

motives in our model makes it possible to use the data to distinguish empirically be-

tween horizontal and vertical preferences. The empirical strategy will depend on data

availability, however.

The literature distinguishes two important situations. The first situation is when the
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contact rates are available. For instance, Hitsch et al. (2010) observe the contact rates of

both men and women on a dating website, from which one can infer for each type of male

and female what their distributions of interest are, px (y) and qy (x), respectively. Since

these are distributions that sum up to one, in this case, the data contains observations

with 2×M ×N −M −N degrees of freedom. Assuming non-transferable utility, these

data allow the researcher to identify the shape of the payoff functions for each type of

men and women, εxy and ηxy, which have a total of 2×M ×N degrees of freedom. Our

model allows for direct identification of these unobserved preferences up to a constant

for each type by using the necessary conditions for equilibrium. Specifically, rearranging

equations (3) we obtain

ln
p∗x (y)

p∗x (y′)
=
εxy
θx
q∗y (x)− εxy′

θx
q∗y′ (x) ,

ln
q∗y (x)

q∗y (x′)
=
ηxy
θy
p∗x (y)− ηx′y

θy
p∗x′ (y) . (4)

If the researchers were to restrict attention to cases of equilibrium uniqueness (which

is straightforward to test after finding the payoffs), then these equations uniquely iden-

tify the best match for each type of male and female and thus determine whether

preferences are horizontal, vertical or some mix of the two. We were able to routinely

recover the correct structure of preferences in Monte-Carlo simulations. Unfortunately

we were unable to apply this strategy to the data in Hitsch et al (2010) due to their

non-disclosure agreement. As this strategy requires substantial investment in data col-

lection that goes beyond the scope of this paper, we leave the empirical application of

this strategy for future research.

The second, more common, situation is when only matching rates are available. For

instance, Choo and Siow (2006) observe matching rates for men and women in the U.S.

marriage market for specific years, from which one can infer the product px (y) qy (x).

In this case, the data contains observations with M ×N degrees of freedom. Of course,

there are not enough restrictions in the data to identify payoffs in a non-transferable

utility case, but if one were to assume transferable utility with a predefined split of

the joint payoff between males and females, Φxy, then the unobserved payoff functions

also have M × N degrees of freedom. This makes the payoff functions identifiable in
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principle.

However, we find that in our model the mapping between the payoff and the match-

ing rate is not necessarily invertible. By that we mean that there may exist matching

rate patterns that cannot in principle be generated by our model. Also, we cannot

exclude the possibility that some matching rate pattern could be generated by more

than one payoff function (although we could not find an example of this in practice).

Given the potential non-invertibility of the mapping between the payoff and the

matching rates, our empirical methodology proceeds in three steps. First, we assume

that search costs are identical across agents on both sides of the marriage market,

θx = θy = θ. This assumption will allow us to identify the ratio of the payoff to search

cost, Φxy/θ, for each pair of types. In addition, we assume that each payoff is split

equally between males and females; i.e., εxy = ηxy = Φxy/2. Second, for any shape of

the payoff function, Φxy, we find all equilibria (if there are more than one) and compute

all corresponding equilibrium matching rates implied by the model. Third, we search

for a shape of the payoff that maximizes the likelihood function of the data given the

predicted matching rates.

Whenever a proposed payoff function produces multiple equilibria, we select the one

that fits the observed matching rate best, i.e. has the highest likelihood. Maximization

of the likelihood function efficiently minimizes the properly weighted sum of distances

between the data and the model’s prediction and should lead to consistent estimates.

Maximum likelihood estimation of discrete games with multiple equilibria have been

reasonably well studied in the literature, e.g., Aguirregabiria and Mira (2007). Here

we do not employ any computational tricks since the 3-by-3 case can be computed by

brute force in reasonable time. The results of such estimation can be treated as an

upper bound on the explanatory power of the model.

