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1 Introduction

Private information limits insurance possibilities when two agents get together to pool idiosyn-

cratic risk. We show that if their total income depends on capital accumulation and production,

bilateral insurance possibilities improve because misreporting distorts investment. This occurs

because cheating implies that the misrepresenting agent will receive higher utility today at the

expense of reducing the other agent’s current consumption and reducing investment. The latter

reduces both agents continuation values, and therefore provides incentives to prevent cheating.

This mechanism is more significant when the agent’s Pareto weight is larger, as he cares more

about the total level of capital in the economy. In the long run, either one of the agents is

driven to immiseration, or both agents’ lifetime utilities are approximately equal. We show

that the second case is only possible in economies with capital accumulation.

We study the optimal bilateral insurance arrangement between two risk-averse agents fac-

ing preference shocks.1 We compare two alternative setups: (i) Agents share the ownership

of production and investment (Capital Accumulation Economy, CAE), and (ii) Total income

is constant and exogenous (Endowment Economy, EE). The optimal contract maximizes the

weighted sum of the agents’ lifetime utility. Ideally, each agent’s consumption should depend

on his preference shock. However, if shocks are private information, the optimal arrangement

must also deal with incentives to misreport. Thus, private information may limit insurance

capabilities.

To understand the role of capital accumulation for incentives under private information,

we show that there is a clear difference between the CAE and EE. In the EE, incentives to

cheat exist because reporting a high preference shock increases consumption of the reporting

agent at the expense of reducing consumption of the other agent. Thus, unless promises about

future consumption are modified as a function of the report, agents always want to report the

highest value of the preference shock. In contrast, in the CAE, if an agent chooses to cheat,

she will consume more this period at the cost (at least partially) of reducing investment, which

will reduce her future consumption. We show that this force is more important for providing

incentives for agents with larger Pareto weights, as they more strongly internalize the effect

on future available resources. Thus, in addition to incorporating capital accumulation, it is

crucial to consider a small number of agents. To the best of our knowledge, this result was not

previously demonstrated or understood, since past work looked at only a continuum of agents

or an endowment economy.2

1As in Diamond and Dybvig (1983) and Atkeson and Lucas (1992).
2A notable exception is Marcet and Marimon (1992). The key difference is that in their work one of the

agents has linear preferences and deep pockets. As we show in Section D.3 this assumption eliminates the
disinvestment mechanism studied here.
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We made two additional assumptions that help simplify the analysis: Agents are ex-ante

identical and the preference shock can be either high or low. Under these conditions we derive

three key results as summarized by Propositions 1, 2, and 3. First, Proposition 1 shows that

in the CAE an agent has no incentives to cheat under the full information allocation when

his weight is above a threshold smaller than one. To understand this result, note that if

an agent’s weight is equal to one, all the extra funds she receives after cheating are only

“financed” by disinvestment, since the consumption of the other agent is already zero. She also

fully internalizes the effect of the investment distortion, because given that her weight is one,

she will receive all future output. Thus, she would be strictly worse off misrepresenting her

preference shock when her weight is exactly one. Now, as a small change in the weight changes

consumption and investment only slightly (by continuity of the full information allocation),

cheating will not be desirable even if the weight were slightly smaller than one. Although this

result demonstrates that at some point the incentives to cheat vanish completely, the numerical

solution of the model suggests a more general interpretation. In the CAE, there is a force

created by the behavior of investment in the full information allocation that helps provide

incentives for truthful revelation, and this force is increasing in the value of the agent’s Pareto

weight. In sharp contrast, Proposition 1 also shows that in the EE, if both agents have positive

Pareto weights, their incentive compatibility constraints must be binding.

The next two propositions extend the analysis of the CAE. Proposition 2 shows that, under

certain conditions, both agents have no incentives to cheat under the full information allocation

when Pareto weights are equal across agents. In particular, the additional assumption is that

the spread between the low and the high value of the preference shock is sufficiently large. To

understand the result, consider the extreme case in which consumption is not valued if the low

preference shock is realized. In this case, agents with the low value of the preference shock

would be strictly worse off misrepresenting their shock; they would obtain extra consumption

today, when it is not valued, at the expense of lower consumption tomorrow (because investment

decreases), when it is valued. Similarly, if their valuation of consumption in the low state is

close to zero and each agent weight is sufficiently high, the same forces are present and there

are no incentives to cheat; i.e., the full information plan is incentive compatible for both agents.

Proposition 3 shows that in the long run private information becomes irrelevant and the

agents’ weights remain unchanged in the CAE. This may happen because either one of the agents

has her Pareto weight equal to 0, or the weights are approximately equal. This proposition

hinges on the existence of a region of weights such that both incentive compatibility constraints

are not binding. This result is important because it implies that the immiseration result, which

has been widely studied in private information problems, does not hold. More generally, when

the condition in Proposition 2 is not satisfied, for instance, because the preference shock is less
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coarse, the main takeaway is that due to the incentives provided by capital accumulation, the

economy spends more time in the surroundings of equal weights than in an EE.

This paper is related to a long standing literature studying private information problems.

Previous work had made at least one of three assumptions: (i) resources available are not

affected by the agents’ decisions as in the case of the endowment economy (Thomas and Worral,

1990); (ii) there is a continuum of agents (Atkeson and Lucas, 1992); (iii) one of the agents is risk

neutral with deep pockets (Marcet and Marimon, 1992; Clementi and Hopenhayn, 2006).3 We

find that these assumptions are not innocuous. When we relax these assumptions and consider a

production economy with a finite number of risk-averse agents, we find that investment provides

incentives to prevent cheating, in particular for agents with large Pareto weights.

The paper is organized as follows. Section 2 describes the model and shows how the problem

can be represented recursively using Pareto weights and capital as state variables. Section 3

briefly characterizes the optimal allocation under full information. Sections 4 and 5 study how

capital accumulation shapes the incentives to cheat and the long-run dynamics, respectively.

Section 6 concludes. The recursive formulation of the problem is provided in Appendix A, the

rest of the proofs are provided in Appendices B and C, and additional results are gathered in

D.

2 Model

Time is discrete and the time horizon is infinite. At date 0, two agents, indexed by i = 1, 2, start

operating a decreasing returns to scale technology that delivers a profits function f(K) with

f ′(K) > and f ′′(K) < 0. They start with capital K0 = K0,1 +K0,2, contributed by agents 1 and

2, respectively.4 Capital depreciates at the rate δ ∈ (0, 1). Given technological assumptions,

there exists some K such that X = [0, K] denotes the sustainable levels of capital.5

Agents face liquidity shocks as in Diamond and Dybvig (1983).6 At the beginning of date

t, agent i privately observes his shock si,t ∈ Si,t = {sL, sH}, with sH > sL. Denote by Sti =

Πt
h=0Si,h, St = S1,t × S2,t and St = Πt

j=0St.

3See also Green (1987), Spear and Srivastava (1987), Quadrini (2004), Clementi, Cooley, and Giannatale
(2010), and Cole, Greenwood, and Sanchez (2012).

4This paper studies neither the formation nor the break-up of the contract. The formation could be de-
termined by Nash bargaining between agents who would split the benefits of getting together (raising capital
and providing insurance). To allow for break-ups, the model could be extended by adding some type of lack of
commitment, along the lines of Wang (2011) or Amador, Werning, Hopenhayn, and Aguiar (2015).

5All the analysis regarding the solution method also applies to the general case in which there is an arbitrary
number of agents I. Without loss of generality we assume that agents are symmetric. Appendix D.4 argues
that we can obtain similar results if agents are asymmetric.

6This class of preferences is standard in the literature; see Tirole (2005), Chapter 12. Moreover, liquidity
shocks are multiplicative as in Atkeson and Lucas (1992).
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The preference shocks are i.i.d. across time and agents, and π(si,t) > 0 denote the probability

of si,t. Let st = (s1,t, s2,t) ∈ St be the joint shock at date t with probability π(st) = π(s1,t) ×
π(s2,t); s−i denotes a liquidity shock that excludes agent i’s element (e.g., s−1 = s2) and

st = (s0, ..., st) ∈ St denotes a partial history of events from date 0 to date t. The probability

at date 0 of a partial history st is π(st) = π(s0)...π(st).

Given a consumption path {Ci,t}∞t=0 such that Ci,t : St → R+, agent i’s preferences are

represented by

E

{
∞∑
t=0

βt si,t u(Ci,t(s
t))

}
=
∞∑
t=0

∑
st

βtπ(st) si,t u(Ci,t(s
t)),

where u : R+ → R+ is strictly increasing, strictly concave, and twice differentiable; lim
c→0

u′(c) =

+∞; and β ∈ (0, 1). A higher value of the agent’s liquidity needs implies that he is willing to

take more resources to consume more today compared with the future.

Let K ′ = {Kt+1}∞t=0 be an investment plan that every period allocates next-period capital,

given a history of joint reports (i.e. Kt+1 : St → R+ for all t), and initial capital K0. Similarly,

let C = {(C1,t, C2,t)}∞t=0 be a distribution plan.

