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ABSTRACT

This article examines monetary policy when it is constrained by the zero lower bound

(ZLB) on the nominal interest rate. Our analysis uses a nonlinear New Keynesian model with

technology and discount factor shocks. Specifically, we investigate why technology shocks

may have unconventional effects at the ZLB, what factors affect the likelihood of hitting the

ZLB, and the implications of alternative monetary policy rules. We initially focus on a New

Keynesian model without capital (Model 1) and then study that model with capital (Model 2).

The advantage of including capital is that it introduces another mechanism for intertemporal

substitution that strengthens the expectational effects of the ZLB. Four main findings emerge:

(1) In Model 1, the choice of output target in the Taylor rule may reverse the effects of tech-

nology shocks when the ZLB binds; (2) When the central bank targets steady-state output in

Model 2, a positive technology shock at the ZLB leads to more pronounced unconventional

dynamics than in Model 1; (3) The presence of capital changes the qualitative effects of de-

mand shocks and alters the impact of a monetary policy rule that emphasizes output stability;

and (4) In Model 1, the constrained linear solution is a decent approximation of the nonlinear

solution, but meaningful differences exist between the solutions in Model 2.
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1 INTRODUCTION

In the aftermath of the 2008 financial crisis, aggregate demand fell sharply. The Fed responded by

lowering its policy rate to its zero lower bound (ZLB) by the end of the year. Six years after the

crisis began, the Fed’s target interest rate remains near zero and the economy is below potential.

Figure 1 shows the U.S. and Japanese interbank lending rates and employment-to-population

percentages from 1990-2014. The U.S. policy rate (solid line) has varied between 8.3% and 0%
since 1990 and has been held below 25 basis points since the end of 2008. During that time period,

policymakers shifted their focus from inflation to the real economy, since the inflation rate has

been at or below the Fed’s inflation target. The Bank of Japan sharply lowered its policy rate in

1991 (dashed line), reaching 50 basis points in 1995. Since then it has remained between 0 and

50 basis points, while the employment-to-population percentage has fallen steadily from 62% to

about 57.5%. The Japanese economy slightly rebounded in the mid-2000s, but after the financial

crisis, the policy rate was cut and the employment-to-population percentage fell even further.

1990 1994 1998 2002 2006 2010 2014
0

2

4

6

8

10

In
te

rb
an

k
 L

en
d
in

g
 R

at
e 

(%
)

1990 1994 1998 2002 2006 2010 2014
56

58

60

62

64

66

E
m

p
lo

y
m

en
t−

to
−

P
o
p
u
la

ti
o
n
 (

%
)

 

 

U.S.

Japan

Figure 1: U.S. and Japanese interbank lending rates (left panel) and employment-to-population percentages (right

panel). Sources: Federal Reserve, Bank of Japan, U.S. Bureau of Labor Statistics, and Statistics Bureau of Japan.

Over the last two decades, the Japanese economy has endured anemic growth in real GDP and

slight deflation. Their experience has generated a significant amount of research on the effects of

the Bank of Japan’s zero interest rate policy [e.g., Braun and Waki (2006); Eggertsson and Wood-

ford (2003); Hoshi and Kashyap (2000); Ito and Mishkin (2006); Krugman (1998); Posen (1998)].

Many arguments for avoiding the ZLB are motivated in part by the recent Japanese experience.

This article examines the consequences of the ZLB constraint on the nominal interest rate. Our

analysis uses a nonlinear New Keynesian model with technology and discount factor shocks that

allows for the ZLB to occasionally bind. Discount factor shocks are a proxy for changes in demand

that occurred during the Great Recession, while technology shocks account for changes in supply.

When either shock pushes the nominal rate toward zero, households increasingly anticipate a ZLB

event, which affects current economic outcomes through expectations. We refer to that anticipation

as the “expectational effects” of hitting the ZLB. There are similar expectational effects of leaving

the ZLB. Our solution method captures both of those effects. Within this framework, we investi-

gate why technology shocks may have unconventional effects at the ZLB, what factors affect the

likelihood of hitting the ZLB, and the tradeoffs a central bank faces under a dual mandate.

1
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We initially focus on a New Keynesian model without capital and then study that model with

capital to draw comparisons. In the model without capital, positive technology shocks may have

unconventional effects at the ZLB, depending on which measure of output is targeted in the mone-

tary policy rule. When the central bank targets steady-state output, positive technology shocks can

cause output to decline when the ZLB binds. Those unconventional dynamics, however, nearly

disappear when the central bank targets potential output, which is the level of output in our model

with flexible prices. In that case, only large technology shocks reduce output when the ZLB binds.1

We show the differences between the two output targets since both are used in the literature.

We focus on the specification in which the central bank targets steady-state output, but it is

optimal in our model to target potential output. The Fed’s January 2012 long-term policy state-

ment emphasizes its dual mandate—stable prices and an economy operating at potential. Given

that potential output is unobservable, policymakers tend to target an empirical measure of potential

output that has the smooth characteristics of steady-state output [Basu and Fernald (2009)]. More-

over, Orphanides (2003a,b) and Orphanides and van Norden (2002) show a variety of estimates of

potential output require substantial revisions as more data become available, which indicates po-

tential output is not measured accurately in real time. For those reasons, we analyze the theoretical

implications of targeting steady-state output and compare them to a potential output target.

Most of the ZLB literature uses models without capital.2 Capital, however, provides households

with another margin to smooth consumption, which strengthens the expectational effects of the

ZLB. Arbitrage implies the real interest rate equals the expected future real rental rate of capital.

The decline in demand when the ZLB binds leads to a sharp reduction in the rental rate of capital.

Therefore, households place increasing weight on the possibility of a lower future rental rate as

the policy rate approaches zero, which causes sharper declines in the real interest rate before the

ZLB binds. We also include capital adjustment costs to dampen investment volatility. That feature

makes investment less attractive as a consumption smoothing mechanism, which causes a greater

reduction in consumption and a larger increase in the real interest rate at the ZLB. When the

central bank targets steady-state output, a positive technology shock at the ZLB produces more

pronounced unconventional dynamics in our model with capital than in the model without capital.

We also evaluate how alternative monetary policy rules affect the likelihood of hitting the ZLB

and the efficacy of stabilization policy. A policy rule based on a dual mandate is more likely to

cause ZLB events when the central bank targets steady-state output in our model without capital.

The opposite result occurs when the central bank targets potential output.3 When technology is

constant, an aggressive response by the central bank to steady-state output decreases the frequency

of ZLB events in our model without capital but increases the frequency in our model with capital.

1Wieland (2014) uses structural VAR evidence to argue that these unconventional dynamics did not occur following

the 2011 earthquake/tsunami in Japan or the recent oil supply shocks. Braun and Waki (2006) show technology shocks

generate unconventional dynamics at the ZLB in a log-linearized model with capital where the central bank targets

steady-state output. Using a nonlinear model with capital and a monetary policy rule that does not respond to output,

Braun and Körber (2011) show that these unconventional dynamics may disappear if the expected duration at the ZLB

is short enough. We find the monetary response to output also changes the qualitative effects of technology shocks.
2There are a few notable exceptions. Christiano (2004) shows capital dampens the effect of discount factor shocks

at the ZLB. Braun and Waki (2006) examine the effects of various monetary responses to inflation and output. Braun

and Körber (2011), Christiano et al. (2011), and Eggertsson (2011) compute fiscal multipliers at the ZLB.
3Several papers solve for the optimal monetary policy in a model with a ZLB constraint [Coenen et al. (2004);

Eggertsson and Woodford (2003); Jung et al. (2005); Nakov (2008); Werning (2011)]. For example, Adam and Billi

(2006) find that it is optimal to reduce the nominal interest rate more aggressively in response to adverse shocks.

2
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Therefore, the frequency of ZLB events depends on (1) the measure of the output target; (2) the

strength of the response to the output gap; and (3) the sources of exogenous shocks in the model.

Any analysis of the ZLB is complicated by the kink that it imposes on the monetary policy rule.

The literature has used a variety of techniques to address this problem. Many papers separate the

problem into pre- and post-ZLB periods [e.g., Braun and Körber (2011); Braun and Waki (2006);

Christiano et al. (2011); Eggertsson and Woodford (2003); Erceg and Lindé (2014); Gertler and

Karadi (2011)]. With that approach, a specific sequence of shocks pushes the nominal interest rate

to zero. Each period, some positive probability exists that the nominal interest rate will exit the

ZLB. Once that happens, the nominal interest rate can never fall back to zero. Those simplifying

assumptions are made for computational tractability. The drawback is that if a shock causes the

ZLB to bind in one period, the same shock will not cause the ZLB to bind in any future period.

Most studies of the ZLB linearize all of their equations with the exception of the monetary

policy rule around their non-stochastic steady states. Such a procedure, however, can generate

approximation errors. Braun et al. (2012) and Fernández-Villaverde et al. (2012) provide examples

of the mistakes resulting from linearized models without capital evaluated at the ZLB. Braun et al.

(2012) also argue that linearized models often lead to incorrect inferences about existence and

uniqueness of the equilibrium and the local dynamics of the model. Our findings indicate the

constrained linear model is a good approximation of the nonlinear model without capital, but the

errors are much larger in a model with capital.4 In other words, the simulated moments and model

predictions are different in the linearized model with capital than in the nonlinear model.

Our paper avoids the problems associated with linearization by obtaining the nonlinear solu-

tion to standard New Keynesian models that include an occasionally binding ZLB constraint on the

nominal interest rate.5 Rather than focus on specific sequences of shocks, we calculate the solution

for all combinations of discount factor and technology shocks and then provide a thorough expla-

nation of how dynamics change across the state space. Our nonlinear solution method emphasizes

accuracy to capture important expectational effects of going to and returning from the ZLB.

The paper proceeds as follows. Section 2 outlines our models with and without capital. Sec-

tion 3 describes the calibration and solution method, and sections 4 through 6 present the results.

These sections report the model solutions across all technology and discount factor shocks, the dy-

namics at the ZLB, and the likelihood of hitting the ZLB. We also explain how the monetary policy

rule impacts those results and provide a comparison between the New Keynesian models with and

without capital. Lastly, we present new evidence that the solutions to the constrained linear and

nonlinear models are significantly different in the model with capital. Section 7 concludes.