In the empirical section, we apply this method to three prominent examples of

sorting in the marriage market and find that the model fits the data very well. Despite

matching rate data suggesting mostly horizontal preferences, when viewed through

the lens of our model with strategic motives, the data are consistent with a vertical

preference structure.
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4 Empirical Application

To take the model to the data, we use a standard dataset for matching rates in the

U.S. marriage market. The data on unmarried males and females and newly married

couples comes from IPUMS for the year 2001.15 For computational transparency, we

assign both males and females to three equally sized bins, which we refer to as low (L),

medium (M), and high (H) types. We consider three dimensions along which males and

females evaluate each other in the marriage market: income, age and education. In

each case we choose the cutoffs between bins in such a way as to split the whole U.S.

population of each gender into equally sized bins.

In the case of age, we restrict our attention only to adults between the ages 21 and

33. To make them as close as possible to equal size, the bins correspond to ages 21-23,

24-27, and 28-33. We discard all younger and older people from the analysis because

there is a disproportionate amount of unmarried people in these other age categories

who only rarely marry. One reason for this may be that a large fraction of them are

not searching for a spouse and are thus not participating in the marriage market. To

avoid misspecification due to our inability to observe search effort, we exclude them

from our analysis. In the case of education, the natural breakdown into three bins is to

have people who never attended college, those who are currently in college, and those

who have graduated from college. Income is a continuous characteristic, so the three

bins correspond to people with low, medium, and high incomes.

For each of the three cases, we estimate the shape of the payoff function using the

maximum likelihood methodology described earlier for the case of transferable utility.

We assume that all currently unmarried males and females are searching, and the

number of matches is proxied by the number of couples that were married in the past

12 months, as indicated by answers to the questionnaire. The dataset contains 93,599

unmarried males, 82,673 unmarried females, and 23,572 newly married couples above

the age of 21.

The matching rate for the case of income is presented in the left panel of Figure 4.

15We thank Gayle and Shephard (2015) for kindly sharing the IPUMS data with us.
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The estimate of the underlying payoff is shown in the right panel of the same figure.

A notable property of the payoff is that it shows strong vertical preference. That is,

marrying a spouse with a higher income is always better. We find that the matching

rate and the payoff have a correlation of 0.72.

The matching rate for the sorting by age is presented in the left panel of Figure

5. Looking at the shape of the matching rate, we would expect to see the horizontal

preferences here, with slightly older males looking for slightly older females. However,

the shape of the payoff that best explains this sorting pattern is also consistent with

vertical preferences. Females have a strong preference for older males independent of

their own age. Meanwhile, males are virtually indifferent to the age of their spouse.

The highest payoff is produced by males at age 30 marrying females at age 23. The

correlation between the matching rate and the payoff is a staggeringly low 0.42.

The matching rate for sorting by education is presented in the left panel of Figure

6. In this case, the payoff exhibits segments of both vertical and horizontal preferences.

People with a lower level of education and people with a high level of education both

prefer someone with their same level of education, generating a region of horizontal

preferences. However, people with a medium level of education tend to prefer highly

educated people, generating a region with vertical preferences. The matching rate and

the payoff function have a correlation of 0.52.

A widely used workhorse model of the marriage literature is the model of Choo

and Siow (2006). They estimate a static transferable utility model that generates a

nonparametric marriage matching function. This model postulates that, in equilibrium,

each pair of cohorts of males and females reaches an implicit agreement on the matching

rate among themselves; matching (or staying single) is a voluntary decision. In their

model, the payoff is recovered as a simple algebraic function of the matching rates and

the number of people searching. An important feature of the model is that the matching

rate depends only on the characteristics of the agents directly involved in the match but

not on the characteristics of other agents present in the marriage market. The strategic

motive is absent from their model, so the shape of the matching rate mimics closely the

shape of the payoff function. This implies that the distance between the assumptions
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Figure 4: Sorting by income

Figure 5: Sorting by age

Figure 6: Sorting by education
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and implications is minimal: the correlation between the matching rates across pairs of

types and the implied values of the payoff are close to 1.