A plan (C,K ′) satisfying these properties is a sequential plan and it is feasible if

Kt+1(st) +
2∑
i=1

Ci,t(s
t) ≤ f(Kt(s

t−1)) + (1− δ)Kt(s
t−1), (1)

for all t and all st. Feasibility means that part of the output is reinvested in the economy,

Kt+1(st)− (1− δ)Kt(s
t−1), and part is distributed for consumption, C1,t(s

t) + C2,t(s
t). Impor-

tantly, note that there is no external finance.7

Given a sequential plan (C,K ′), agent i’s utility at date t given the partial history st is

Ui,t(C,K
′‖st−1) =

∞∑
j=0

βj
∑

(st,...,st+j)

π(st, ..., st+j) si,t+j u(Ci,t+j(s
t−1, st, ..., st+j)).

As liquidity shock realizations are privately observed, any mechanism for allocating invest-

ment and consumption must be incentive compatible.8 A sequential plan (C,K ′) is incentive

compatible if no agent has incentives to misreport his liquidity shocks, so truth-telling is the

7It is important for our results that there is no external finance. See Appendix D.3.
8This restriction is without loss of generality since the Revelation Principle holds and it allows us to restrict

attention to mechanisms that rely on truthful reports of these shocks.
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best response; i.e. for each i,∑
s−i

π(s−i)
(
si u(Ci,t(s

t−1, si, s−i)) + β Ui,t+1(C,K ′‖(st−1, si, s−i))
)

(2)

≥
∑
s−i

π(s−i)
(
si u(Ci,t(s

t−1, s̃i, s−i)) + β Ui,t+1(C,K ′‖(st−1, s̃i, s−i))
)

for all t ≥ 0, all st−1 and all (si, s̃i).
9

To solve for the constrained efficient arrangement, we consider a fictitious planner who

chooses among plans that are incentive compatible and feasible. Let Ψ∗(k) be the utility

possibility correspondence defined as the levels of utility of the agents that can be attained by

a corresponding plan that is incentive compatible and feasible at initial capital k,

Ψ∗(k) ≡
{
w ∈ R2

+ : ∃ (C,K ′) satisfying (1)− (2)

and wi ≤ Ui(C,K
′) ∀ i, K0 = k

}
.

As Ψ∗ is a continuous, compact-valued, and convex correspondence, the set of constrained

efficient plans can be parameterized by Welfare weights (θ1, θ2) ∈ R2
+ (Espino, 2005). We say

that (C∗, K ′∗) is constrained efficient if it is the corresponding plan sustaining the levels of

lifetime utility that solves

h∗(k, θ) = max
w ∈ Ψ∗(k)

(θ1w1 + θ2w2) , (3)

for some (θ1, θ2) ∈ R2
+. That is, h∗(k, θ) captures the Pareto frontier of the utility possibility

correspondence Ψ∗ by solving for the highest level of weighted lifetime utility given weights

(θ1, θ2). Importantly, it can be shown that w ∈ Ψ∗(k) if and only if10

min
θ′∈∆

[
h∗(k, θ)−

2∑
i=1

θiwi

]
≥ 0.

Recursive formulation

It isx convenient to write this problem recursively. Our recursive representation of the problem

adapts the method developed by Spear and Srivastava (1987) and Abreu, Pearce, and Stac-

chetti (1990). We characterize the constrained efficient frontier by giving a Pareto weight to

9We restrict to temporary incentive compatibility. A more general concept of Bayesian implementation can
shown to be equivalent in this particular dynamic environment. See Espino (2005).

10See Lemma 4 and its corresponding remark in Appendix A.
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each agent.11 These weights, together with capital, become endogenous state variables that

summarize the history. In a nutshell, our approach can be interpreted as a combination of

Abreu, Pearce, and Stacchetti (1990) and Marcet and Marimon (1994)’s Lagrangean method.12

In Appendix A we provide an algorithm capable of finding the value function h∗ (and its

corresponding policy functions) and argue that, for all (k, θ) ∈ X ×∆, h∗ satisfies13

h∗(k, θ) = max
(c,w′,k′)

2∑
i=1

θi

{∑
s

π(s) [si u(ci(s)) + β w′i(s)]

}
, (4)

subject to

k′(s) +
2∑
i=1

ci(s) = f (k) + (1− δ)k (5)

∑
s−i

π(s−i) (siu(ci(si, s−i)) + β w′i(si, s−i)) (6)

≥
∑
s−i

π(s−i) (siu(ci(s̃i, s−i)) + β w′i(s̃i, s−i))

for all (si, s̃i) and

ci(s) ≥ 0, w′i(s) ≥ 0 for all s and all i, (7)

min
θ′(s)∈∆

[
h∗(k′(s), θ′(s))−

2∑
i=1

θ′i(s) w
′
i(s)

]
≥ 0 for all s. (8)

Note that the optimization problem takes as given (k, θ) to distribute output between cur-

rent consumption to the agents and investment, and assigns continuation utility levels. The

optimization problem defined in condition (8) characterizes the set of continuation utility levels

attainable at (k′, θ′).14 The values of θ′ that attain the minimum in (8) at (k, θ) for state s,

denoted by θ′(k, θ; s), are the next-period weights that are consistent with the entitlement of

continuation utilities.

Note that in this setup we implicitly have a promised keeping constraint as in the usual

alternative formulation. On the one hand, necessary and sufficient first order conditions of

11The idea of substituting utility levels with Pareto weights is borrowed from Lucas and Stokey (1984).
12As in Marcet and Marimon (1994), we sidestep the requirement that future utilities must lie in the utility

correspondence next period by mapping utility levels into Pareto weights. See also Mele (2014), Messner, Pavoni,
and Sleet (2012), and Beker and Espino (2013).

13Hereafter, we restrict the welfare weights to add up to 1; that is, ∆ ≡ {θ ∈ R2
+ : θ1 + θ2 = 1}. This

restriction is innocuous because solutions are homogeneous of degree 0 with respect to (θ1, θ2).
14The same condition was used for the same purpose by Lucas and Stokey (1984), equation (5.7), and more

recently by Beker and Espino (2011), equation (15).
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problem (8) imply that policy functions (c(k, θ; s), k′(k, θ; s), w′(k, θ; s), θ′(k, θ; s)) must satisfy

∂h∗(k′(k, θ; s), θ′(k, θ; s))

∂θi
= w′i(k, θ; s) (9)

On the other hand, the envelope theorem applied to (4) evaluated at (k′(k, θ; s), θ′(k, θ; s))

implies that these policy functions must also satisfy

∂h∗(k′(k, θ; s), θ′(k, θ; s))

∂θi
=
∑
s′

π(s′) [s′iu(ci(k
′(k, θ; s), θ′(k, θ; s); s′)) + βw′i(k

′(k, θ; s), θ′(k, θ; s); s′)] .

(10)

Coupled together, equations (9) and (10) imply the utility promised for tomorrow is kept;

i.e.

w′i(k, θ; s) =
∑
s′

π(s′) [s′iu(ci(k
′(k, θ; s), θ′(k, θ; s); s′)) + βw′i(k

′(k, θ; s), θ′(k, θ; s); s′)] . (11)

It is well-known that there is an issue regarding renegotiation-proofness in dynamic con-

tracts, even in simpler settings (see Wang, 2000). However, in our setting with investment, cap-

ital can be manipulated to make sure that constrained efficient plans are always renegotiation-

proof.15

While the representation above focused in the economy with Capital Accumulation Economy

(CAE), it can be simplified to represent the Endowment Economy (EE) as well. In that case,

the constraint (5) is replaced by
∑2

i=1 ci(s) = y where y is the endowment. We assume a

constant endowment y so the only state variable for the value function h is θ. We study how

private information has different implications for a CAE and an EE.

3 Insurance under Full Information

Consider the CAE with full information (i.e. liquidity shocks are perfectly observable). Since

θ1 = 1 − θ2 and the model is symmetric between both agents, hereafter we refer to agent 1’s

weight directly as θ. The proofs of the results in this section are provided in Appendix B.

Lemma 1 characterizes the main features of agents’ consumption and investment. First,

efficiency dictates that welfare weights are kept constant. This result is especially interesting

because it will contrast with the behavior of welfare weights under private information. To

grasp the intuition of this result, think about a fictitious planner who wants to distribute utility

15Details are available upon request. We thank an anonymous referee about the need to mention this property.
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across agents optimally. The valuations of delivering one more unit of utility to agents 1 and

2 are θ1 and θ2, respectively. On the other hand, the valuations of delivering one more unit of

continuation utility to agents 1 and 2 at s are βπ(s)θ1 and βπ(s)θ2, respectively. Consequently,

the relative valuation remains unchanged at θ1/θ2 and this implies that the normalized weights

must satisfy θ′(s) = θ. This reasoning makes evident the difference with the case under private

information. There, continuation utilities are additionally manipulated to provide incentives

and so their valuations can differ.