2 ECONOMIC MODELS

This section presents two New Keynesian models with Rotemberg (1982) price adjustment costs.

Both models assume stochastic processes for the discount factor and technology, but they differ in

their treatment of capital. Model 1 does not include capital while Model 2 does.

4Braun and Waki (2010) show that the approximation error in a perfect-foresight version of a linear model with

capital where monetary policy does not respond to output overstates the government spending multiplier.
5Several recent papers study the ZLB using nonlinear solution methods. Fernández-Villaverde et al. (2012) calcu-

late the probabilities of ZLB events. Wolman (2005) shows the real effects of the ZLB depend on the policy rule and

nominal rigidities. Gust et al. (2013) estimate the extent to which the ZLB constrained the central bank. Aruoba and

Schorfheide (2013) and Mertens and Ravn (2014) show how the ZLB affects fiscal multipliers and Basu and Bundick

(2012) and Nakata (2012) show the ZLB magnifies the effect of uncertainty on aggregate demand.

3
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2.1 MODEL 1: BASELINE A representative household chooses {ct, nt, bt}
∞

t=0 to maximize ex-

pected lifetime utility given by E0

∑

∞

t=0 β̃t[log ct − χn1+η
t /(1 + η)], where 1/η is the Frisch elas-

ticity of labor supply, ct is consumption, nt is labor hours, bt is the real value of a 1-period nominal

bond, E0 is an expectation operator conditional on information available in period 0, β̃0 ≡ 1, and

β̃t =
∏t

j=1 βj for t > 0. β is a time-varying subjective discount factor that evolves according to

βt = β̄(βt−1/β̄)
ρβ exp(εt), (1)

where β̄ is the steady-state discount factor, 0 ≤ ρβ < 1, and ε ∼ N(0, σ2
ε). Those choices are

constrained by ct+ bt = wtnt+ rt−1bt−1/πt+ dt, where πt = pt/pt−1 is the gross inflation rate, wt

is the real wage rate, rt is the gross nominal interest rate set by the central bank, and dt are profits

from intermediate firms. The optimality conditions to the household’s problem imply

wt = χnη
t ct, (2)

1 = rtEt[βt+1(ct/ct+1)/πt+1]. (3)

The production sector consists of monopolistically competitive intermediate goods firms who

produce a continuum of differentiated inputs and a representative final goods firm. Each firm

f ∈ [0, 1] in the intermediate goods sector produces a differentiated good, yt(f), with identical

technologies given by yt(f) = ztnt(f), where nt(f) is the level of employment used by firm f . zt
represents the level of technology, which is common across firms and follows

zt = z̄(zt−1/z̄)
ρz exp(υt), (4)

where z̄ is steady-state technology, 0 ≤ ρz < 1, and υ ∼ N(0, σ2
υ). Each intermediate firm chooses

its labor supply to minimize its operating costs, wtnt(f), subject to its production function. The

final goods firm purchases yt(f) units from each intermediate goods firm to produce the final good,

yt ≡ [
∫ 1

0
yt(f)

(θ−1)/θdf ]θ/(θ−1) according to a Dixit and Stiglitz (1977) aggregator, where θ > 1
measures the elasticity of substitution between the intermediate goods. The optimality condition

to the firm’s profit maximization problem then yields the demand function for intermediate inputs

given by yt(f) = (pt(f)/pt)
−θyt, where pt = [

∫ 1

0
pt(f)

1−θdf ]1/(1−θ) is the price of the final good.

Following Rotemberg (1982), each firm faces a cost to adjusting its price, adjt(f), which em-

phasizes the negative effect that price changes can have on customer-firm relationships. Using

the functional form in Ireland (1997), adjt(f) = ϕ[pt(f)/(π̄pt−1(f)) − 1]2yt/2, the real profits

of firm f are dt(f) = (pt(f)/pt)yt(f) − wtnt(f) − adjt(f), where ϕ ≥ 0 scales the size of the

adjustment costs and π̄ is the steady-state gross inflation rate. Firm f chooses its price, pt(f), to

maximize the expected discounted present value of real profits Et

∑

∞

k=t λt,kdk(f), where λt,t ≡ 1,

λt,t+1 = βt+1(ct/ct+1) is the pricing kernel between periods t and t+ 1 and λt,k ≡
∏k

j=t+1 λj−1,j.

In a symmetric equilibrium, all firms make identical decisions and the optimality condition implies

ϕ
(πt

π̄
− 1
) πt

π̄
= (1− θ) + θΨt + ϕEt

[

λt,t+1

(πt+1

π̄
− 1
) πt+1

π̄

yt+1

yt

]

, (5)

where Ψt = wt/zt is the real marginal cost. In the absence of price adjustment costs (i.e., ϕ = 0),

Ψt = (θ − 1)/θ, which is the inverse of a firm’s markup of price over marginal cost.

Each period, the central bank sets the gross nominal interest rate according to

rt = max{1, r∗(πt/π
∗)φπ(yt/y

∗

t )
φy}, (6)

4
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where π∗ = π̄ is the inflation rate target and φπ and φy are the policy responses to inflation and

output. The output target is either steady-state output, y∗t = ȳ, or potential output, y∗t = ynt =
(χµ)−1/(1+η)zt, which is the level of output when ϕ = 0. We also examine the case where φy = 0.

The resource constraint is given by ct = yt − adjt ≡ yadjt , where yadjt includes the value

added by intermediate firms, which is their output minus quadratic price adjustment costs. A com-

petitive equilibrium consists of sequences of quantities, {ct, nt, bt, yt}
∞

t=0, prices, {wt, rt, πt}
∞

t=0,

and exogenous variables, {βt, zt}
∞

t=0 that satisfy the household’s and firm’s optimality conditions,

(2), (3), and (5), the production function, yt = ztnt, the monetary policy rule, (6), the stochastic

processes, (1) and (4), the bond market clearing condition, bt = 0, and the resource constraint.

2.2 MODEL 2: BASELINE WITH CAPITAL Model 2 adds capital accumulation to Model 1. The

household chooses sequences {ct, it, nt, bt}
∞

t=0 to maximize the preferences in Model 1 subject to

ct + it + Φ(it/kt−1)kt−1 + bt = wtnt + rkt kt−1 + rt−1bt−1/πt + dt, (7)

kt = (1− δ)kt−1 + it, (8)

where it is investment, kt is capital, rkt is the real rental rate of capital, and Φ(·) is a positive,

increasing, and convex function that measures the cost of adjusting the capital stock. We assume

Φ(x) = φ(x−δ)2/2, where φ controls the size of the adjustment cost. Although other papers utilize

alternative specifications of capital/investment adjustment costs, we use this specification because

it does not add another state variable to our model, which allows us to present the complete model

solution. Optimality yields an equation for Tobin’s q and a consumption Euler equation given by

qt = 1 + φ(it/kt−1 − δ), (9)

qt = Et

[

βt+1
ct
ct+1

(

rkt+1 −
φ

2

(

it+1

kt
− δ

)2

+ φ

(

it+1

kt
− δ

)

it+1

kt
+ (1− δ)qt+1

)]

. (10)

Intermediate firm f ∈ [0, 1] produces a differentiated good, yt(f), according to yt(f) =
ztkt−1(f)

αnt(f)
1−α, where kt(f) and nt(f) are the levels of capital and employment used by firm

f . Each intermediate firm then chooses its inputs to minimize operating costs, rkt kt−1(f)+wtnt(f),
subject to its production function, which yields a consolidated optimality condition given by

αwtnt = (1− α)rkt kt−1. (11)

The firm pricing equation (5) remains unchanged, except that Ψt = w1−α
t (rkt )

α/[zt(1− α)1−ααα].
The resource constraint includes the output lost due to price and capital adjustment costs and is

given by ct+it+Φ(it/kt−1)kt−1 = yadjt . A competitive equilibrium consists of sequences of quanti-

ties, {ct, nt, it, kt, bt, yt}
∞

t=0, prices, {wt, r
k
t , rt, πt, qt}

∞

t=0, and exogenous variables, {βt, zt}
∞

t=0 that

satisfy the household’s and firm’s optimality conditions, (2), (3), (5), (9), (10), and (11), the pro-

duction function, yt = ztk
α
t−1n

1−α
t , the monetary policy rule, (6), the stochastic processes, (1) and

(4), the capital law of motion, (8), bond market clearing, bt = 0, and the resource constraint.

3 CALIBRATION, SOLUTION METHOD, AND SIMULATION PROCEDURE

3.1 CALIBRATION We calibrate the models in section 2 at a quarterly frequency using common

values in the monetary policy literature. The parameters are shown in table 1. The annual real

5
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Frisch Elasticity of Labor Supply 1/η 3 Inflation Coefficient: MP Rule φπ 1.5
Elasticity of Substitution between Goods θ 6 Output Coefficient: MP Rule φy 0.1
Rotemberg Adjustment Cost Coefficient ϕ 59.11 Steady-State Technology z̄ 1
Steady-State Labor n̄ 0.33 Technology Persistence ρz 0.9
Capital Depreciation Rate† δ 0.025 Technology Shock Standard Deviation συ 0.0025
Cost Share of Capital† α 0.33 Steady-State Discount Factor β̄ 0.995
Capital Adjustment Cost† φ 5.6 Discount Factor Persistence ρβ 0.8
Steady-State Inflation π̄ 1.006 Discount Factor Standard Deviation σε 0.0025

Table 1: Baseline calibration. A † denotes a parameter that only applies to Model 2.

interest rate is set to 2%, which implies a steady-state quarterly discount factor, β̄, equal to 0.995.

Those values correspond to the ratio of the federal funds rate to the percent change in the GDP

deflator from 1983-2007. The Frisch elasticity of labor supply, 1/η, is set to 3, which is consistent

with Peterman (2012). The leisure preference parameter, χ, is calibrated so that steady-state labor

equals 1/3 of the available time. Capital’s share of output, α, is set to 0.33 and the quarterly depre-

ciation rate, δ, equals 2.5%. The capital adjustment cost parameter, φ, is set to 5.6, which follows

Eberly (1997) and Erceg and Levin (2003). The elasticity of substitution between intermediate

goods, θ, is set to 6, which corresponds to an average markup of price over marginal cost equal

to 20%. The price adjustment cost parameter, ϕ, is set to 59.11, which is consistent with a Calvo

(1983) price-setting specification where prices change on average once every four quarters.