We illustrate this feature in Figure 7, where we use the 3-by-3 Monte Carlo sim-

ulation from Section 3.2. We plot the correlation between the true underlying payoff

and the equilibrium matching rate obtained from our model on the horizontal axis and

the correlation between the same matching rate and the corresponding payoff function

recovered by the model of Choo and Siow on the vertical axis. We find that in many

cases, the shape of the true payoff and of the matching rate descends to 0.4, while the

model of Choo and Siow would imply that they have a similar shape with a correlation

above 0.75. We color the payoffs consistent with the three types of preferences in three

different colors. We find that while the correlation depends significantly on the pattern

of preferences in our model, in Choo and Siow’s model it does not.

Figure 7 also compares our empirical findings with the Monte Carlo simulation.

We find that the three prominent empirical examples that we have considered indeed

belong to the range of correlation values commonly generated by payoffs consistent with

vertical preferences.

Figure 7: Monte Carlo results and Data
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This result emphasizes the importance of considering the effect of strategic motives

on the sorting patterns in empirical research. If a researcher looks at the data through

the lens of a model with exogenous randomness, that model by construction ignores any

strategic considerations that may affect agents’ search strategies. As we have shown,

strategic considerations can drive a significant wedge between the shape of the pref-

erences and the shape of the observed sorting pattern. Ignoring search frictions that

affect the decision of whom to meet may thus lead to vastly misleading conclusions

regarding the amount of mismatch present in a market and the size of the losses associ-

ated with it. In this paper, we have presented and demonstrated the effectiveness of an

identification strategy that uses the strategic motives of agents to identify preferences,

with emphasis on distinguishing vertical and horizontal preference structures.

5 Final Remarks

In this paper we propose a model of probabilistic choice by agents in a matching mar-

ket where deciding whom to contact when locating the best partners involves cognitive

effort. The model features a productive motive whereby agents target partners who

render a higher payoff and a strategic motive that drives agents toward partners who

are more likely to show mutual interest. We find that accounting for the interaction

of strategic and productive considerations allows the identification of underlying pref-

erences, while ignoring this interaction may result in misleading implications regarding

the degree of mismatch and hence the losses associated with it. Understanding who

meets whom is crucial for understanding who marries whom, and who should marry

whom instead.

We applied the model to the U.S. marriage market to demonstrate its relevance, but

our model is well-suited to study a host of real-life matching markets where agents have

limited time and ability to quickly evaluate the relative merits of potential partners. A

number of markets ranging from labor markets to education and health care provide

examples of markets where equilibrium matches between superior and inferior types are

prevalent. Our model can be a useful tool for analyzing these markets.
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Furthermore, our model describes markets where the degree of centralization is fairly

low. In many two-sided market models, a platform acts both as a coordination device

and as a mechanism to transfer utility. Our model can be used to study the optimal

degree of centralization and the social efficiency of pricing schemes in these markets.

We view both the empirical study of matching markets and the optimal design of

centralization in two-sided search environments as exciting areas of future research.
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NOT FOR PUBLICATION

Appendix A: (In) efficiency of equilibrium

To evaluate the efficiency of the equilibrium, we compare the solution of the decen-

tralized problem to a social planner’s solution. We assume that the social planner

maximizes the total payoff, which is a utilitarian welfare function. To achieve a social

optimum, the planner can choose the strategies of males and females. If there were

no search costs, the planner would always choose to match each male with the female

that produces the highest output. The socially optimal strategies of males would be

infinitely precise.

To study the constrained efficient allocation, we impose on the social planner the

same costs of search that we place on males and females. Thus, the social planner

maximizes the following welfare function:

W = max
px(y),qy(x)

F∑
x=1

M∑
y=1

Φxypx (y) qy (x)−
F∑
x=1

cx (κx (px (y)))−
M∑
y=1

cy (κy (qy (x)))

subject to (1-2) and to the constraints that px (y) and qy (x) are well-defined probability

distributions.