Lemma 1 also describes how consumption depends on welfare weights and liquidity needs

shocks. Part of the increase in an agent’s payout after reporting high liquidity needs is financed

by means of disinvestment; i.e., next period capital is smaller when an agent reports high

liquidity needs than when she reports low liquidity needs.

Lemma 1 (Full Information). Under full information:

1. Welfare weights do not change; i.e. θ′(k, θ; s) = θ for all s, all k and all θ.

2. If u(c) = c1−σ/(1 − σ), the optimal investment and distribution policy of consumption

satisfy:

(a) The fraction of total consumption that is paid to agent i is increasing in his liquidity

needs, decreasing in the other agent’s liquidity needs, and increasing in his weight.

(b) The level of investment is decreasing in the agents’ needs of liquidity; i.e.

k′(k, θ; sL, s2) > k′(k, θ; sH , s2),

k′(k, θ; s1, sL) > k′(k, θ; s1, sH).

4 Incentives to cheat and the role of capital accumula-

tion

This section studies insurance with privately observed liquidity shocks in two alternative setups:

EE and CAE. Appendix C contains all the proofs in this section.

4.1 Individual incentives to cheat

We show that in the EE the incentive constraint is binding for Pareto weights θ ∈ (0, 1). In

contrast, in the CAE, when one agent’s welfare weight is relatively large, her corresponding

incentive compatibility constraint becomes slack. Since incentives to cheat disappear when
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Pareto weights are big enough, we call this result “too big to cheat”. Next, we discuss the

intuition of the driving mechanism.

Proposition 1 (Too big to cheat). Incentives to cheat are different in the EE and CAE. In

particular:

1. In the EE, the incentive compatibility constraints of agents 1 and 2 are binding for all

θ ∈ (0, 1).

2. In the CAE, given a value of k, there exists some value of the agent 1’s welfare weight

θ(k) ∈ [0, 1) such that the agent 1’s incentive compatibility constraint does not bind for all

(k, θ) with θ ∈
[
θ(k), 1

]
. Similarly, the agent 2’s incentive compatibility constraint does

not bind for all (k, θ) with θ ∈
[
0, 1− θ(k)

]
.

In the EE, the full information plan violates the incentive compatibility constraints for

both agents for all θ ∈ (0, 1). To understand this result, consider the incentive compatibility

constraint under the full information allocation in the endowment economy. Continuation

utilities are independent of the reports about preference shocks, and therefore the incentive

compatibility constraint only depends on consumption. Consumption is strictly increasing in

the preference shock for all θ ∈ (0, 1). As a result, the incentive compatibility constraint is

always violated. At θ = 0 and θ = 1 the agent is indifferent between cheating or not because

future utility and consumption are independent of the report. In contrast, in the CAE the full

information allocation dictates that investment, and as a consequence, continuation utilities

depend on the reports. Hence, at θ = 0 and θ = 1, the agent would be strictly worse off by

cheating.16

The underlying intuition for the result of the CAE can be grasped as follows. Cheating

implies that the agent misrepresenting high liquidity needs will receive higher consumption. The

resources for that extra consumption are obtained from two sources: (i) decreasing consumption

of the other agent and (ii) reducing investment. Note that this higher consumption is not

necessarily beneficial for this agent. It would be beneficial if it is financed with a reduction in

the other agent’s consumption, but it may not be beneficial if it is financed with a reduction in

investment, because it implies that future output will be lower. The magnitude of the second

force depends (and is increasing) in the value of the Pareto weight which represents how much

of future output will be consumed by the cheater.

If one agent’s weight is equal to one, all the extra funds he receives after cheating are only

financed by disinvestment (the decline in investment described by Lemma (1)) because the

16Technically, this explains why a continuity argument can be used to show Proposition 1 in the production
economy but not in the endowment economy.
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consumption of the other agent is already zero. He fully internalizes the effect of the investment

distortion, because given that the Pareto weight is one, he will own all future output. Therefore,

when the agent’s Pareto weight is equal to one, he would be strictly worse off misrepresenting

his liquidity needs. Now, since small changes in the Pareto weight change consumption and

investment only slightly (by continuity), cheating will not be desirable even if the Pareto weight

were slightly smaller than 1.

Note that the mechanism described above is quite general. For instance, if the preference

shock takes finitely many values, the same logic would apply and the incentive compatibility

constraints will remain strictly slack at θ = 1 and the same result could be shown. Even

in the extreme case, in which there is a continuous state space for the liquidity need shock,

we argue that there are less incentives to misrepresent the shock once we allow for capital

accumulation. To see this, we imagine an agent is offered the full information plan and compare

the reported liquidity need shock both in the EE and in the CAE. First, in the EE, the agent

would always have incentive to report the highest liquidity shock as consumption is increasing

in the report, independently of his Pareto weight. In contrast, in the CAE, for θ = 1 the

same logic implies that the full information plan is actually incentive compatible because any

increment in consumption must be financed with disinvestment. As a consequence, for a Pareto

weight close to 1, by continuity of the allocation on the Pareto weight, the only misreport that

can be desirable is a marginal one, which is in clear contrast with the EE.

Although Proposition 1 demonstrates that at some point the incentives to cheat vanish

completely (the multiplier of the incentive compatibility constraint is zero), the numerical

solution of the model presented in Figure 1, which shows agent’s 1 incentive compatibility

constraint multipliers in the EE and the CAE, suggests a more general interpretation.17 In

the CAE, in contrast to the EE, there is a force created by the behavior of investment in the

full information allocation that helps provide incentives for truthful revelation, and this force

is increasing in the value of the agent’s Pareto weights.

Importantly, this result does not depend on the assumption that capital is used for produc-

tion. Under certain conditions, it also holds in a simpler case in which capital accumulation is

replaced by storage.18 In particular, we have also shown the result in Proposition 1 in a sim-

ple two-period model with storage in which only one agent faces preference shocks in the first

17For all figures we use numerical results derived with the following assumptions. The utility function is
c(1−σ)

1−σ , the profit function is f(K) = kα with 0 < α < 1, and the shocks are sL = 1 − ε and sH = 1 + ε. The
parameter σ = 0.5, as in other studies of private information such as those by Hopenhayn and Nicolini (1997)
and Pavoni (2007). The parameter α = 0.7 is in the range of estimations of Cooper and Ejarque (2003). We
set δ = 0.07 and β = 0.97 as is standard in the literature. We consider ε = 0.6 just for illustrative purposes.

18In a model with storage there is an additional constraint that storage cannot be negative. For the results
to hold, we need that that this additional constraint is not binding. Instead, with production this condition is
immediately satisfied as production function is satisfies the standard Inada conditions.
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Figure 1: Incentive Compatibility Constraint’s multipliers
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period of her life.19 The key mechanism providing insurance is that the amount of resources

saved in storage to be consumed in the second period are reduced if the agent reports a high

preference shock in the first period.

4.2 Too big to cheat region

In this section, we show that in the CAE there exist examples of parameter and Pareto weights

combinations for which the full information allocation is strictly incentive compatible: Both

incentive compatibility constraints are slack. This would happen if the intersection of the too

big to cheat zone for agent 1 and agent 2 is non empty. We label this intersection as the “too big

to cheat region”. As the economy is symmetric, this will be a symmetric ball around θ = 1/2,

and the existence and the radius of this ball is characterized by the preferences and technology

of the economy. Of course, this is impossible in the EE, since as Proposition 1 shows, the

incentive compatibility constraints are binding for all θ ∈ (0, 1).

The following proposition analyzes the role of one of the parameters that describes the

characteristics of the model: the size of the dispersion in the values of liquidity needs shocks.

In order to do that, we parameterize liquidity shocks so that sL = 1 − ε and sH = 1 + ε for

both agents.

Proposition 2 (Existence of “too big to cheat” region). There exists some ε∗ ∈ (0, 1) such

that for all ε ∈ (ε∗, 1) the full information plan is strictly incentive compatible at θ = 1/2 for

all k.

19Results available upon request.
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Proposition 2 states that both agents have no incentive to cheat with θ = 1/2 if the relative

value of the preference shocks is sufficiently large. To understand the result, consider the case

of ε = 1 which implies that consumption is not valued if the low preference shock is realized; i.e.

sL = 0. In this case, agents with the low value of the preference shock would be strictly worse

off misrepresenting their shock; they would obtain extra consumption today, when it is not

valued, at the expense of lower consumption tomorrow (because investment decreases), when

it is valued. The proposition shows that if ε is close to 1 and each agent weight is sufficiently

high, the same forces are present and there are no incentives to cheat. Thus, for θ = 1/2, there

exists an ε∗ < 1 such that for all ε ∈ (ε∗, 1) the full information plan is incentive compatible for

both agents.