The steady-state gross inflation rate, π̄, is set to 1.006, which implies an annual inflation rate

target of 2.4%. That value equals the average growth rate of the U.S. PCE chain-type price index

from 1983-2007. In our baseline calibration, we set the coefficients on inflation and output in the

monetary policy rule to 1.5 and 0.1, respectively, but we also consider several other values.

The likelihood that the nominal interest rate falls to and remains at zero depends on both the

parameters of the discount factor and technology processes. Richter and Throckmorton (2015)

show a clear tradeoff exists between the persistence and the standard deviation of the stochastic

shock processes. As the persistence of a process increases, the standard deviation of that shock

must decline, otherwise our numerical algorithm will not converge to a minimum state variable

(MSV) solution. The failure to converge occurs because the economy either remains at the ZLB too

long when the shocks are very persistent or falls to the ZLB too frequently when the processes are

highly volatile. We chose the discount factor and technology parameters so (1) They are constant

across all models; (2) They generate ZLB events when simulating the model; and (3) They match

the data as closely as possible. Specifically, we set the persistence of the discount factor, ρβ , equal

to 0.8 and the standard deviation of the shock, σε, equal to 0.0025. Those values follow Fernández-

Villaverde et al. (2012) who assume that a discount factor shock has a half life of about 3 quarters.

Steady-state technology, z̄, is normalized to 1, the persistence of the technology shock, ρz, is 0.9,

and the standard deviation of the shock, συ, equals 0.0025. In the data, deviations of log real GDP

from trend are 1.85% per quarter and deviations of the log difference in the PCE price index are

0.29% from 1983-2007. The equivalent values in our models are smaller than is observed since

additional real world shocks and sources of persistence are needed to match the data.

3.2 SOLUTION METHOD The model is solved using the policy function iteration algorithm

described in Richter et al. (2014), which is based on the theoretical work on monotone operators

in Coleman (1991). This solution method discretizes the state space and uses time iteration to

solve for the updated decision rules until the tolerance criterion is met. We use piecewise linear

6



GAVIN ET AL: THE ZLB, THE DUAL MANDATE, AND UNCONVENTIONAL DYNAMICS

interpolation to approximate future variables, since this approach more accurately captures the

kink in the decision rules than continuous approximating functions, and then use Gauss-Hermite

quadrature to numerically integrate. Those techniques capture the expectational effects of going to

and returning to the ZLB. For a formal description of the numerical algorithm see appendix A.

Benhabib et al.’s (2001) finding that constrained New Keynesian models have two deterministic

steady-state equilibria has generated considerable discussion in the literature about whether there

are conditions in which a unique MSV solution exists in stochastic models with a ZLB constraint.

Specifically, they find two nominal interest rate/inflation rate pairs that satisfy the steady-state

equilibrium system. In one steady state, the central bank meets its positive inflation target, whereas

in the other steady state the economy experiences deflation. Richter and Throckmorton (2015)

show that the numerical algorithm used in our paper converges to the inflationary equilibrium as

long as there is a sufficient expectation of returning to a monetary policy rule that conforms to the

Taylor principle.6 Our algorithm, however, never converges to the deflationary equilibrium.7

The intuition for how our algorithm behaves can be discerned from the simple three-equation

linear New Keynesian model. We know determinacy in this model depends on whether the Taylor

principle holds (i.e., the nominal interest rate moves more than one-for-one with inflation), as-

suming the fiscal authority ensures stable debt dynamics (i.e., passive fiscal policy). If the Taylor

principle holds, our algorithm converges to the unique MSV solution that can be analytically de-

rived. When the Taylor principle does not hold (i.e., passive monetary policy), our algorithm will

not converge, even though the model has many solutions in this case. The only way our algorithm

can locate these solutions is if a process for the sunspot shocks is explicitly written down.

The same rationale applies in our model with a ZLB constraint except that there are two types

of sunspots. One type is analogous to the sunspots that occur when the Taylor principle does

not hold. A pegged nominal interest rate is a special type of passive monetary policy, where the

distribution of future shocks is truncated in a stochastic model. Thus, an occasionally binding ZLB

constraint is similar to a Taylor rule that switches between an active and passive policy. As long

as there is a sufficient expectation of returning to an active monetary policy, our algorithm will

6Davig and Leeper (2007) examine determinacy in a Fisherian economy that switches between active and passive

policy. They prove that as long as one of the regimes satisfies the Taylor principle, the central bank can passively

respond to inflation in the other regime and still have a determinate solution. Richter and Throckmorton (2015) show

that the convergence region—the region of the parameter space where our algorithm converges to an MSV solution—

is identical to the determinacy region Davig and Leeper (2007) derive. This exercise is informative because a model

with an occasionally binding ZLB constraint is similar to a model with a monetary policy rule that switches between

active and passive policy. Richter and Throckmorton (2015) also examine how the standard deviation of the stochastic

processes affect whether the algorithm converges to the inflationary steady state in a model with a ZLB. They find that

the boundary of the convergence region imposes a clear tradeoff between the expected frequency and average duration

of ZLB events. Therefore, a model with a ZLB constraint produces the same intuition described in Davig and Leeper

(2007). As long as the ZLB does not bind too frequently or for too long, our algorithm converges.
7Wolman (2005) also uses policy function iteration to solve a New Keynesian model with a ZLB constraint. He

points out that this algorithm can only locate solutions as a function of its natural state variables and is not suitable

for analyzing certain types of multiplicity. He also finds that even though a deflationary steady state exists, the model

may never exhibit the characteristics of that equilibrium. McCallum (2001) argues the deflationary equilibrium is

not economically relevant since it is not E-stable (i.e., the economy does not converge to an equilibrium after a

deviation from rational expectations beliefs). Building on that work, Christiano and Eichenbaum (2012) find evidence

of multiple equilibria, including sunspots, in a nonlinear model with a ZLB constraint. They also argue that those

equilibria are implausible because they are not E-stable. In our algorithm, the initial and subsequent conjectures for

the decision rules deviate from the rational expectations equilibrium (REE), which is similar to learning where beliefs

deviate from the REE. We also find that our algorithm only converges to the inflationary steady state.
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converge to the positive inflation equilibrium. If, on the other hand, the expectation of returning to

the Taylor rule is not strong enough or the probability of returning to the ZLB is too high, then a

stable inflationary equilibrium does not exist and our algorithm will diverge. That finding does not

necessarily mean the model has no solutions. Instead, it could indicate many solutions exist, but

that finding can not be observed without specifying a process for the sunspot shocks.

The other type of sunspot shock is unique to a model with a ZLB constraint. The existence

of both an inflationary and a deflationary steady state means the economy could fluctuate between

them. Therefore, we could add a Markov chain to our existing models that governs switches

between the two steady states as in Aruoba and Schorfheide (2013). Appendix B shows the con-

vergence properties of our algorithm with a series of numerical exercises. We first replicate the

multiple deterministic equilibria result in Benhabib et al. (2001) and then study three versions of

Model 1: a perfect foresight version, a version with a stochastic discount factor process, and a ver-

sion with a 2-state Markov chain governing switches between the two deterministic steady states.

In each case, the algorithm converges to a solution around the inflationary steady state.

Uncertainty continues to exist about whether these sunspot shocks affect an economy with a

ZLB constraint. Economists, for example, want to understand if the sunspot shocks are observed

in the data or even reflect dynamics that are economically feasible. Although addressing those

questions is important for future research, our analysis, like most macroeconomic research on the

ZLB constraint, is concentrated on examining solutions around the inflationary steady state.

3.3 SIMULATION PROCEDURE We simulate the models using draws from the distributions for

the discount factor and technology shocks. Figure 2 plots the distributions of the state variables

and the nominal interest rate in a 500,000 quarter simulation of Model 1. The vertical axes show

the frequency of each realization as a percent of the simulation length. Variables on the horizontal

axes are shown as percent deviations from steady state, except the nominal interest rate which

is a net percentage. The dashed lines represent the bounds of the state space, which are chosen

to minimize extrapolation of the decision rules in the simulation.8 The solid lines denote the

theoretical unconditional distributions scaled for comparison with the simulated distributions.

Figure 2a shows the unconditional distributions of technology, the discount factor, and the

nominal interest rate.9 The state space for technology lies within ±2.5% of its steady state, which

is normalized to unity. The state space for the discount factor lies between ±1.9% of its steady

state, which equals 0.995. Across these states, the quarterly net nominal interest rate is distributed

over a range of 0% to 3.6%, with a large mass (5% of quarters) between 0 and 20 basis points. As

we demonstrate below, model dynamics are very different when the policy rate lies in this interval.

Figure 2b shows the distribution of the discount factor and technology conditional on the ZLB

binding. A high discount factor is the primary source of ZLB events, as indicated by the difference

between its distribution conditional on the ZLB (bars) and its theoretical unconditional distribution

(solid line). The conditional distribution for the discount factor is centered around 1% above steady

state. A higher discount factor means households are more willing to postpone their consumption.

8We fix the bounds of the state space prior to solving the model. For the exogenous state variables, we know

how wide to set the grids to guarantee minimal extrapolation when simulating the model. For capital, which is an

endogenous state variable, we first solve the model and then check that the bounds on capital are wide enough to

eliminate extrapolation. We resolve the model with wider grids until there is no extrapolation in our simulation.
9In all of our results, a hat denotes percent deviation from the deterministic steady state (i.e., for some generic

variable x in levels, x̂t ≡ 100(xt− x̄)/x̄) and a tilde denotes a net rate (i.e., for some gross rate x, x̃t = 100(xt − 1)).
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Lower consumption pushes down inflation, which in turn causes the nominal interest rate to fall.

If households are patient enough, then the nominal interest rate hits its ZLB. The nominal interest

rate can also fall to zero when technology is sufficiently far above its steady state because higher

supply leads to lower prices. Our result is consistent with the finding in Fernández-Villaverde et al.

(2012) that high levels of technology are associated with a low nominal interest rate.
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Figure 2: Model 1 (y∗t = ȳ) distributions as a percentage of a 500,000 quarter simulation. Each variable is in percent

deviations from its steady-state value. The dashed lines are the bounds of the state space. The solid lines are the

theoretical unconditional distributions of the state variables scaled for comparison with the conditional distributions.