Under the assumption of increasing and convex cost functions, the social welfare

function is concave in the strategies of males and females. Hence, first-order conditions

are necessary and sufficient conditions for a maximum. Rearranging and substitut-

ing out Lagrange multipliers, we arrive at the following characterization of the social

planner’s allocation:

pox (y) = exp

(
Φxyq

o
y (x)

θx

)
/

M∑
y′=1

exp

(
Φxy′q

o
y′ (x)

θx

)
,

qoy (x) = exp

(
Φxyp

o
x (y)

θy

)
/

F∑
x′=1

exp

(
Φx′yp

o
x′ (y)

θy

)
. (5)
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The structure of the social planner’s solution is very similar to the structure of the

decentralized equilibrium given by (3). From a female’s perspective, the only difference

between the two strategies is that the probability of targeting a male depends on the

social gain from a match rather than on her private gain. Notice that the same difference

holds from the perspective of a male. Thus, it is socially optimal for both females and

males to consider the total payoff, while in the decentralized equilibrium they consider

only their private payoffs.

In our model, additional search effort exerted by an individual male or female has a

positive externality on the whole matching market. For instance, when a male chooses

to increase his search effort, he can better locate his preferable matches. As a conse-

quence, the females he targets will benefit (through an increase in the personal matching

rate) and the females he does not target will also be better off as his more-targeted

strategy will help them exclude him from their search (through a decrease in the per-

sonal matching rate). Nevertheless, in this environment, agents cannot appropriate all

the social benefits (the output of a match) they provide to society when increasing their

search effort. They only get a fraction of the payoff. This failure of the market to fully

compensate both females and males with their social marginal products leads to an

under supply of search effort by both sides in the decentralized equilibrium.

Because the social gain is always the sum of private gains, there is no feasible

way of splitting the payoff such that it implements the social optimum. When θ is

finite and positive, a socially optimal equilibrium has to satisfy the following conditions

simultaneously:

εxy = Φxy, ηxy = Φxy.

In the presence of heterogeneity, these optimality conditions can hold in equilibrium

only if the total payoff is zero, as private gains have to add up to the total payoff,

εxy + ηxy = Φxy. Therefore, we have just proven the following theorem:

Theorem 3. The matching equilibrium is socially inefficient for any split of the payoff

if all of the following hold:

1) cost functions are increasing and convex;
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2) Φxy > 0 for some (x, y);

3) Φxy 6= Φxy′ for some x, y and y′;

4) Φxy 6= Φx′y for some y, x and x′;

5) 0 < ∂cx(κx)
∂κx

∣∣∣
p∗x

= θx <∞;

6) 0 < ∂cy(κy)

∂κy

∣∣∣
q∗y

= θy <∞.

Proof. The proof proceeds in 3 steps.

Step 1. Under the assumption of increasing convex cost functions, both individual

payoff functions and the social welfare function are concave in the strategies of males

and females. Hence, first-order conditions are necessary and sufficient conditions for a

maximum.

Step 2. We denote by CEFOC the first-order conditions of the decentralized equi-

librium and by POFOC the first-order conditions of the social planner. In formulae:

POFOCpx(y): Φxy q̃y (x)− ∂cx(κ̃x)
∂κ̃x

∣∣∣
p̃x(y)

(
ln p̃x(y)

1/M
+ 1
)
− λ̃x = 0

POFOCqy(x): Φxyp̃x (y)− ∂cy(κ̃y)

∂κ̃y

∣∣∣
q̃y(x)

(
ln q̃y(x)

1/F
+ 1
)
− λ̃y = 0

CEFOCpx(y): εxyqy (x)− ∂cx(κx)
∂κx

∣∣∣
px(y)

(
ln px(y)

1/M
+ 1
)
− λx = 0

CEFOCqy(x): ηxypx (y)− ∂cy(κy)

∂κy

∣∣∣
qy(x)

(
ln qy(x)

1/F
+ 1
)
− λy = 0

For the equilibrium to be socially efficient, we need to have the following:

p̃x (y) = px (y) for all x, y

q̃y (x) = qy (x) for all x, y

Step 3. By contradiction, imagine that the two conditions above hold.