While Proposition 2 uses the difference between high and low values of the shock, similar

forces are at work when other parameters change. For instance, while increasing ε helps to

provide incentives because the agent assigns a very low value for consumption today, increasing

β is similar because it increases the weight that agents assigns to the distortion on investment.

In the following section we show in a quantitative example that for a lower value of β the full

information plan is not strictly incentive compatible at θ = 0.5.

The existence of the too-big-to-cheat region, however, hinges on the assumption of the

coarseness of the preference shock. If the preference shock could take more values, for instance

{sL, sM , sH} with sM close to sH , the incentive constraint could still bind for sM even if sL were

sufficiently close to 0.

4.3 Welfare costs of private information

Figure 2 illustrates the welfare cost of private information in the CAE and EE.20 The left figure

of the first row shows the result of Proposition 2. For large values of ε the welfare costs of

private information around θ = 0.5 are equal to zero while for small values of ε the costs are

positive for all θ ∈ (0, 1).

The quantitative examples derive two main differences between CAE and EE. In the EE

we find that: (i) the maximum welfare gains are about 0.2 percent in terms of consumption

equivalent units21 and (ii) the maximum value of welfare gains occurs when the agents have

equal weights. In sharp contrast, in the production economy we find that (i) welfare gains are

20We compute, in consumption equivalent units, the cost of moving from private to full information. To facil-
itate the comparison in the examples below, the level of resources in the economy without capital accumulation
are set at the output produced with the mean of the steady-state level of capital in the economy with capital
accumulation.

21Note that this number is slightly more than 20 times higher than the gains from eliminating business cycles
estimated by Lucas (1987) and similar to those found by Krusell and Smith (1999) in an economy with large
heterogeneity.
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one order of magnitude smaller; and (ii) these gains are actually zero when both agents have

the same weight and ε is large enough. In general, the last result means that equal weights

minimize the cost of private information in a production economy.

Note that the extra welfare losses of private information on the EE as compared to the CAE

are not simply due to the fact that the planner has access to one more margin of adjustment.

In particular, consider the cases in which the too-big-to-cheat region exists around θ = 0.5.

Recall that the difference between welfare losses in the EE and the CAE are the largest for

θ = 0.5. At that point, the allocations under full and private information coincide in the CAE.

Thus, at that point, the planer does not “adjust” the extra margin (capital accumulation) to

provide incentives. Therefore, it is the inclusion of investment—not access to one more margin

of distortion—that drives this result. For regions in which the full and private information

allocation do not coincide in the CAE, both the investment force and the additional margin of

distortion are at work.22

The second and third rows of Figure 2 show the effects of other preference parameters on the

welfare costs of private information. The second row repeats the exercise for different values of

risk aversion. As risk aversion increases—higher σ—the welfare costs in the CAE economy also

increase for all θ ∈ (0, 1). Interestingly, the region in which the welfare costs are equal to zero

seems to be independent of σ. In the endowment economy, the welfare costs are non-monotone

in risk aversion. For θ sufficiently close to zero or one, higher risk aversion implies larger costs,

while for θ close to 0.5 the opposite is true.

The third row shows the effect of the discount factor, β. A version of the folk theorem holds

in this environment: It is harder to provide incentives when the discount factor diminishes.

As a result, the welfare costs of private information are larger for low values of the discount

factor, both in the CAE and in the EE. Importantly, in the CAE, the too-big-to-cheat region

disappears when β is sufficiently low.

Finally, we also investigated the effects of production parameters in the CAE on the welfare

costs of private information. For example, larger depreciation rates reduce the too-big-too-cheat

region and increase the costs of private information for all θ. In contrast, in the EE, the costs

of private information seem to be independent of the level of the endowment.

5 Capital accumulation and long-run dynamics

The previous section shows that having access to capital accumulation improves the degree of

bilateral insurance. We now investigate the implications on long-run dynamics.

22Section D.2 in the Appendix discusses how investment is distorted under private information to provide
incentives.

14



Figure 2: Welfare gains of moving from private to full information
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Note: Figures show the welfare gains of moving from private information to full information, mea-
sured in consumption equivalent units. The left column shows the CAE and the right column shows
the EE. The first panel solves for ε equal to 0.4 and 0.6. The second panel solves for σ equal to 0.5
and 0.6. The second panel solves for β equal to 0.95 and 0.75.
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5.1 Convergence when the too-big-to-cheat region exists

The following result characterizes the long-run implications of private information with capital

accumulation in this case.

Proposition 3. Suppose that the full information plan is strictly incentive compatible at θ =

1/2 for all k. Then, there exists θ∗ ∈ (0, 1/2) such that

1. If (kt, θt) ∈ [kmin(θt), kmax(θt)]× [θ∗, 1− θ∗] at some t, then the economy, (kt, θt), stay in a

region in which the constrained efficient plan and the full information plan coincide and

θt+n = θt for all n ≥ 0.

2. If (kt, θt) ∈ [kmin(θt), kmax(θt)]× [0, θ∗] at some t, the economy, (kt, θt), reach a region in

which the constrained efficient plan and the full information plan coincide with probability

1; i.e. θt → {0, [θ∗, 1− θ∗]} a.s.

3. If (kt, θt) ∈ [kmin(θt), kmax(θt)] × [1 − θ∗, 1] at some t, the economy, (kt, θt), reaches a

region in which the constrained efficient plan and the full information plan coincide with

probability 1; i.e. θt → {[θ∗, 1− θ∗], 1} a.s.

As long as the full information plan is strictly incentive compatible at θ = 1/2 for all k,

Proposition 3 states that in the long run private information becomes irrelevant and the Pareto

weights remain unchanged. This may happen because: (i) one of the agents’ Pareto weight is

equal to one, or (ii) both Pareto weights are approximately equal to 1/2. Notice that the too-

big-to-cheat region defined in Proposition 2 can be reached either immediately (as the initial

weights and the initial capital stock starts there) or in the long run (as the weights and the

capital stock converge as time and uncertainty unfold).23

The fact that in the long run private information does not matter resembles previous results.

As in Thomas and Worral (1990), the simplified argument is the following: imagine Pareto

weights converged and private information still matters. Then future Pareto weights must be

spread to provide incentives, contradicting the initial statement that Pareto weights converged.

What is new in our setup is that this may happen in a region in which both agents have positive

weights. As we mentioned before, this is possible due to the inclusion of capital accumulation.

Finally, we provide some numerical examples to highlight the implications of Proposition

3. We considered different initial Pareto weights and simulated 1,000 economies until the

weights converged. The left panel of Figure 3 considers the case in which the too-big-to-cheat

region exists. This economy can converge either to the too-big-to-cheat region (TBTC), or

23Note that Proposition 3 assumes that kt starts in the ergodic set for capital under full information,
[kmin(θt), kmax(θt)]. We performed numerical exercises with very small or very large kt and found that un-
der private information capital converges to this interval in about 65 periods.
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immiseration of agent 1 or 2 (IM1, and IM2, respectively). To understand the results, imagine

that the initial weight is draw from an uniform distribution in [0, 1]. The figure shows that,

ex-ante, the economy converges with roughly 50% probability to the TBTC region, with 25%

probability to IM1, and with 25% probability to IM2. Hence, although the threshold θ∗ is

close to 0.5 (in this case, θ∗ = 0.47), the long-run implications are very stark. Moreover, if the

initial draw of θ0 is centered around θ = 0.5 instead of uniformly distributed, the probability

of convergence to the TBTC region increases. Recall that this result is not present in an

endowment economy which converges to immiseration of one of the agents with probability

one.

If the full information plan is not strictly incentive compatible at θ = 1/2, then the TBTC

does not exist and the economy converges to immiseration of either agent 1 or 2 (right panel

of Figure 3). However, in the next section we show that capital accumulation is also important

in this case for the dynamics of Pareto weights.

Figure 3: Long-run convergence
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Note: We simulated N=1000 economies of length T = 1,000,000, and kept the last t=1,000 periods.
We defined too big to cheat (TBTC) as E[θ] ∈ [0.45, 0.55], immiseration of agent 1 (IM1) as (E[θ] ≤
0.1), and immiseration of agent 2 (IM2) as (E[θ] ≥ 0.9).

5.2 Dynamics when the too-big-to-cheat region does not exist

Proposition 3 hinges on the existence of a region in the space of capital and Pareto weights

such that both incentive compatibility constraints are not binding (Proposition 2 shows this

case exists for some configuration of the preference shock). This result is important because

it implies that the immiseration result, which has been widely studied in private information
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problems, does not hold when there is capital accumulation. More generally, when the condition

in Proposition 2 is not satisfied (for instance because the preference shock is less coarse) the

takeaway should be that due to the incentives provided by capital accumulation, the economy

will spend more time in the surroundings of equal weights than in an endowment economy.