The Fed’s policy rate has been at its effective ZLB since December 2008. Gust et al. (2013)

show that most financial market participants expected the federal funds rate to remain below 25
basis points for only a few quarters. For example, the median forecast in the first quarter of 2009

was below 25 basis points only until the third quarter of that year and gradually increased to 2.5%
in 2012. The Survey of Professional Forecasters (SPF) conducted by the Philadelphia Fed asks its

participants to forecast the 1-year T-Bill rate up to four quarters in the future. The median (solid

line) and 16/84 percentiles (dashed lines) of the individual forecasts in the first quarter of 2009 are

shown in figure 3. The median forecast predicted the T-Bill rate would exceed 50 basis points while

the 84th percentile predicted it would hit 1% within 1 year. Those forecasts indicate that people

expected the ZLB to bind for just a few quarters even though the recession was quite severe.

Our model is calibrated to the average time the ZLB is expected to hold and not to the duration

of the current ZLB episode in the U.S. With that being said, it is possible for longer ZLB events
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Figure 3: The median and 16/84 percentiles of individ-

ual forecasts of the T-Bill rate in the first quarter of 2009

according to the SPF.
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Figure 4: Model 1 (y∗t = ȳ) ZLB event durations as a

percentage of ZLB events in a 500,000 quarter simulation.

The vertical dashed line is the average ZLB duration.

to occur in our framework. Figure 4, for example, shows the distribution of the length of each

ZLB event as a percentage of the total number of those events in a 500,000 quarter simulation of

Model 1 (y∗t = ȳ). The vertical dashed line indicates the average ZLB duration is 1.87 quarters.

The longest ZLB event is 19 quarters, which is about the length of the current ZLB episode. ZLB

events with a duration of 1, 2, and 3 quarters account for 58.4%, 21.2%, and 9.5%, respectively, of

all ZLB events in the simulation. Therefore, our calibration of the stochastic processes produces

a distribution of ZLB event durations that is similar to household expectations at the onset of the

Great Recession. The calibration for Model 2 also yields a similar distribution of ZLB events.

4 MODEL 1: STATES OF THE ECONOMY, ECONOMIC DYNAMICS, AND THE ZLB

The New Keynesian model without capital, outlined in section 2.1, contains two state variables, the

discount factor and technology. This section presents the complete solution to Model 1, key cross

sections of that solution, impulse responses to technology shocks, and simulation statistics. We

compare these results across alternative monetary policy rules. Each variable is shown in percent

deviations from its steady state, except inflation and the interest rates, which are net percentages.

Figure 5 shows three-dimensional contour plots of the net nominal interest rate and adjusted

output over the entire state space. These plots provide a complete picture of the model solution

for both variables when the central bank targets steady-state output (y∗t = ȳ). The shaded areas

represent the states of the economy where the net nominal interest rate, r̃, equals zero. Those

areas reveal the nominal interest rate only hits the ZLB when either technology or the discount

factor are unusually high. When the central bank targets steady-state output, a higher level of

technology lowers inflation and the real interest rate when the ZLB does not bind. When the ZLB

binds, higher technology continues to push down inflation, which forces up the real interest rate

and causes demand to fall. Looking at the highest discount factor in figure 5, output exhibits the

same unconventional response, even when technology is at or below its steady state. In fact, many

studies assume an elevated discount factor is the cause of the current ZLB event in the U.S.

The contours in figure 5 are useful because they provide the solution for every combination of
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Figure 5: Model 1 (y∗t = ȳ) decision rules as a function of the technology (ẑ−1) and the discount factor (β̂−1) states.

Each variable is in percent deviations from its deterministic steady state, except the nominal interest rate, which is a

net percentage. The shaded region indicates where the ZLB binds.

the two shocks, but they can be difficult to read. Therefore, we focus on specific cross sections

of the state space. The solid line in figure 5 shows the cross section where the technology state is

held constant at its steady state (ẑ−1 = 0). Two-dimensional representations of that cross section

are shown in figure 6. The shaded region highlights where the ZLB binds, which begins when the

discount factor is 0.9% above its steady state. A high discount factor indicates that households

have a strong desire to save. Elevated savings depresses demand, which reduces output, inflation,

and the nominal interest rate. At the ZLB, any further reduction in expected inflation is offset by

an equal increase in the real interest rate. That higher real interest rate raises the cost of current

consumption which further lowers demand in discount factor states where the ZLB binds.

The dashed line in figure 5 shows the cross section where the discount factor is held constant

at 0.9% above its steady-state value (β̂−1 = 0.9), which is the minimum value where the ZLB

binds when technology is at its steady state. Figure 7 shows a two-dimensional representation

of that cross section and the same cross sections for different values of φy. The darkest shaded

region indicates where the ZLB binds when ẑ−1 = 0 and φy = 0.1. Smaller values of φy cause

the ZLB to first bind in slightly lower technology states, as the lighter shaded regions show. The

unconventional response of the economy to a positive technology shock is smaller as the value of

φy declines. With φy = 0.05 (φy = 0), the response of output is positive in technology states up

to 0.67% (1.3%) above its steady state. Furthermore, in high technology states where the economy

does contract, output and inflation are more stable with a lower φy. For example, when φy = 0, out-

put never falls below its initial ZLB level (ŷadj = −1.34%), except in the highest technology states.

In contrast, when φy = 0.1, output falls from −1.18% to −3.34% when technology increases from

ẑ−1 = 0 to ẑ−1 = 2.5. It is clear from those results that a shorter expected duration at the ZLB can

reverse the unconventional dynamics, since the expected duration of the ZLB increases in higher

technology states. That finding is consistent with the conclusions of Braun and Körber (2011). It

is also apparent that the monetary policy rule plays an important role in the dynamics at the ZLB
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Figure 6: Model 1 (y∗t = ȳ) decision rules as a function of the discount factor state (β̂−1). The technology state is

fixed at its steady-state value (ẑ−1 = 0). Each variable is in percent deviations from its deterministic steady state,

except inflation and the interest rates, which are net percentages. The shaded region indicates where the ZLB binds.

since the slopes of the decision rules differ greatly across the alternative values of φy.

To better understand our results, we begin by examining the region of the state space where

the ZLB does not bind. In low technology states, workers are less productive and firms’ per unit

marginal cost of production is higher. Firms respond by raising prices and reducing their demand

for labor. With less output available for consumption, the household wants to work more to mod-

erate the decline in consumption. The higher labor supply dominates the drop in labor demand, so

the equilibrium level of labor is higher and the real wage rate is lower. The household also believes

technology will slowly return to its steady state and as a result, expects its future consumption to

increase. Higher expected future consumption is reflected in an elevated real interest rate. A larger

value of φy in technology states where the ZLB does not bind keeps output, labor, and the real

wage rate closer to their steady states, but that additional stability comes at the expense of more

inflation and a higher nominal interest rate. The real interest rate in that case is mostly unaffected.

The last area to consider are the technology states where the ZLB binds. In those states, higher

technology continues to lower per unit production costs and firms react by lowering their prices.

The additional decline in expected inflation when the nominal interest rate equals zero raises the

real interest rate. The household reduces its consumption and increases its labor supply to capital-

ize on the higher returns which results in the paradox of thrift. Aggregate demand falls because

everyone wants to save more at the higher real interest rate, but that is not possible in equilibrium.

Thus, the lower demand reduces output until actual and desired savings are equal. Firms respond

to the decrease in demand by further lowering prices and cutting labor demand. The drop in labor

demand dominates the increase in labor supply, so that both total hours and the real wage decline.

This is an example of the paradox of toil [Eggertsson (2010)]. At the ZLB, everyone wants to work
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Technology (ẑ−1)
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Figure 7: Model 1 (y∗t = ȳ) decision rules as a function of the technology state (ẑ−1). The discount factor state (β̂−1)

is fixed at the minimum value that causes the ZLB to bind when ẑ−1 = 0 and φy = 0.10. Each variable is in percent

deviations from its deterministic steady state, except inflation and the interest rates, which are net percentages. The

shaded region indicates where the ZLB binds for a given φy value.

more, but the higher real interest rate lowers demand, which causes firms to reduce employment.10

With a smaller response to the deviations from steady-state output, inflation is more stable in all

technology states. Thus, the real interest rate rises less at the ZLB, which helps maintain household

demand in high technology states. Higher labor demand raises equilibrium hours, which mitigates

the decline in the real wage. In short, a tension exists at the ZLB between the supply-side effects

of technology and the demand-side effects of the real interest rate. If the central bank responds

less aggressively to the deviations from steady-state output when the ZLB does not bind, then the

10The standard deviation of the stochastic processes affects the expected frequency and average duration of the

ZLB. Appendix C shows that the qualitative effects of a larger φy in figure 7 are similar when ρβ = 0.75.
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demand-side effects at the ZLB are weaker and both real and nominal variables are less volatile.

We also examine the effects of technology shocks by computing generalized impulse response

functions (GIRFs) of a policy shock. GIRFs provide a clear quantitative comparison between

economic dynamics at and away from the ZLB. They are based on an average of model simulations

where the realization of shocks is consistent with the household’s expectations over time. Figure 8

plots the generalized impulse responses to a 1% positive technology shock when the central bank

targets steady-state output under two sets of initial conditions: (1) a non-ZLB case (solid line),

where the discount factor remains at its steady state so that the nominal interest rate is above its

ZLB; and (2) a ZLB case (dashed line), where the discount factor is set to its mean value over a

500,000 quarter simulation under the condition that the ZLB binds and technology is at its steady

state. To compute the GIRFs, we calculate a baseline path as the mean of 10,000 simulations of the

model conditional on only the initial state vector. We then calculate a second mean from another

set of 10,000 simulations, but in this case the shock in the first quarter is replaced with a 1 standard

deviation positive technology shock. We compute the percentage change (or difference for the

interest rates and inflation) between the two means.11 Those values are shown on the vertical axis.

The impulse responses in the non-ZLB case are standard and follow the intuition from the

decision rules. On average, a 1% positive technology shock increases adjusted output, lowers

firms’ per unit marginal cost of production, and causes inflation and the nominal interest rate to

fall. According to the Taylor rule, the nominal interest rate falls more than the inflation rate, so the

real interest rate declines, which increases consumption. The positive technology shock also raises

productivity, which decreases the equilibrium level of labor and increases the real wage rate.