Then, by construction,

∂cy (κ̃y)

∂κ̃y

∣∣∣∣
q̃y(x)

=
∂cy (κy)

∂κy

∣∣∣∣
qy(x)

= ay
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and
∂cx (κ̃x)

∂κ̃x

∣∣∣∣
p̃x(y)

=
∂cx (κx)

∂κx

∣∣∣∣
px(y)

= ax.

Denote marginal cost by ay and ax for males and females, respectively. It then

follows that

Φxyp̃x (y)− λ̃y =
∂cy (κ̃y)

∂κ̃y

∣∣∣∣
q̃y(x)

(
ln
q̃y (x)

1/M
+ 1

)
=
∂cy (κy)

∂κy

∣∣∣∣
qy(x)

(
ln
qy (x)

1/M
+ 1

)
= ηxypx (y)− λy;

i.e., Φxyp̃x (y)− λ̃y = ηxypx (y)−λy for all x and y. We can use the first-order conditions

of males to derive the formulas for λy and λ̃y:

(i) F exp
(

1 + λ̃y
ay

)
=

F∑
x=1

exp
(

Φxypx(y)

ay

)

(ii) F exp
(

1 + λy
ay

)
=

F∑
x=1

exp
(
ηxy(x)px(y)

ay

)
(iii) (Φxy − ηxy) px (y) = λ̃y − λy for all x.

Jointly (i), (ii) and (iii) imply

F∑
x′=1

exp

(
Φx′ypx′ (y)

af

)
F∑

x′=1

exp

(
ηx′ypx′ (y)

ay

) =
exp

(
Φxypx(y)

ay

)
exp

(
ηxypx(y)

ay

) for all x.

Hence,

exp(Φxypx(y))

exp(ηxypx(y))
=

exp(Φx′ypx′ (y))
exp(ηx′ypx′ (y))

for all x and x′.

Therefore, either

a) Φxy = ηxy for all x or

35



b) Φx′y = Φx′′y and ηx′y = ηx′′y for all x′ and x′′.

Similarly, from females’ first-order conditions it follows that either

c) Φxy = εxy for all y or

d) Φxy′ = Φxy′′ and εx′y = εx′′y for all y′ and y′′.

Cases b) and d) have been ruled out by the assumptions of the theorem. Cases a)

and b) jointly imply that εxy = ηxy = Φxy = εxy + ηxy, which leads to a contradiction

εxy = ηxy = Φxy = 0.

The first two conditions are self-explanatory; the case when all potential matches

yield zero payoffs is a trivial case of no gains from matching. Conditions 5 and 6 state

that marginal costs of reducing noise have to be finite and positive in the neighborhood

of the equilibrium. When θ is zero, the best equilibrium of the assignment model is

socially optimal. When θ is very high, the random matching outcome is the best possible

outcome. For all intermediate values of marginal costs, the decentralized equilibrium is

socially inefficient.

Conditions 3 and 4 together require heterogeneity to be two-sided. If heterogeneity

is one-sided, i.e., condition 3 or condition 4 is violated, then the allocation of intentions

toward the homogeneous side of the market will be uniform. In this case, search becomes

one-sided and equilibrium allocations are efficient contingent on the actively searching

side appropriating 100 percent of the payoff.16

One notable property of the equilibrium is that, by considering only fractions of the

total payoff when choosing their strategies, males and females place lower probabilities

on pursuing their best matches. This implies that in equilibrium, probability distribu-

tions of males and females are more dispersed and the number of matches is lower than

is socially optimal.