To show this, we simulated both the production and the endowment economy 1,000 times for

100 periods starting at θ = 0.5 for the case in which ε < ε∗ and the full information plan is not

incentive compatible at θ = 0.5. Recall that under full information weights do not change, so θ

would be constant at 0.5 forever. Figure 4 shows the resulting distribution of θ over those 100

periods for both the endowment and the production economy under private information. The

production economy (solid blue line) spends more time close to θ = 0.5 than the endowment

economy (red dashed line). This result confirms that the main mechanism highlighted in this

paper—that capital accumulation mitigates the role of private information—is at work even

when the technical condition imposed in Proposition 2 is not satisfied.

Figure 4: Evolution of Pareto weights
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Note: We simulated 1000 economies for 100 periods starting at θ0 = 0.5 and look at the distribution of θ under

both the production and the endowment economy. We consider ε = 0.3 such that the too-big-too-cheat region

does not exist at θ = 0.5.

Additionally, we simulate 1000 times the CAE and the EE economies to compare the ex-

pected time to “almost immiseration” (defined as θ < 0.1 or θ > 0.9). The CAE converges 2.68

times slower than the EE to this threshold. This result highlights that the dynamics observed

in Figure 4 are not only present during the initial periods, but also in the long run.
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6 Conclusion

Previous studies showed that private information is important for determining the extent to

which agents can get together and pool idiosyncratic risk. The analysis in this paper suggests

that insurance capabilities improve as a consequence of the introduction of capital accumulation.

Under certain conditions, we show that: (i) when an agent’s Pareto weight is sufficiently large,

her incentives to cheat under the full information allocation disappear, (ii) the full information

allocation may be incentive compatible when both agents have equal Pareto weights, and (iii)

in the long run, either one of the agents is driven to immiseration, or both agents’ lifetime

utilities are approximately equal.

Throughout a series of extensions and generalizations, we have learned that there are two

key ingredients needed for Proposition 1 to hold. First, the economy must have a technology

to transfer resources across time. In the benchmark model, we assume capital accumulation

with decreasing returns to scale. The advantage is that we can solve the infinite horizon model

and challenge the celebrated immiseration result. In a supplemental note, we consider a model

with a linear storage technology and show that a result similar to Proposition 1 also holds in

that environment. The second ingredient is that marginal utilities of consumption are private

information. As is standard in the literature, e.g., Atkeson and Lucas (1992), we assume that

agents face privately observed liquidity needs. In a supplemental note, we show that a similar

result to Proposition 1 holds if agents have privately observed endowment shocks, as in Thomas

and Worral (1990). What matters is that the shocks affect the marginal utility of consumption.

When θ = 1, private and aggregate marginal costs of operating the saving technology coincide

and there are no incentives to cheat.

One possible application of our theory is to small-business partnerships given that we con-

sider a small number of owners, shared ownership, production possibilities, liquidity shocks,

and internal financing. Thus, we can derive the following predictions for the organization of

these businesses: equal shares of ownership facilitates the provision of incentives, ownership

shares change more frequently when firm ownership is unequally distributed, and the distri-

bution of ownership shares moves over time towards either equal distribution of ownership or

sole-proprietorship. We argue in Espino, Kowloski, and Sanchez (2016) that these findings can

be found in the data.

Our theory can also be applied to different settings. For instance, a partnership could be

reinterpreted as an economic union among several countries. Then, the size of the countries (in

terms of how much wealth they have relative to the union) would be important for determining

the extent to which misreporting must be prevented by the union’s structure and regulations.

In an economic union between a large and a small country, our results suggest that the small
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country would have incentives to misreport if the union regulations are not carefully designed.

Moreover, our theory predicts that adding more countries to the union—and thereby reducing

each member’s share—would exacerbate information problems.
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A Recursive formulation

In this Appendix we show how to write the problem recursively. Our analysis here generalizes to

I agents with privately observed shocks to liquidity needs since our alternative recursive approach

does not depend on our 2-agent assumption. Abusing our notation, we denote s ∈ {sL, sH}I and

(si, s−i) ∈ {sL, sH} × {sL, sH}I−1.

Let ∆I ≡ {θ ∈ RI+ :
∑I

i=1 θi = 1} and ‖h‖ = sup(k,θ)

{
| h(k, θ) |: θ ∈ ∆I

}
and define

F ≡ {h : X × RI+ → R+ : h is continuous and ‖h‖ <∞},

as the set of continuous and bounded functions mapping X × RI+ into R+, and denote

F ≡ {h ∈ F : h is HOD 1 and concave in k}.

as the subset of functions that are homogeneous of degree 1 and concave.

Given the metric induced by ‖.‖, observe that
(
F , ‖.‖

)
is a closed subset of the Banach space

(F, ‖.‖) and thus a Banach space itself. Define the operator T defined on F as follows

(Th) (k, θ) = sup
(c,w′,k′)

I∑
i=1

θi

{∑
s

π(s)
[
si u(ci(s)) + β w′i(s)

]}
, (12)

subject to

k′(s) +

I∑
i=1

ci(s) = f (k) + (1− δ)k (13)

∑
s−i

π(s−i)
(
siu(ci(si, s−i)) + β w′i(si, s−i)

)
(14)

≥
∑
s−i

π(s−i)
(
siu(ci(s̃i, s−i)) + β w′i(s̃i, s−i)

)
for all (si, s̃i) and

ci(s) ≥ 0, w′i(s) ≥ 0 for all s and all i, (15)

h(k′(s), θ′) ≥
I∑
i=1

θ′i(s) w
′
i(s) for all θ′and s. (16)

In what follows, we say that a sequential plan (C,K ′) is generated by the set of policy functions

(ĉi(k, θ; s), k̂
′(k, θ; s), θ̂′(k, θ; s)) solving (4)-(8) as

Ci(s
t) = ĉi(K(st−1), θ(st−1); st), (17)

θ(st−1, st) = θ̂′(K(st−1), θ(st−1); st),

K(st−1, st) = k̂′(K(st−1), θ(st−1); st),
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for all t and all st ∈ St, given θ0 and K0.

Now define

Ψ(k)(h) ≡
{
w ∈ RI

+ : ∃(c, k′, w′) such that (13)-(16) are satisfied

and wi =
∑
s

π(s)[siu(ci(s)) + βw′i(s)]
}
.

Given h ∈ F , let W(k)(h) denote the constraint correspondence defined by (13)-(16) at k ∈ X.

Any (c, w′, k′) ∈ W(k)(h) will be referred to as a feasible, incentive-compatible recursive plan with

respect to h. We say that h ∈ F is preserved under T if h(k, θ) ≤ (Th) (k, θ) for all (k, θ). Importantly,

notice that it is straightforward to check that

(Th) (k, θ) = sup
w∈Ψ(k)(h)

I∑
i=1

θiwi

The following result establishes that the correspondence Ψ(.)(h) is well behaved.24

Lemma 2. Ψ(.)(h) is a continuous compact-valued correspondence for all h ∈ F .

It follows that the sup in the operator T is attained. In the next lemma, we establish the convexity

of Ψ(k)(h), a property that is key to our approach.

Lemma 3. Ψ(k)(h) is convex for all k ∈ X and all h ∈ F .

Proof. Let w and w̃ ∈ Ψ(k)(h) as (c, w′, k′) , (c̃, w̃′, k̃′) ∈ W(k)(h) are the corresponding feasible,

incentive-compatible recursive plans with respect to h.

We need to show that wλ = λw+ (1−λ)w̃ ∈ Ψ(k)(h) for any λ ∈ [0, 1]. In order to do that, define

for each i and all s

u(cλi (s)) = λu(ci(s)) + (1− λ)u(c̃i(s)),

k′λ(s) = λk′(s) + (1− λ)k̃′(s))

w′λ(s) = λw′(s) + (1− λ)w̃′(s))

Notice that the strict concavity of u implies that cλi (s) ≤ λci(s) + (1− λ)c̃i(s) for all i, all s.

Step 1. Notice that by construction, it follows that

wλi = λw + (1− λ)w̃ =
∑
s

π(s)[siu(cλi (s)) + β w′λi (s)]

for all i.

24The proof is omitted as it follows by standard arguments. Details are available upon request.
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Step 2. Feasibility. As (c, w′, k′) and (c̃, w̃′, k̃′) are both feasible and cλi (s) ≤ λci(s)+(1−λ)c̃i(s)

for all i, all s as mentioned, it follows immediately that

k′λ(s) +

I∑
i=1

cλi (s) ≤ f (k) + (1− δ)k

for all s and so (cλ, w′λ, k′λ) is also feasible.

Step 3. Incentive Compatibility. As the liquidity shocks are multiplicative, it follows by the

linear construction that (cλ(s), w′λ(s), k′λ(s)) satisfies (14).

Step 4. Take any θ′ ∈ ∆I and notice that since h ∈ F is concave in k, it follows that

h(k′λ, θ′) ≥ λh(k′, θ′) + (1− λ)h(k̃′, θ′)

≥ λ
I∑
i=1

θ′i(s) w
′
i(s) + (1− λ)

I∑
i=1

θ′i(s) w̃
′
i(s) =

I∑
i=1

θ′i(s) w
′λ
i (s).