In the ZLB case, a 1% positive technology shock initially increases adjusted output by only

0.05% on average. That sluggish response occurs because the ZLB binds in 87% of the simulations

after the positive technology shock, which means the nominal interest rate cannot fall by as much

as it does in the non-ZLB case. The positive technology shock also lowers per unit production

costs which helps to push down prices. With prices falling and the nominal interest rate stuck

at zero, an increase in technology sharply raises the real interest rate. That spike then limits the

increase in output and causes labor to fall further than in the non-ZLB case. Our results in figure 7,

however, indicate that the responses of output and the real wage depend critically on the value of

φy. If φy = 0, a positive technology shock increases adjusted output more on impact than when

φy > 0 because the absence of a policy response to output limits the upward pressure on the real

interest rate at the ZLB. From period 2 onward, adjusted output increases as the economy exits the

ZLB due to the mean reversion in both technology and the discount factor. The nominal interest

rate rises far enough above zero by period 8 that the ZLB case effectively mirrors the non-ZLB

case. In both cases, technology returns to its steady state about 20 quarters after the initial shock.

Figure 9 plots the same cross section of the state space that is shown by the dashed line in

figure 5 across three monetary policy rules: (1) The central bank does not respond to output (φy =
0, solid line); (2) The central bank targets steady-state output (y∗t = ȳ, φy = 0.1, dashed line);

and (3) The central bank targets potential output (y∗t = ynt , φy = 0.1, circle markers). The shaded

region indicates where the ZLB binds, but the level of technology where that occurs depends on the

policy rule. When φy = 0 (y∗t = ynt ), the ZLB first binds when technology is 0.26% (0.08%) below

its steady state. The most noteworthy difference among the policy rules is that higher technology

states at the ZLB generate further increases in output and the real wage rate when the central bank

11The general procedure for computing GIRFs is outlined in Koop et al. (1996). See appendix D for details.
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Figure 8: Model 1 (y∗t = ȳ) GIRFs to a 1% positive technology shock. The steady-state case (solid line) is initialized

at the model’s steady state. The ZLB case (dashed line) is initialized at the average state vector conditional on the ZLB

binding in a 500,000 quarter simulation.

targets potential output as opposed to a decline when it targets steady-state output. In addition,

output falls in 49.4% of the simulations used to compute a GIRF initialized at the ZLB with a

steady-state output target but only in 1.8% of the simulations with a potential output target.

Potential output rises and falls with technology while steady-state output remains unchanged.

When technology is below (above) its steady state, potential output is lower (higher) than steady-

state output. A positive (negative) technology shock generates the largest positive (negative) output

gap when the central bank targets steady-state output. That response raises the volatility of inflation

so inflation is less stable with a steady-state output target than a potential output target.

When technology is above steady state, it lowers inflation which causes the real interest rate to

rise at the ZLB. That higher real rate encourages households to reduce demand and save more.

Lower demand dampens the upward pressure on output from the decline in production costs.

Which effect dominates depends on whether the real interest rate rises enough to offset the positive

effects of higher technology. Given that the real interest rate is inversely related to the expected

inflation rate at the ZLB, the real interest rate rises less when the central bank targets potential

output since inflation is more stable. Therefore, output is higher and the economy will exit the
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Figure 9: Model 1 decision rules as a function of the technology state (ẑ−1). The discount factor is fixed at the

minimum value that causes the ZLB to bind when ẑ−1 = 0 and φy = 0. On the solid line, the central bank does not

respond to output (φy = 0.10). On the dashed line, it responds to deviations from steady-state output (y∗t = ȳ) and

on the line with circle markers it responds to deviations from potential output (y∗t = ynt ). Each variable is in percent

deviations from its deterministic steady state, except inflation and the interest rates, which are net percentages. The

shaded region indicates where the ZLB binds for a given specification of monetary policy.

ZLB quicker when the central bank targets potential output instead of steady-state output.

Next, we examine how the output target affects the likelihood of hitting the ZLB and the volatil-

ity of output and inflation using 500,000 quarter simulations. Table 2a shows the effect of reducing

the weight on output (φy) while holding the weight on inflation at φπ = 1.5. We begin with the

value in Taylor (1993), φy = 0.125, and reduce it by increments of 0.025. With a steady-state out-

put target (y∗t = ȳ), the ZLB binds in 2.73% of the simulated quarters and has an average duration

of 1.90 quarters when φy = 0.125. These values monotonically decrease with φy and equal 2.33%
and 1.81 quarters when φy = 0. Decreasing the weight on the steady-state output target raises the
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volatility of output but has non-monotonic effects on the volatility of inflation. Technology shocks

generate negative co-movement between inflation and output, whereas discount factor shocks pro-

duce positive co-movement. Therefore, an increase in φy induces competing effects on inflation

volatility. Discount factor shocks dominate at low values of φy (≤ 0.10) so inflation variability

declines. When φy ≥ 0.125, technology shocks dominate which raises the volatility of inflation.12

The results are reversed when the central bank targets potential output (y∗t = ynt ). Placing more

weight on the deviations from potential output reduces the likelihood of hitting the ZLB and the

volatility of both output and inflation. Those results are consistent with the findings in the optimal

policy literature. Adam and Billi (2006) setup a New Keynesian model where the central bank

minimizes the expected value of a loss function that depends on inflation and the potential output

gap. They show it is optimal for the central bank to aggressively reduce its policy rate after an

adverse shock when it faces a ZLB constraint because it reduces visits to the ZLB.

Steady-State Output (y∗t = ȳ) Potential Output (y∗t = ynt )

ZLB Binds Avg. ZLB Std. Dev. (% of mean) ZLB Binds Avg. ZLB Std. Dev. (% of mean)

φy % of quarters Quarters Output Inflation % of quarters Quarters Output Inflation

0.125 2.73 1.90 0.6501 0.3326 1.56 1.72 0.6993 0.2800
0.100 2.56 1.87 0.6704 0.3308 1.67 1.73 0.7107 0.2908
0.075 2.45 1.86 0.6925 0.3311 1.80 1.75 0.7234 0.3025
0.050 2.38 1.84 0.7167 0.3335 1.95 1.77 0.7376 0.3152
0.025 2.33 1.82 0.7431 0.3379 2.13 1.79 0.7537 0.3293
0.000 2.33 1.81 0.7719 0.3447 2.33 1.81 0.7719 0.3447

(a) Volatility implications of alternative weights on the output gap (φy). The weight on inflation is φπ = 1.5.

Steady-State Output (y∗t = ȳ) Potential Output (y∗t = ynt )

ZLB Binds Avg. ZLB Std. Dev. (% of mean) ZLB Binds Avg. ZLB Std. Dev. (% of mean)

φπ % of quarters Quarters Output Inflation % of quarters Quarters Output Inflation

1.500 2.73 1.90 0.6501 0.3326 1.56 1.72 0.6993 0.2800
1.750 1.40 1.72 0.6116 0.2582 0.99 1.62 0.6586 0.2291
2.000 0.95 1.62 0.5924 0.2160 0.74 1.56 0.6338 0.1950
2.250 0.72 1.59 0.5811 0.1866 0.59 1.53 0.6177 0.1700
2.500 0.58 1.55 0.5740 0.1645 0.50 1.51 0.6067 0.1508
3.000 0.43 1.51 0.5665 0.1333 0.38 1.48 0.5932 0.1231

(b) Volatility implications of alternative weights on the inflation gap (φπ). The weight on the output gap is φy = 0.125.

Table 2: Model 1: No capital, technology and discount factor shocks.

Table 2b reports the results when we fix φy = 0.125 and change the response to the deviations

of inflation from its target (φπ). With y∗t = ȳ, the probability of hitting the ZLB falls from 2.73%
of the simulated quarters in the baseline case to 0.43% when φπ = 3. In addition, the standard

deviations of output and inflation fall as φπ increases. A higher φπ reduces the volatility of output

and inflation and decreases the likelihood of hitting the ZLB when y∗t = ynt . In the baseline case,

12In figure 7, the shaded region shrinks as φy declines, which suggests that the ZLB is less likely to bind, contrary

to table 2a. That perceived contradiction occurs because as φy decreases the ZLB region twists, meaning in some

states of the economy the ZLB binds when it did not with a higher φy whereas in others it no longer binds. States of

the economy where the ZLB binds are less likely to occur when φy is low, since they correspond, on average, to more

extreme realizations of the shocks. Thus, the percentage of quarters in which the ZLB binds increases with φy .
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the ZLB binds in 1.56% of the quarters and 0.38% when φπ = 3. Overall, table 2 demonstrates that

the central bank’s response to both output and inflation as well as the specification of the output

gap affects the simulation properties of the model—both qualitatively and quantitatively.

5 MODEL 2: STATES OF THE ECONOMY AND THE ZLB

This section shows how our findings change when capital is incorporated into a New Keynesian

model. In Model 1, the household can only smooth consumption by varying its labor supply. The

presence of capital in Model 2 gives the household another margin to smooth consumption. The

addition of another state variable, however, complicates the presentation of the complete solution

to the model. We initially fix technology at its steady state, so the complete solution can be pre-

sented with contour plots. That allows us to focus on the dynamics created by the discount factor

process, which is commonly used to generate ZLB events in the literature. Thus, this model ini-

tially contains two state variables—the discount factor and the endogenous capital stock. We then

reintroduce the technology process to compare the dynamics between Models 1 and 2 in response

to a technology shock. Also in this section, we focus on the dynamics when the central bank targets

steady-state output since we believe it better reflects the behavior of actual monetary policy.13

Figure 10 shows the three-dimensional contour plots of the nominal interest rate, output, con-

sumption, and investment over the entire state space. Presenting a complete picture of the solution

is informative in models with an endogenous state variable like capital since it shows the interaction

between the two states. The curvature of the ZLB (shaded) region is due to the quadratic capital

adjustment costs. When capital is at its steady state (k̂−1 = 0), the ZLB binds when β̂−1 = 1.22.

As capital rises, the nominal interest rate initially hits zero at lower values of the discount factor.