The inefficiency that arises in the two-sided model can in principle be corrected by

a central planner. This can be done by promising both males and females that they

will receive the entire payoff of each match and then by collecting lump-sum taxes from

16See Appendix B for a version of the model with one-sided heterogeneity.
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both sides of the market to cover the costs of the program. Nevertheless, to do so, the

planner himself would need to acquire extensive knowledge about the distribution of

the payoffs, which is costly. We leave this point for future research.
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Appendix B: One-sided model

Here we consider a one-sided model where females are searching for males who are

heterogeneous in type and females face a search cost. We assume that there is no

heterogeneity on the female side of the market. As such the probability that a male

reciprocates the intentions of a female is given by qy. The strategy of a female remains

px (y). Like before, a female’s cost of searching is given by cx (κx). Female x chooses a

strategy px (y) to maximize her expected income flow:

Yx = max
px(y)

M∑
y=1

εxypx (y) qy − cx (κx) .

A female receives her payoff in a match with male y conditional on matching with

that male. She also incurs a cost that depends on search effort:

κx =
M∑
y=1

px (y) ln
px (y)

1/M
, (6)

where the female’s strategy must satisfy
M∑
y=1

px (y) = 1 and px (y) ≥ 0 for all y.

Definition 2. A matching equilibrium of the one-sided matching model is a set of

strategies of females, {px (y)}Nx=1, which solve their optimization problems.

Theorem 4. If the cost functions are non-decreasing and convex, the one-sided match-

ing model has a unique equilibrium.

Proof. The payoffs of all females are continuous in their strategies. They are also

concave in these strategies when cost functions are (weakly) increasing and convex.

Hence, each problem has a unique solution.

When in addition the cost functions are differentiable, it is easy to verify that first-

order conditions are necessary and sufficient conditions for equilibrium. Rearranging

the first-order conditions for the female, we obtain

p∗x (y) = exp

(
εxyqy
θx

)
/

M∑
y′=1

exp

(
εxy′qy′

θx

)
. (7)
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The equilibrium condition (7) has an intuitive interpretation. It predicts that the

higher the female’s expected gain from matching with a male, the higher the probability

placed on locating that male. Thus, males are naturally sorted in each female’s strategy

by probabilities of contacting those males.

Efficiency. To study the constrained efficient allocation, we impose upon the social

planner the same constraints that we place on females. Thus, the social planner maxi-

mizes the following welfare function:

W =
F∑
x=1

M∑
y=1

Φxypx (y) qy −
F∑
x=1

cx (κx)

subject to (6) and to the constraint that the px (y)’s are well-defined probability distri-

butions. Under the assumption of increasing convex cost functions, the social welfare

function is concave in the strategies of females. Hence, first-order conditions are suffi-

cient conditions for a maximum. Rearranging we arrive at the following characterization

of the social planner’s allocation:

pox (y) = exp

(
Φxyqy
θx

)
/
M∑
y′=1

exp

(
Φxy′qy
θx

)
. (8)

Again, the structure of the social planner’s solution is very similar to the struc-

ture of the decentralized equilibrium. The only difference between the centralized and

decentralized equilibrium strategies is that the probability of locating a male depends

on the social gain from a match rather than on the private gain. Thus, it is socially

optimal to consider the whole expected payoff when determining the socially optimal

strategies, while in the decentralized equilibrium females consider only their private

gains. To decentralize the socially optimal outcome the planner needs to give all of the

payoff to the females, εxy = Φxy, effectively assigning them a share of 1. Note that, if

the planner could choose the probability that a male reciprocates a female’s interest, qy,

he would also set it to 1. When search costs are absent, the equilibrium of the model is

socially optimal. When costs are very high, the random matching outcome is the best
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possible outcome. For all intermediate values of costs, the decentralized equilibrium is

constrained efficient contingent on the female receiving the whole output of the match.
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Appendix C: Repeated two-sided model

Here we extend the two-sided matching model to a repeated setting. Following Adachi

(2003), we assume that at the moment that male y and female x meet, each of them has

an additional decision to make. Each agent may choose to form a match and receive

the corresponding share of the surplus, or refuse to form a match and wait for a better

potential partner in future periods if their continuation value is higher than the utility

from matching with the proposed partner. The continuation value is assumed to be

simply the expected utility of matching in the future discounted at the rate ρ, which is

the patience parameter. In the Adachi model, the case ρ = 1 represented a frictionless

case, which implied that agents could wait for their preferred match indefinitely at no

time cost to them. Notice that our one-shot model represents the opposite case of

ρ = 0.