Since θ′ ∈ ∆I is arbitrary, condition (16) is satisfied. Therefore, we can conclude that (cλ, w′λ, k′λ) is

a feasible incentive-compatible recursive plan with respect to h.

The next result is useful to characterize convex sets and used to make our alternative approach

computationally simpler (see also (Lucas and Stokey, 1984)).

Lemma 4. For any h ∈ F , w ∈ Ψ(k)(h) if and only if w ≥ 0

Th(k, θ) ≥
I∑
i=1

θi wi for all θ ∈ ∆I . (18)

Proof. See Rockafellar (1970), Theorem 13.1.

Remark. For computational purposes, it is convenient to recall that condition (18) holds if and

only if

min
θ̃∈∆I

[
Th
(
K, θ̃

)
−

I∑
i=1

θ̃iwi

]
≥ 0.

Our method complements the APS approach (Abreu, Pearce, and Stacchetti (1990)) as it identifies

attainable levels of next-period utility by iterating directly on the utility possibility frontier without

requiring to know the utility possibility correspondence that describes the utility possibility set a priori.

Our alternative approach can be summarized as follows. Following the methods developed by Abreu,

Pearce, and Stacchetti (1990), one would need to construct an operator defined on correspondences

and iterate on that space. Taking advantage of the convexity of our problem, we instead iterate on

the (convex) frontier similar in a way resembling Marcet and Marimon (1994)’s Lagrangean method.

The next result below is similar in spirit to APS’s celebrated self-generation.
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Lemma 5 (Self-generating). If h ∈ F is preserved under T , then

(Th) (k, θ) ≤ h∗(k, θ)

for all (k, θ).

Proof. Now, take any arbitrary
(
ĉ0(s0), ŵ′0(s0), k̂′1(s0)

)
s0∈S

∈ W(k0)(h) and notice that this implies,

in particular, that
I∑
i=1

θ′i w
′
i,0(s0) ≤ h(k̂′1(s0), θ′) (19)

for all θ′ ∈ ∆I . On the other hand, as h is preserved under T , this last condition implies that given

k̂′1(s0)

h(k̂′1(s0), θ′) ≤ (Th)(k̂′1(s0), θ′) (20)

for all θ′ ∈ ∆I . Hence, as we couple conditions (19) and (20), we conclude that

θ′ŵ′0(s0) ≤ (Th)(k̂′1(s0), θ′)

for all θ′ ∈ ∆I and therefore ŵ′0(s0) ∈ Ψ(k′(s0))(h) as a direct implication of Lemma 4. Importantly,

this implies that there exists some
(
ĉ1(s0, s1), ŵ′1(s0, s1), k̂′2(s0, s1)

)
s1∈S
∈ W(k̂′1(s0))(h) such that

ŵ′0(s0) =
∑
s1

π(s1)
[
si u(ĉi,1(s0, s1)) + β ŵ′i,1(s0, s1)

]
for each s0 ∈ S.

As we repeat this strategy T times, we can conclude that for any arbitrary θ0 ∈ ∆I

I∑
i=1

θi,0

{∑
s0

π(s0)
[
si u(ĉi,0(s0)) + β ŵ′i,0(s0)

]}

=

I∑
i=1

θi,0

{∑
s0

π(s0)si u(ĉi,0(s0))

+β
∑
s0

π(s0)
∑
s1

π(s1)
[
si u(ĉi,1(s0, s1)) + β ŵ′i,1(s0, s1)

]}

=
I∑
i=1

θi,0 E

(
T∑
t=0

βt si,tu(ĉi,t)

)
+ βT+1

I∑
i=1

θi,0 E
(
ŵ′i,T+1

)
Condition (16) implies that

sup
I∑
i=1

θi,0 E
(
ŵ′i,T+1

)
≤ ‖h‖ ,
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and so, taking limits on both sides as T → ∞, it follows from the Dominated Convergence Theorem

that

I∑
i=1

θi,0

{∑
s0

π(s0)
[
si u(ĉi,0(s0)) + β ŵ′i,0(s0)

]}

≤
I∑
i=1

θi,0 E

( ∞∑
t=0

βt si,tu(ĉi,t)

)
(21)

as β ∈ (0, 1).

Consider the sequential plan (ĉ, k̂′) stemming from above. It is immediate that this plan is se-

quentially feasible by construction. We now argue that it is incentive compatible as well. To see this,

denote recursively Wi,t(s
t) = ŵ′i,t(s0, ..., st) and observe that, by construction,∣∣∣Ui,t(ĉ, k̂′; st)−Wi,t(s

t)
∣∣∣

= β

∣∣∣∣∣∣
∑
st+1

π(st+1)
(
Ui,t(ĉ, k̂

′; st, st+1)−Wi,t+1(st, st+1)
)∣∣∣∣∣∣

≤ βsup
st+1

∣∣∣Ui,t(ĉ, k̂′; st, st+1)−Wi,t+1(st, st+1)
∣∣∣

≤ βk sup
(st+1,...st+k)

∣∣∣Ui,t(ĉ, k̂′; st, st+1, ..., st+k)−Wi,t+k(s
t, st+1, ..., st+k)

∣∣∣ .
Observe that 0 ≤ Wi,t(s

t) ≤ ‖h‖ < ∞ for all i and all st while ĉ is uniformly bounded by con-

struction. Taking the lim sup as k →∞ for this last expression, we can conclude that Ui,t(ĉ, k̂
′)(st) =

Wi,t(s
t) for all i and all st and so sequential incentive compatibility follows immediately.

Since both
(
ĉ0(s0), ŵ′0(s0), k̂′1(s0)

)
s0
∈ W(k0)(h) and the corresponding sequential plan (ĉ, k̂) are

arbitrary, we take the sup on both sides of (21) to conclude that

Th(k, θ) = sup
(ĉ,ŵ′,k̂′)∈W(k0)(h)

I∑
i=1

θi,0

{∑
s0

π(s0)
[
si u(ĉi) + β ŵ′i

]}

≤ sup

I∑
i=1

θi E

( ∞∑
t=0

βt si,tu(ĉi,t)

)
= h∗(k, θ).

and this completes the proof.

We now are prepared to prove our two main results of this section.

Proposition 4. h∗ is a fixed point of T .
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Proof. Given (K, θ), take any w ∈ Ψ∗(K) for which (C,K ′) denotes the corresponding feasible

incentive-compatible plan. Observe that

I∑
i=1

θi Ui(C,K
′) =

I∑
i=1

θi
∑
s0∈S0

π(s0) [si,0 u(Ci(s0)) + β Ui,1(C,K ′‖(s0))]

Notice that (Ui,1(C,K ′‖(s0)))Ii=1 ∈ Ψ∗(K(s0)) for all s0. It follows by definition of h∗ (see (3))

that

h∗(K ′(s0), θ′) ≥
I∑
i=1

θ′i Ui,1(C,K ′‖(s0))

for all θ′ ∈ ∆I and all s0. Therefore, (Ci, Ui,1(C,K ′),K ′)Ii=1 ∈ W(K0)(h∗) and then

I∑
i=1

θi Ui(C,K
′) ≤ (Th∗) (K, θ)

Since weak inequalities are preserved in the limit, we can conclude that

h∗(K, θ) = sup
(C,K′)

I∑
i=1

θiUi(C,K
′) ≤ (Th∗) (K, θ),

for all (K, θ) (i.e. h∗ is preserved under T ). Thus, Lemma 5 implies that h∗(K, θ) = (Th∗) (K, θ) for

all (K, θ).

Importantly, it can be shown that the following version of the Principle of Optimality holds.25

Remark 1. A plan (C∗,K ′∗) is constrained efficient at K0 if and only if it is generated by the set of

policy functions

Ĉi(s
t) = ĉi(K̂(st−1), θ(st−1); st), (22)

θ(st−1, st) = θ̂′(K̂(st−1), θ(st−1); st),

K̂(st−1, st) = k̂′(K̂(st−1), θ(st−1); st),

Thus, the value of any plan that can be attained with an incentive-compatible, feasible sequential

plan (C,K ′) can also be attained by splitting output between total current payouts and investment

and then delivering current payouts and contingent future ownership shares to each agent.

We now provide an algorithm capable of finding the value function h∗ and its corresponding policy

functions.

Let T̂ be the operator solving the recursive problem for the full information case, discussed in

Section 3 (i.e. the incentive compatibility constraints (14) are ignored), and h∗∗ be the corresponding

25Proof available upon request.
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value function such that h∗∗ = T̂ h∗∗. Evidently, Tf ≤ T̂ f for all f ∈ F and h∗(k, θ) ≤ h∗∗(k, θ) for all

(k, θ).

Proposition 5. Let h0 = h∗∗ and denote hn = Tn (h∗∗) . Then, {hn} is a monotone decreasing

sequence of continuous functions and limn→∞ hn = h∗ uniformly.