In general, the qualitative behavior of consumption, inflation, and the nominal interest rate are

similar to the model without capital. The household’s ability to invest in capital, however, causes

consumption to be less volatile and generates stronger expectational effects of the ZLB.

We focus our analysis on two cross sections of the contour map in figure 10. The endogeneity

of capital makes selecting particular cross sections in Model 2 more difficult than in Model 1. In

Model 1, the discount factor and technology states are independent; therefore, any one realization

of the discount factor is just as likely regardless of the technology state. In Model 2, the capital

and discount factor states are not independent, so the level of capital is likely below (above) its

steady-state value when the discount factor is also below (above) its steady-state value.

Figure 11 shows two cross sections from the contour map in figure 10. The solid line is the

cross section where the capital is fixed at its steady state (k̂−1 = 0). The dashed line represents

the cross section where capital increases with the discount factor along the diagonal of the state

space (k̂−1 = k̂diag). The darker (entire) shaded region indicates the area of the state space where

the ZLB binds in the steady-state (diagonal) cross section. We begin by examining the behavior of

the economy when the ZLB does not bind. Regardless of the capital state, a higher discount factor

makes the household more patient, which increases their desire to invest in capital and to postpone

consumption. The higher discount factor also encourages the household to supply more labor. The

additional investment raises the marginal product of labor, which causes firms to raise their output

and labor demand. The increase in output leads to lower inflation. In equilibrium, labor increases

13Potential output is defined as the level of output under flexible prices. In Model 1, potential output is exogenous

and we can solve for it analytically, but in Model 2 it has no closed-form solution. It is impossible to numerically solve

a flexible price model with a ZLB because sticky prices are necessary for an equilibrium to exist in our model.
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Figure 10: Model 2 (y∗t = ȳ) decision rules as a function of the discount factor (β̂−1) and capital (k̂−1) states. Each

variable is in percent deviations from its deterministic steady state, except the nominal interest rate, which is a net

percentage. The shaded region indicates where the ZLB binds. The solid (black) and dashed (blue) lines correspond

to cross sections of the state space, where k̂−1 = 0 and k̂−1 = k̂diag , respectively.

and the real wage rate falls as the discount factor increases. Finally, a higher capital stock pushes

down its marginal product which lowers the real rental rate in elevated discount factor states.

In the diagonal cross section where capital increases with the discount factor (k̂−1 = k̂diag), the

marginal product of capital falls as the discount factor rises which leads to a more rapid decline in

the real rental rate. From the household’s perspective, a lower rental rate makes investment less

attractive as a consumption smoothing channel. The household responds by moderating both their

decline in consumption and their increase in labor supply compared to the case in which capital is

fixed at its steady state (k̂−1 = 0). Those more modest responses in the real rental rate, investment,

consumption, and labor are illustrated by their flatter decision rules when the ZLB does not bind.

In the diagonal (steady-state) cross section, the ZLB binds when the discount factor is more

than 0.8% (1.2%) above its steady state. The qualitative properties of the decision rules when the
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Figure 11: Model 2 (y∗t = ȳ) decision rules as a function of the discount factor state (β̂−1). The solid line is the cross

section of the state space where the capital state is fixed at its steady-state value (k̂−1 = 0), and the dashed line is the

diagonal cross section where the capital state changes with the discount factor state (k̂−1 = k̂diag). Each variable is

in percent deviations from its deterministic steady state, except inflation and the nominal interest rate, which are net

percentages. The dark (entire) shaded region indicates where the ZLB binds when k̂−1 = 0 (k̂−1 = k̂diag).
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ZLB binds are similar across both cross sections. The mechanism that distorts the economy in

Model 2 is similar to Model 1. As the discount factor rises, both inflation and the real interest rate

continue to fall. When the nominal rate hits zero, the real interest rate rises as inflation continues to

fall. That higher real rate further encourages households to postpone consumption and motivates

them to supply more labor.14 Firms respond to the lower demand by further reducing their prices

and sharply cutting their labor demand. That decline in labor demand dominates the increase

in labor supply so that both the equilibrium level of labor and the real wage rate fall. Lower

consumption then pushes down output, which causes the household to reduce investment even

more in order to further smooth its consumption. Thus, the paradoxes of toil and thrift both occur—

despite the household wanting to work more to smooth consumption and save more to benefit from

higher real interest rates, both hours and investment fall. Those findings demonstrate that our

model with capital produces the same unconventional dynamics as the model without capital.

The Importance of Nonlinearities We apply our policy function iteration algorithm to log-

linearized versions of Model 1 and Model 2, where the only nonlinearity is the ZLB constraint.

This solution method is similar to the procedure employed in Nakov (2008), where linear splines

are used to approximate the kink in the decision rules. We then compare the resulting linear

decision rules to their nonlinear counterparts to demonstrate the importance of using the fully

nonlinear model. The benefit of solving the nonlinear and linear models in this manner is that

differences in the decision rules are entirely due to whether or not the model is linearized.

Figure 12 compares cross sections of the linear and nonlinear decision rules for output in Model

1 when the central bank targets steady-state output. The left (right) panel shows the decision rule

as a function of the technology state (discount factor state). The linear decision rules are a fairly

accurate approximation of the nonlinear decision rules for both the technology and the discount

factor shocks so long as the ZLB does not bind. The linear and nonlinear decision rules for output

then diverge as the economy moves deeper into the ZLB region for both shocks. That separation

is initiated by the inability of the central bank to compensate for growing price adjustment costs,

which are different due to the linearization of the quadratic price adjustment cost function. Fur-

thermore, the location of the ZLB kink is nearly identical for both the linear and nonlinear decision

rules. Those results, in contrast to Fernández-Villaverde et al. (2012), indicate that the linear model

provides a fairly good approximation of the nonlinear model without capital in most states.

Figure 13 compares the linear and nonlinear decision rules in Model 2 as a function of the

discount factor state. The ZLB first binds in the linear (nonlinear) model when the discount factor

is 1.4% (0.8%) percent above its steady state. That difference has two important implications.

One, simulations of the linear model indicate that the economy hits the ZLB far less frequently

than in the nonlinear model. In our baseline calibration, the ZLB never binds in the linear model,

while it binds in 1.15% of the time in the nonlinear model. That result is one reason why ZLB

studies that linearize the model must specify much larger shocks to generate ZLB events. Two, the

decision rules differ between the linear and nonlinear model when the ZLB does not bind, because

the expectational effects of visiting the ZLB are weaker in the linear model. Thus, the linear model

cannot accurately quantify the effects of discount factor shocks even when the ZLB does not bind.

The reason the linear and nonlinear models generate such different results in the model with capital

is because Model 2 permits asset substitution in contrast to Model 1. As the discount factor rises,

14The rental rate of capital falls at the ZLB, but the household expects that the future rental rate will increase since

they believe the discount factor will return to its steady state. That result is consistent with a rising real interest rate.
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(linear) model. Each variable is in percent deviations from its deterministic steady state. The dark (entire) shaded

region indicates where the ZLB binds in the fully nonlinear (linear) model.
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households increase investment, which reduces the marginal product of capital and the real rental

rate. Forward looking households expect a much lower rental rate at the ZLB, which reduces real

and nominal interest rates before the ZLB is hit. Since the consequences of the ZLB are more

severe in the nonlinear model, the expectational effects of the ZLB are also stronger.

6 MODEL 1 AND MODEL 2 COMPARISONS

This section shows capital qualitatively and quantitatively affects dynamics at the ZLB. We com-

pare GIRFs in our models with and without capital because cross sections of the decision rules

require assumptions about how the capital state in Model 2 co-moves with the exogenous state

variables. To conduct such an experiment, technology is stochastic with the same parameter values

in both models. We also assume that the central bank targets steady-state output (y∗t = ȳ) and

set φy = 0.025 in both models. A small weight on φy is necessary to make a direct comparison

because our numerical algorithm does not converge for higher values of φy in Model 2.
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Figure 14: Comparison of the GIRFs to a 1% positive technology shock in Model 1 (solid line) and in Model 2 (dashed

line). The initial state vector is equal to the average state vector in a 500,000 quarter simulation conditional on the

ZLB binding. The central bank targets steady-state output (y∗t = ȳ).

Figure 14 plots the responses to a 1% positive technology shock in Model 1 (solid line) and

Model 2 (dashed line). The discount factor is initially set to its mean value that causes the ZLB to

bind in a 500,000 quarter simulation of the model where technology shocks are set to zero (Model

1: β̂−1 = 1 and Model 2: β̂−1 = 1.4). The unconventional dynamics are not present in Model

1 when φy is small because the positive supply-side effects of higher technology dominate the

negative demand-side effects of a higher real interest rate. As φy increases, the adverse demand-

side effects overcome the beneficial supply-side effects so that output and labor hours both decline

in response to a positive technology shock at the ZLB. Output, in contrast, declines on impact in

Model 2 even when φy is small. The responses of the real interest rate, inflation, and labor are
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qualitatively the same in both models but quantitatively larger in Model 2. From period 2 onward,

technology and the discount factor mean revert and the responses from both models converge.

Next, we show the impact of capital on the volatility of output and inflation for a range of

values for φy. Model 1 and Model 2 are simulated for 500,000 quarters under the assumption that

the central bank targets steady-state output. We fix technology at its steady state to examine a

broader range of values for φy. Table 3 shows the effect of reducing the weight on the output gap

(φy) while holding the weight on inflation (φπ) at 1.5. The value of φy is initially set slightly below

the original Taylor (1993) specification, φy = 0.1, and is then reduced by increments of 0.025.

Model 1 Model 2

ZLB Binds Avg. ZLB Std. Dev. (% of mean) ZLB Binds Avg. ZLB Std. Dev. (% of mean)

φy % of quarters Quarters Output Inflation % of quarters Quarters Output Inflation

0.100 1.20 1.63 0.4972 0.2769 1.15 1.87 0.4005 0.2979
0.075 1.29 1.64 0.5168 0.2878 0.35 1.66 0.4127 0.2654
0.050 1.39 1.65 0.5382 0.2997 0.16 1.50 0.4271 0.2473
0.025 1.51 1.66 0.5615 0.3126 0.07 1.41 0.4421 0.2304
0.000 1.64 1.68 0.5870 0.3268 0.03 1.46 0.4581 0.2133

Table 3: Volatility implications of alternative weights on the output gap. Comparison between Model 1 and Model 2.