We denote vx the continuation value of female x and wy the continuation value of

male y. Each agent chooses her strategy and pays the cost of search before the game

starts and then makes a sequence of draws from the chosen distribution. Matched pairs

of agents are replaced by their copies in the search process. The time-0 problems of the

agents are like before:

Yx =
M∑
y=1

EUx (y) qy (x) px (y)− θx

(
M∑
y=1

px (y) ln
px (y)

1/M

)
+ λx

(
1−

M∑
y=1

px (y)

)
,

Yy =
F∑
x=1

EUy (x) px (y) qy (x)− θy

(
F∑
x=1

qy (x) ln
qy (x)

1/F

)
+ λy

(
1−

F∑
x=1

qy (x)

)
.

The continuation values are defined as the solutions to the Bellman programs:

vx = ρ

M∑
y=1

EUx (y) qy (x) px (y) + ρ

(
1−

M∑
y=1

qy (x) px (y)

)
vx,

wy = ρ
F∑
x=1

EUy (x) px (y) qy (x) + ρ

(
1−

F∑
x=1

px (y) qy (x)

)
wy.

And the expected utilities from meeting are either equal to match utilities if both

partners agree to a match or to continuation values if they do not reach an agreement:

EUx (y) = vx + (ηxy − vx) I (ηxy ≥ vx) I (εxy ≥ wy) ,
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EUy (x) = wy + (εxy − wy) I (ηxy ≥ vx) I (εxy ≥ wy) .

An equilibrium of the model is a set of strategies {px (y)}Fx=1 , {qy (x)}My=1, reserva-

tion values {vx}Fx=1 , {wy}
M
y=1, and expected utilities {EUx (y)}Fx=1, {EUy (x)}My=1 that

jointly solve the problems of the agents and satisfy the system of equations above. Since

the maximization problems are well-defined, the first-order conditions are still neces-

sary conditions and must be satisfied in equilibrium. However, because the remaining

functions are continuous, but not everywhere differentiable, the model may have multi-

ple equilibria for many different combinations of parameters and it is hard to establish

definitive results regarding uniqueness.

So far, this model explicitly postulates non-transferable utility (NTU), but it can

easily be extended to the case of transferable utility (TU). Specifically, the TU case

allows for redistributing the surplus in the cases when joint surplus of the match exceeds

the sum of continuation values of the agents. Therefore, the last two equations are

replaced in the TU case by:

EUx (y) = vx +
(
η′xy − vx

)
I (ηxy + εxy ≥ vx + wy) ,

EUy (x) = wy +
(
ε′xy − wy

)
I (ηxy + εxy ≥ vx + wy) ,

where the utilities adjusted for the payments are defined as

η′xy = vx +
ηxy
Φxy

(ηxy + εxy − vx − wy) ,

ε′xy = wy +
εxy
Φxy

(ηxy + εxy − vx − wy) .

Note that in the one-shot model of the main text, the TU case and the NTU case

are identical because the continuation values are zero. In Figure 8, using a simple

payoff structure that exhibits vertical preferences for three males and three females,

we illustrate the regions of the parameter space (θ, ρ) in which the equilibrium is non-

unique (shaded), as well as the number of pairs of types that are matched in equilibrium

with non-zero probability. The case with three pairs represents one-to-one matching,

while the case with nine pairs implies that all possible pairings are observed. Like in the

one-shot model, there is a threshold level of cognitive costs that generates multiplicity of
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equilibria. There are also small islands of multiplicity generated by the same mechanism

as in the Adachi model. In the region where both costs are relatively high, all pairs of

types are matched with some frequency in the unique equilibrium.

Figure 8: Number and types of equilibria depending on parameters
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