Proof. It is a routine exercise to show that T is a monotone operator (i.e. if f ≥ g, then Tf ≥ Tg).

This property and Proposition 4 imply that h∗ = Th∗ ≤ Th∗∗ ≤ T̂ h∗∗ = h∗∗.

Step 1. Since hn = Tnh∗∗, then monotonicity implies that hn ≥ hn+1 ≥ h∗ for all n.

Step 2. T preserves concavity with respect to k. In addition, it can be easily checked thatW(k)(h)

is a continuous correspondence as f ∈ F , a standard application of the Theorem of the Maximum

makes possible to conclude that T : F → F ; i.e. hn is continuous for all n.

Step 3. As {hn} is a monotone decreasing sequence of uniformly bounded continuous functions,

we can conclude that there exists h∞ such that hn → h∞ ≥ h∗ pointwise.

Step 4. We claim that h∞ is preserved under T .

Given (k, θ), h∞(k, θ) ≤ hn(k, θ) ≤ hm(k, θ) for all n ≥ m. Fix m and notice that this implies that

there exists (cn, w′n, k′n) ∈ W(k)(hn) ∈ W(k)(hm) such that for all n

h∞(k, θ) ≤ hn+1(k, θ) =
I∑
i=1

θi
∑
s

π(s)
[
u(cni (s)) + β w′ni (s)

]
(23)

and

hm(k′n(s), θ′) ≥ hn(k′n(s), θ′) ≥
I∑
i=1

θ′i w
′n
i (s), for all s and all θ′. (24)

Since (cn, w′n, k′n) lies in a compact set, it has a convergent subsequence with limit point
(
ĉ, ŵ′, k̂′

)
.

Suppose for notational simplicity that the convergent subsequence is the sequence itself and notice

that both feasibility and incentive compatibility are preserved in the limit. Given m, since hm is

continuous, condition (24) implies that

lim
n→∞

hm(k′n(s), θ′) = hm(k̂′(s), θ′) ≥
I∑
i=1

θ′i ŵ
′
i(s), for all s and all θ′. (25)

In addition, as hm converges pointwise to h∞ it follows that

lim
m→∞

hm(k̂′(s), θ′) = h∞(k̂′(s), θ′) ≥
I∑
i=1

θ′i ŵ
′
i(s), for all s and all θ′.
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Therefore,
(
ĉ, ŵ′, k̂′

)
∈ W(k)(h∞) and condition (23) implies that in the limit

h∞(k, θ) ≤
I∑
i=1

θi
∑
s

π(s)
[
u(ĉi(s)) + β ŵ′i(s)

]
Finally, since the recursive allocation plan

(
ĉ, ŵ′, k̂′

)
∈ W(k)(h∞) is arbitrary, we can conclude

that for all (k, θ)

(Th∞) (k, θ) ≥
I∑
i=1

θi
∑
s

π(s)
[
u(ĉi(s)) + β ŵ′i(s)

]
≥ h∞(k, θ),

and thus h∞ is preserved under T by definition.

Step 5. This implies that h∞ ≤ h∗ due to Lemma 5 and therefore h∞ = h∗.

Step 6. Finally, as the limit function h∗ is continuous, Dini’s theorem implies that hn → h∞

uniformly.26

B Full Information - Proofs

This Appendix provides the proof of Lemma 1.

Proof of Lemma 1. 1. To show this result, we use the first order condition with respect to w′. To

save space, this conditions can be found in equations (39)-(42) below by setting the multipliers

of the incentive compatibility constraint, φ, equal to zero. As shown there, since θ2 = 1 − θ1,

we can derive equations 43-46, which, given that all φ’s are equal to zero, imply that θ′(s) = θ.

2. In addition:

(a) The necessary and sufficient first order conditions of the full information problem imply

c1(s) =
(θ1s1)1/σ

(θ1s1)1/σ + (θ2s2)1/σ

(
f(k) + (1− δ)k − k′(s

)
, (26)

c2(s) =
(θ2s2)1/σ

(θ1s1)1/σ + (θ2s2)1/σ

(
f(k) + (1− δ)k − k′(s

)
. (27)

Hence the payout of agent i is increasing in his liquidity needs, decreasing in the other

agent’s liquidity needs, and increasing in his ownership shares.

26Rudin, Walter R. (1976) Principles of Mathematical Analysis, Third Edition, McGraw-Hill. See Theorem
7.13 on page 150 for the monotone decreasing case.
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(b) Under Full information the problem reduces to choosing total payouts and investment in

a sole proprietorship with an “aggregate” investor with preferences

S(θ, s)
C1−σ

1− σ
,

where C = c1 + c2 denotes total payouts and

S(θ, s) =
(

(θ1s1)1/σ + (θ2s2)1/σ
)σ

is an “aggregate” liquidity shock. The problem reduces to

h∗∗ (k, θ) = max
c,k′

{∑
s

π (s)
[
S (θ, s)u (C (s)) + βh∗∗

(
k′ (s) , θ

)]}

subject to

k′ (s) + C (s) = f (k) + (1− δ) k .

The Euler equation is

S (θ, s)C (s)−σ = β
(
f ′
(
k′ (s)

)
+ 1− δ

)∑
s′

S
(
θ, s′

)
C
(
s′
)−σ

We can write the Euler equation as

S (θ, s) = β
(f ′ (k′ (s)) + 1− δ)

(f (k) + (1− δ) k − k′ (s))−σ
∑
s′

S
(
θ, s′

)
C
(
k′ (s) s′

)−σ
(28)

and note that the right hand side is decreasing in k′. Hence, as S (θ, s) increases, k′ (s)

decreases. Moreover, recall that θ2 = 1− θ1. Hence, the ratio of aggregate shocks is

S(θ1, sH , s2)

S(θ1, sL, s2)
=

(
(θ1sH)1/σ + ((1− θ1) s2)1/σ

)σ(
(θ1sL)1/σ + ((1− θ1) s2)1/σ

)σ (29)

is greater than one and increasing in θ1 which concludes the proof.
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C Private Information - Proofs

In this Appendix we prove Propositions 1, 2, and 3. First, we describe the problem and the system of

equations which characterizes the solution:

h∗ (k, θ) = max
c,w′,k′

 ∑
s1∈{L,H}

∑
s2∈{L,H}

2∑
i=1

θiπ (s1)π (s2)
[
siu (ci (s1, s2)) + βw′i (s1, s2)

] (30)

subject to

k′ (s1, s2) +

2∑
i=1

ci (s1, s2) = f (k) + (1− δ) k (31)

π (sL)
(
sLu (c1 (sL, sL)) + βw′1 (sL, sL)

)
+ π (sH)

(
sLu (c1 (sL, sH)) + βw′1 (sL, sH)

)
(32)

≥ π (sL)
(
sLu (c1 (sH , sL)) + βw′1 (sH , sL)

)
+ π (sH)

(
sLu (c1 (sH , sH)) + βw′1 (sH , sH)

)

π (sL)
(
sLu (c2 (sL, sL)) + βw′2 (sL, sL)

)
+ π (sH)

(
sLu (c2 (sH , sL)) + βw′2 (sH , sL)

)
(33)

≥ π (sL)
(
sLu (c2 (sL, sH)) + βw′2 (sL, sH)

)
+ π (sH)

(
sLu (c2 (sH , sH)) + βw′2 (sH , sH)

)
min
θ′∈∆

[
h
(
k′ (s1, s2) , θ′ (s1, s2)

)
−

2∑
i=1

θ′i (s1, s2)w′i (s1, s2)

]
≥ 0 (34)

Let λ (k, θ; s1, s2), φ1(k, θ), φ2(k, θ) and µ (k, θ; s1, s2) be the Lagrange multipliers of (31), (32), (33)

and (34) respectively. To simplify the exposition,we abuse notation when possible and eliminate the

dependence of policy functions on state variables (k, θ). We only explicitly incorporate this dependence

when it is important for the proof.

The necessary and sufficient first order conditions are as follows.

First, the first order conditions with respect to consumption for agent 1 and 2, respectively, imply

that for all s1 and s2

(θ1π (sL) sL + φ1sL)π (s2)u′ (c1 (sL, s2)) = λ (sL, s2) (35)

(θ1π (sH) sH − φ1sL)π (s2)u′ (c1 (sH , s2)) = λ (sH , s2) (36)

(θ2π (sL) sL + φ2sL)π (s1)u′ (c2 (s1, sL)) = λ (s1, sL) (37)

(θ2π (sH) sH − φ2sL)π (s1)u′ (c2 (s1, sH)) = λ (s1, sH) (38)

Second, the first order conditions with respect to continuation utilities for agent 1 and 2, respec-

tively, imply that for all s1 and s2

(θ1π (sL) + φ1)π (s2)β = µ (sL, s2) θ′1 (sL, s2) (39)

(θ1π (sH)− φ1)π (s2)β = µ (sH , s2) θ′1 (sH , s2) (40)
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(θ2π (sL) + φ2)π (s1)β = µ (s1, sL) θ
′
2 (s1, sL) (41)

(θ2π (sH)− φ2)π (s1)β = µ (s1, sH) θ
′
2 (s1, sH) (42)

Finally, the first order conditions with respect to capital for an interior solution and making use

of the corresponding envelope condition deliver the Euler equation

λ (s1, s2) = µ (s1, s2)
(
f ′
(
k′ (s1, s2)

)
+ (1− δ)

) ∑
(s′1,s

′
2)

λ
(
k′ (s1, s2) , θ′ (s1, s2) ; s′1, s

′
2

)
.