The only stochastic component in both models is discount factor shocks. φπ = 1.50, ρβ = 0.80, and σβ = 0.0025.

Model 2 generates two qualitatively different results from Model 1. One, both output and

inflation volatility decline as φy increases in Model 1, whereas a tradeoff exists between lower out-

put volatility and higher inflation volatility in Model 2. Since capital introduces another channel

through which households smooth consumption, an increase in the discount factor raises invest-

ment and reduces demand for consumption goods. The net effect on output is positive so that

discount factor shocks cause inflation and output to move in opposite directions unlike Model 1.

Thus, there is a tradeoff between inflation and output stability in Model 2 that is similar to the

tradeoff the central bank faces in response to technology shocks in Model 1. Two, the likelihood

of the ZLB increases with higher values of φy in Model 2, whereas it decreases in Model 1.15 That

difference is a consequence of more inflation volatility with higher values of φy in Model 2.

Capital is essential to explain business cycles, but it is largely absent from work on the ZLB.

Including capital in the model changes the qualitative effects of demand shocks and alters the ef-

fects of a monetary policy rule that emphasizes output stability. Our results in this section highlight

the importance of including capital when analyzing the impact of monetary policy at the ZLB.

7 CONCLUSION

This paper examines monetary policy when the nominal interest rate is constrained by the ZLB

using models with and without capital. We use these models to analyze why technology shocks

at the ZLB may have unconventional effects, what factors influence the likelihood of hitting the

ZLB, and the implications of alternative monetary policy rules. Four main findings emerge: (1) A

positive technology shock can generate lower consumption, labor, and output when the ZLB binds

15Table 3 appears to contradict our Model 1 findings when the central bank targets steady-state output (see table 2a,

col. 2 and 3). Since technology is fixed, steady-state and potential output are equal. Thus, the qualitative result is

consistent with the findings from Model 1 when the central bank targets potential output (see table 2a, col. 6 and 7).
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and the central bank targets steady-state output. Those unconventional dynamics usually disappear

when the central bank targets potential output; (2) When the central bank targets steady-state output

in the model with capital, a positive technology shock at the ZLB generates more contractionary

dynamics than in the model without capital; (3) The presence of capital changes the qualitative

effects of demand shocks and alters the impact of a monetary policy rule that emphasizes output

stability; and (4) The constrained linear model provides a good approximation of the nonlinear

model without capital, but differences exist between the solutions in the model with capital.

In spite of the amount of research on the ZLB, many important questions remain. For example,

do the medium- to long-run benefits of returning to normal policy outweigh the short-run costs of a

higher policy rate? What are the benefits of forward guidance and quantitative easing in a dynamic

model that accounts for expectational effects? Lastly, how does the impact of discount factor and

technology shocks change as a result of those policies? This paper provides a careful discussion

of the dynamics in the types of models that researchers may use to answer these questions.
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A NUMERICAL ALGORITHM

A formal description of the numerical algorithm begins by writing the model compactly as

E[f(vt+1,wt+1,vt,wt)|Ωt] = 0,

where f is vector-valued function that contains the equilibrium system, v is a vector of exogenous

variables, w is a vector of endogenous variables, and Ωt = {M,P, zt} is the household’s informa-

tion set in period t, which contains the structural model, M , its parameters, P , and the state vector,

z. In Model 1, v = z = (β, z) and w = (c, π, y, n, w, r). In Model 2 with both the technology and

discount factor processes, v = (β, z), z = (k, β, z), and w = (c, π, y, n, w, r, k, i, rk, q).
The algorithm approximates the vector of decision rules, Φ, as a function of the state vector, z.

We iterate on Φ = (c, π) for Model 1 and Φ = (n, π, i) for Model 2 so that we can easily solve for

future variables that enter the household’s expectations using f . Each continuous state variable in

z is discretized into Nd points, where d ∈ {1, . . . , D} and D is the dimension of the state space.

The discretized state space is represented by a set of unique D-dimensional coordinates (nodes).

We set the bounds of the exogenous state variables to encompass 99.999% of the probability mass

of the distribution. For capital, which is an endogenous state variable, we first solve the model

and then check that the bounds on capital are wide enough to eliminate extrapolation. We resolve

the model with wider grids until there is no extrapolation in our simulation. We specify 101 grid

points for each state variable and use 31 Gauss-Hermite weights for each shock. Those techniques

minimize extrapolation and ensure that the location of the kink in the decision rules is accurate.

The following outline summarizes the policy function algorithm we employ for our models.

Let i ∈ {0, . . . , I} index the iterations of the algorithm and n ∈ {1, . . . ,ΠD
d=1N

d} index the nodes.
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1. Obtain initial conjectures for the decision rules on each node from the log-linear model

without a ZLB constraint. The initial conjectures are ĉ0 and π̂0 for Model 1 and n̂0, π̂0, and

ı̂0 for Model 2. We use Sims (2002) gensys.m program to obtain these conjectures.

2. For i ∈ {1, . . . , I}, implement the following steps:

(a) On each node, solve for {yt, rt} given ĉi−1(z
n
t ) and π̂i−1(z

n
t ) in Model 1 and given

n̂i−1(z
n
t ), π̂i−1(z

n
t ), and ı̂i−1(z

n
t ) in Model 2 with the ZLB constraint imposed.

(b) Linearly interpolate (ct+1, πt+1) in Model 1 and (nt+1, πt+1, it+1) in Model 2 given

{εmt+1}
M
m=1. Each of the M values εmt+1 are Gauss-Hermite quadrature nodes. We use

Gauss-Hermite quadrature to numerically integrate, since it is accurate for normally

distributed shocks. We use piecewise linear interpolation to approximate future vari-

ables, since this approach more accurately captures the kink in the decision rules than

continuous approximating functions such as cubic splines or Chebyshev polynomials.16

(c) We use the nonlinear solver, csolve.m, to minimize the Euler equation errors. On

each node, numerically integrate to approximate the expectation operators,

E
[

f(xm
t+1,x

n
t )|Ωt

]

≈
1

π

M
∑

m=1

f(x̂m
t+1, x̂

n
t )φ(ε

m
t+1),

where x ≡ (v,w) and φ are the respective Gauss-Hermite weights. The superscripts

on x indicate which realizations of the state variables are used to compute expectations.

The nonlinear solver searches for ĉi(z
n
t ) and π̂i(z

n
t ) in Model 1 and n̂i(z

n
t ), π̂i(z

n
t ), and

ı̂i(z
n
t ) in Model 2 so that the Euler equation errors are less than 10−4 on each node.

3. Define maxdisti ≡ max{|ĉi − ĉi−1|, |π̂i − π̂i−1|} in Model 1 and maxdisti ≡ max{|n̂i −
n̂i−1|, |π̂i − π̂i−1|, |̂ıi − ı̂i−1|} in Model 2. Repeat step 2 until one of the following occurs:

• If for all n, maxdisti < 10−13 for 10 consecutive iterations, then the algorithm con-

verged to a MSV solution. In Model 1, since the state is composed of only exogenous

variables, the solution is bounded so long as the decisions rules are positive and finite.

In Model 2, simulations of the model must not be explosive.

• Otherwise, we say the algorithm is non-convergent for one of the following reasons:

– i = I = 500,000 (Algorithm times out)

– For all n and any i, π̂i < 0.5, or for any n, ĉi < 0 in Model 1 or n̂i < 0 in Model 2

(Approximating functions drift)

– Define diri = maxdisti −maxdisti−1. For all n, diri ≥ 0 and diri − diri−1 ≥ 0
for 50 consecutive iterations (Algorithm diverges).

The same criteria is used to generate the results in Richter and Throckmorton (2015).

16Aruoba and Schorfheide (2013) use a linear combination of two Chebyshev polynominals—one that captures the

dynamics when the ZLB binds and one that captures the dynamics when the Taylor principle holds. This approach

is more accurate than using one Chebyshev polynomial, but there is no guarantee that it will accurately locate the

kink. Moreover, Chebyshev polynomials can lead to large approximation errors due to extrapolation. With linear

interpolation, a dense state space will lead to more predictable extrapolation and more accurately locate the kink. See

Richter et al. (2014) for a comparison of these two solution methods in a New Keynesian model with a ZLB constraint.
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B CONVERGENCE PATHS AND STEADY-STATE EQUILIBRIA

Figure 15 illustrates that the model has two steady states, which is consistent with Benhabib et al.

(2001). The left panel highlights the intersections of the consumption Euler equation and the

monetary policy rule in steady state (circles). Those two steady states are

r̄ = π̄/β̄, (Consumption Euler Equation)

r̄ = max{1, r∗(π̄/π∗)φπ}, (Interest Rate Rule)

which results in two steady-state inflation rates:

π̄ =

{

π∗ when r̄ = r∗

β̄ when r̄ = 1
.

When combined with the first-order condition for labor and the resource constraint, the firm pricing

equation yields the steady-state value of consumption as a function of the steady-state inflation rate:

c̄ =

(

1

θχ

(

(1− β)ϕ
( π̄

π∗

− 1
) π̄

π∗

− (1− θ)
)

(

1−
ϕ

2

( π̄

π∗

− 1
)2
)η)1/(1+η)

. (12)

Since the model contains two steady-state inflation rates, consumption also has two steady-state

values, which are shown in the right panel of figure 15. In this section, the inflation rate is shown

as a net percentage and consumption is in percent deviations from its positive inflation steady state.
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Figure 15: Model 1 steady states (circles). The left panel shows the consumption Euler equation (black line) and the

interest rate rule (dashed line) in steady state. The right panel shows the firm pricing equation in steady state.

Figure 16 shows the convergence paths of consumption and inflation when our algorithm is

initialized at different points (diamonds and crosses). The convergence paths correspond to the

values of consumption and inflation in each iteration of our numerical algorithm. The left panel

shows the model’s two steady states (circles). Inflation is positive in one steady state and negative

in the other steady state. The right panel shows our model may converge to the deflationary steady

state via a saddle path that runs from the northwest and southeast as shown in Benhabib et al.
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Figure 16: Convergence paths to the steady-state equilibria (circles) in the deterministic version of Model 1. A

diamond denotes an initial conjecture that converges to the positive inflation steady state, and a cross denotes an initial

conjecture that asymptotically converges to a corner solution where there is no consumption.

(2001). That saddle path is not explicitly shown in the right panel because the algorithm only

converges to the deflationary steady state if the initial conjecture is exactly equal to one of the

values on either side of the stable manifold. Obtaining that precise convergence path is not possible

without the analytical equation for the saddle path because any numerical algorithm is based on an

approximation of the true solution. Thus, our algorithm only converges to the deflationary steady

state if the distance between the initial conjecture and the deflationary steady state is less than the

tolerance criterion, 10−10.17 The unstable manifolds point away from the deflationary steady state

toward the southwest. Our algorithm converges to the inflationary steady state so long as the initial

conjectures for inflation and consumption are to the northeast (diamonds) of the stable manifolds

of the deflationary steady state. Initial conjectures in the southwest (crosses) yield paths that are

unstable because they asymptotically approach a corner solution where consumption is equal to 0.

Figure 17 shows the convergence paths for consumption and inflation when the discount factor

state, β−1 6= β̄. The right (left) panel displays the convergence paths for β−1 = 0.9975 (β−1 =
0.9925), which is above (below) β̄ = 0.995. In both cases, the inflationary steady state is stable,

but there is no evidence the algorithm converges to the deflationary steady state as in figure 16.

Furthermore, our findings do not indicate that there is a saddle path to the deflationary steady state.

Figure 18 compares the convergence paths of consumption and inflation when β−1 = β̄ for the

deterministic (left panel) and stochastic (right panel) versions of Model 1. In the stochastic model,

the household forms expectations over future realizations of β. The paths in the stochastic model

differ from the deterministic model in two important ways. One, fewer initial conjectures converge

to the inflationary steady state in the stochastic model. That decline occurs because expectations

are formed over future values of β that are in the region where the paths of consumption and

inflation diverge from the inflationary steady state. In other words, additional instability is created

17Christiano and Eichenbaum (2012) describe the deflationary steady state as a pencil standing on its tip. If the

agent’s belief is incorrect by 10−9, then the equilibrium falls apart (i.e., the pencil falls over). Initial conjectures for

consumption and inflation that slightly deviate from the deflationary steady state mean the algorithm either converges

to the inflationary steady state or diverges away from the deflationary steady state.
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(a) β−1 = 0.9925 < β̄
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(b) β−1 = 0.9975 > β̄

Figure 17: Convergence paths to the steady-state equilibria (circles) in the deterministic version of Model 1. A

diamond denotes an initial conjecture that converges to the positive inflation steady state, and a cross denotes an initial

conjecture that asymptotically converges to a corner solution where there is no consumption.
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(a) Perfect Foresight Model 1
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(b) Stochastic Model 1

Figure 18: Convergence paths to steady states (circles) for the perfect foresight and stochastic models when β−1 = β̄.

A diamond denotes an initial conjecture that converges to the positive inflation steady state, and a cross denotes an

initial conjecture that asymptotically converges to a corner solution where there is no consumption.

by forming expectations over values of β that put the algorithm on an unstable path. Two, the

deflationary steady state is no longer present in the stochastic model. If the stochastic model is

initialized at values of consumption and inflation on either stable manifold in the deterministic

model, then many realizations of β result in paths that diverge from the inflationary steady state.

To further understand these convergence paths, we also examine a Markov-switching specifi-

cation of the stochastic model [Eggertsson and Woodford (2003)]. This exercise demonstrates that

expectational effects in the stochastic model destabilize the deflationary steady state that is present

in the deterministic model. In this model, the equilibrium at time t is determined by a 2-state

Markov chain with transition matrix Pr{st = j|st−1 = i} = pij , i, j ∈ {1, 2}. The two equilibria
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are the inflationary and deflationary steady states of the deterministic model shown in figure 15:

(π̄, r̄) =

{

(π∗, r∗) for st = 1

(β̄, 1) for st = 2
.

Figure 19 shows the paths of consumption and inflation beginning from their initial conjectures,

(ĉ0, π̂0), for each state, s. In both panels, the inflationary steady state is perfectly absorbing, p11 =
1, which is often assumed in the ZLB literature [e.g., Braun et al. (2013); Christiano et al. (2011);

Eggertsson and Woodford (2003)]. The left panel shows that when the initial conjecture for s = 2 is

equal to the deflationary steady state and its state is perfectly absorbing (i.e., p22 = 1) the algorithm

converges to the deflationary steady state. The right panel, however, shows that if p22 = 0.99 (i.e.,

there is a small probability of leaving the deflationary steady state), then only the inflationary steady

state remains. Conditional on starting in state 2, even the smallest possibility of returning to the

inflationary steady state makes the deflationary steady state unstable. The deflationary equilibrium

satisfies the steady-state system of equations of the deterministic model, but it no longer satisfies

the stochastic and dynamic system of equations due to expectational effects.
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Figure 19: Convergence paths in a version of Model 1 that switches between the steady states. A diamond denotes an

initial conjecture that converges to a steady state. s = 1 (s = 2) is the inflationary (deflationary) steady state.

C SENSITIVITY ANALYSIS

The parameters of the stochastic processes impact where the ZLB binds in the state space, the

slope of the decision rules, and model dynamics. As an example, figure 20 compares the Model 1

decision rules with ρβ = 0.8 and ρβ = 0.75 when technology is fixed at its steady-state. A more

persistent discount factor process makes the ZLB bind in lower discount factor states. When ρβ =

0.8, the nominal interest rate is stuck at its ZLB whenever β̂−1 > 0.9, whereas when ρβ = 0.75, the

ZLB does not bind unless β̂−1 > 1.3. This result means households will expect that the nominal

interest rate will hit its ZLB less frequently and in situations when it does hit its ZLB, they will

expect it to bind for fewer quarters. When ρβ = 0.75, the average ZLB event is only 1.3 quarters,
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Figure 20: Model 1 (y∗t = ȳ) decision rules as a function of the discount factor state (β̂−1) when the persistence is high

(solid line) and low (dashed line). The technology state is fixed at its steady-state value (ẑ−1 = 0). Each variable is in

percent deviations from its deterministic steady state, except inflation and the interest rates, which are net percentages.

The light (dark) shaded region indicates where the ZLB binds when ρβ = 0.8 (ρβ = 0.75).
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Figure 21: Model 1 (y∗t = ȳ) decision rules as a function of the technology state (ẑ−1). The discount factor persistence

is ρβ = 0.75. The discount factor state (β̂−1) is fixed at the minimum value that causes the ZLB to bind when ẑ−1 = 0
and φy = 0. Each variable is in percent deviations from its deterministic steady state, except inflation and the interest

rates, which are net percentages. The shaded region indicates where the ZLB binds for a given φy value.
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compared to 1.9 quarters when ρβ = 0.8. In states of the economy where the ZLB does not bind,

the dynamics are virtually identical to the dynamics that occur when ρβ = 0.8. At the ZLB, the

economy is far more sensitive to shocks that affect demand because the central bank can no longer

blunt the effects of those shocks by lowering the nominal interest rate. Thus, the slopes of the

decision rules for inflation and output are steeper and the real interest rate rises sharply at the ZLB.

Figure 21 reproduces figure 7 when ρβ = 0.75. These results are informative because they show

that increasing the weight on the steady-state output target does not affect our qualitative results.

The decline in output at the ZLB for a given value of φπ is less severe because the household

expects that the nominal interest rate will rise in the near future and that the central bank will be

able to stabilize output and inflation. A higher value of φy, however, reduces the positive effect

of technology shocks on output and in unusually high technology states, these shocks can reduce

output. Those findings are consistent with our results in section 4. If we increase the value of ρβ,

the unconventional effects of positive technology shocks at the ZLB are even more pronounced.

D GENERALIZED IMPULSE RESPONSE FUNCTIONS

The GIRFs are based on an average of 10,000 simulations of the model. The advantage of GIRFs is

that the realizations of the shocks are consistent with the household’s expectation that the stochastic

processes will mean revert when the model is initialized away from its stochastic steady state. The

procedure for calculating GIRFs is described in Koop et al. (1996). We apply the following steps:

1. Find the state vector at which to initialize each case:

(a) Non-ZLB Case: Simulate the model without shocks until it converges to its stochastic

steady state, zss0 .

(b) ZLB Case: Simulate the model for 500,000 quarters using random draws of discount

factor shocks. The initial state vector is the average state vector conditional on the ZLB

binding, zzlb0 . The average discount factor when the ZLB binds is 1% above steady state.

2. Draw random shocks, {εz,t, εβ,t}
N
t=0, from their independent normal distributions. Simulate

each case for R different draws of the sequence of shocks beginning at the alternative ini-

tial state vectors, zss0 and z
zlb
0 . This process generates R equilibrium paths for each case,

{xj
t(z

ss
0 )}

N
t=0 and {xj

t(z
zlb
0 )}Nt=0, where j ∈ {1, 2, . . . , R}. We set N = 20 and R = 10,000.

3. Using the same R draws of shocks from step 2, replace the technology shock in period 1
with a 1% shock (i.e., set εz,1 = 0.01 for all j ∈ {1, 2, . . . , R}). Then re-simulate the model

to obtain R equilibrium paths for each case, {xj
t (z

ss
0 , εz,1)}

N
t=0 and {xj

t(z
zlb
0 , εz,1)}

N
t=0.

4. Average across the R simulations from step 2 and step 3 to obtain average paths given by

x̄t(z
ss
0 ) =

1

R

R
∑

j=1

x
j
t (z

ss
0 ), x̄t(z

ss
0 , εz,1) =

1

R

R
∑

j=1

x
j
t (z

ss
0 , εz,1),

x̄t(z
zlb
0 ) =

1

R

R
∑

j=1

x
j
t(z

zlb
0 ), x̄t(z

zlb
0 , εz,1) =

1

R

R
∑

j=1

x
j
t (z

zlb
0 , εz,1).

5. The difference between the two average paths for each case is a GIRF. In our figures, a

variable in either case with a hat is calculated as 100(x̄t(z
s
0, εz,1)/x̄t(z

s
0)−1) and with a tilde

is calculated as 100(x̄t(z
s
0, εz,1)− x̄t(z

s
0)), where s ∈ {ss, zlb}.
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