As θ2 = 1− θ1, we get from (39)-(42) that

θ
′
1 (sL, sL) =

(
θ1 + φ1

π(sL)

)
(

1 + φ1
π(sL) + φ2

π(sL)

) (43)

θ
′
1 (sL, sH) =

(
θ1 + φ1

π(sL)

)
(

1 + φ1
π(sL) −

φ2
π(sH)

) (44)

θ
′
1 (sH , sL) =

(
θ1 − φ1

π(sH)

)
(

1− φ1
π(sH) + φ2

π(sL)

) (45)

θ
′
1 (sH , sH) =

(
θ1 − φ1

π(sH)

)
(

1− φ1
π(sH) −

φ2
π(sH)

) (46)

C.1 Proof of Proposition 1

Proof of Proposition 1. Step 1: Endowment Economy (EE):

By contradiction, suppose that the multiplier of the incentive constraint of agent 1 is zero, i.e.

φ1 = 0, for some θ ∈ (0, 1). It follows by the law of motion of welfare weights (see equations (43)-(46))

that θ′ is independent of agent’s 1 shock, s1.27 This implies that w′1 does not depend on s1. To see

this, notice that necessary and sufficient first order conditions in problem (34) deliver w′1,

∂h

∂θ′1

(
θ′ (s1, s2)

)
= w′1 (s1, s2) (47)

Therefore, w′1 (sH , s2) = w′1 (sL, s2) for all s2.

Incentive compatibility for agent 1 reads∑
s2

π (s2)
(
sLu (c1 (sL, s2)) + βw′1 (sL, s2)

)
≥
∑
s2

π (s2)
(
sLu (c1 (sH , s2)) + βw′1 (sH , s2)

)
27Notice that in general φi(k, θ) for i = 1, 2; i.e. the Lagrange multipliers are functions of the state variables

but not of the preference shocks since the corresponding constraint is ex-ante.
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As continuation utilities are equivalent we get that∑
s2

π (s2) sL [u (c1 (sL, s2))− (c1 (sH , s2))] ≥ 0

Consequently, it must hold that

c1 (sL, s2) ≥ c1 (sH , s2) (48)

for some s2. Without loss of generality, suppose that (48) holds for s2 = sL.

As we evaluate FOC’s for consumption with φ1 = 0, we obtain

u′ (c1 (sL, sL))

u′ (y − c1 (sL, sL))
=

(
1− θ
θ

+
φ2

θπ (sL)

)
And

sH
sL

u′ (c1 (sH , sL))

u′ (y − c1 (sH , sL))
=

(
1− θ
θ

+
φ2

θπ (sL)

)
Since sH

sL
> 1, we have that

u′ (c1 (sH , sL))

u′ (y − c1 (sH , sL))
<

u′ (c1 (sL, sL))

u′ (y − c1 (sL, sL))

and this implies that c1 (sH , s2) > c1 (sL, s2) which leads to a contradiction to (48) evaluated at

s2 = sL. The same contradiction is obtained if it is evaluated at s2 = sH .

Step 2: Capital Accumulation Economy (CAE).

First, we show that the full information plan satisfies the agent 1’s incentive compatibility con-

straints at θ = 1.

Consider the recursive problem (30)-(34) for the case in which the incentive compatibility con-

straints are absent and let (c(k, θ; s), c2(k, θ; s), k′(k, θ; s), θ′(k, θ; s), w′1(k, θ; s), w′2(k, θ; s)) be the set

of continuous policy functions such that φi = 0 for i = 1, 2.

Notice that in this case Lemma 1 implies that θ′(k, θ; s) = θ for all s and all (k, θ).

Since θ′(k, θ; s) = θ = 1, then h(k′(s), 1) = w′1(s) for all (s, θ, k) and the value function reduces to

h(k, 1) = π(sL)
[
sLu(c1(k, 1; sL, s2)) + βw′1(k, 1; sL,s2)

]
+ π(sH)

[
sHu(c1(k, 1; sH , s2)) + βw′1(k, 1; sH , s2)

]
for all s2. Notice that as θ′(k, θ; s) = θ = 1, then s2 plays no allocative role. Therefore, consumption,

future promised utilities, and capital accumulation are independent of s2.
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Suppose that the corresponding full information plan is not incentive compatible; i.e.

sL u(c1(k, 1; sL, s2)) + β h(k′(k, 1; sL, s2), 1) < sL u(c1(k, 1); sH , s2) + β h(k′(k, 1; sH , s2), 1) (49)

while

c1(k, 1; sL, s2) + k′(k, 1; sL, s2) = f (k) + (1− δ)k

c1(k, 1; sH , s2) + k′(k, 1; sH , s2) = f (k) + (1− δ)k

This implies that (c1(k, 1; sH , s2), k′(k, 1; sH , s2)) is feasible at s1 = sL and

w′1(k, 1; sH , s2) = h(k′(k, 1; sH , s2)).

This contradicts that (c1(k, 1; sL, s2), k′(k, 1; sL, s2), w′1(k, 1; sL, s2)) is the unique solution at (k, 1).

Now, suppose that equation (49) holds with equality. We know that (c1(k, 1; sH , s2), k′(k, 1; sH , s2))

is feasible. Moreover, by Lemma 1 (c1(k, 1; sH , s2), k′(k, 1; sH , s2)) 6= (c1(k, 1; sL, s2), k′(k, 1; sL, s2)).

Hence, we find another feasible allocation that delivers the same utility which violates the uniqueness

of the maximum. Hence, at θ = 1 the agent 1’s incentive compatibility constraint must hold with strict

inequality. This implies that there exists some θ(k) < 1 such that the agent 1’s incentive compatibility

constraint does not bind for θ ∈ [θ(k), 1].

It follows by symmetry that the agent 2’s incentive compatibility constraint does not bind for all

(θ, k) with (1− θ) ∈
[
0, 1− θ(k)

]
.

C.2 Proof of Proposition 2

Proof of Proposition 2. Consider the solution to the full information problem evaluated at θ = 1/2

and let sL = 1− ε and sH = 1 + ε. Given ε, consider the incentive compatibility constraint of agent 1

that needs to be satisfied to complete the proof

∑
s2
π(s2) ((1− ε)u(c1(k, 1/2)(1− ε, s2)) + β w′1(k, 1/2)(1− ε, s2)) (50)

≥
∑

s2
π(s2) ((1− ε)u(c1(k, 1/2)(1 + ε, s2)) + β w′1(k, 1/2)(1 + ε, s2)) .

As we consider the full information plan, Lemma 1 implies that θ′(k, 1/2; s1, s2) = 1/2 for all (s1, s2)

and all k. This implies that w′1(k, 1/2; s1, s2) = w′2(k, 1/2; s1, s2) for all (s1, s2) and all k. Hence

h(k′(k, 1/2; s1, s2), 1/2) = w′1(k, 1/2; s1, s2). (51)

As h is strictly increasing in k and investment is decreasing in the liquidity shocks (Lemma 1), it

follows by (51) that w′1(1− ε, s2) > w′1(1 + ε, s2) for all s2. By the Theorem of the Maximum, policy

functions can be parameterized continuously with respect to ε. For each k, since (50) holds with strict

inequality as ε goes to 1, we can conclude that there exists some ε∗(k) ∈ (0, 1) such that the full
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information plan is strictly incentive compatible for agent 1 for all ε ∈ (ε∗(k), 1) at k.

Finally, standard arguments prove that ε∗(k) varies continuously

ε∗ ≡ max {ε∗(k) : k ∈ [kmin(1/2), kmax(1/2)]} ∈ (0, 1)

and ε∗ is well-defined. Therefore, the full information plan is strictly incentive compatible for agent 1

for all ε ∈ (ε∗, 1) for all k.

It follows by symmetry it is also strictly incentive compatible for agent 2.

C.3 Proof of Proposition 3

To prove Proposition 3, the following result is key. Let {θt}∞t=0 be the stochastic process for ownership

shares generated by the set of policy functions as in (22). That is, θt : S∞ → [0, 1], where θt(s
∞)

denotes a particular realization at date t.

Lemma 6. Suppose that the full information plan is strictly incentive compatible at θ = 1/2 for all k.

Suppose that θ0 ∈ [0, 1/2]. The ratio of ownership shares satisfies the following properties:

1. It is a nonnegative martingale; i.e., for all t and all st,

E

[
θt+1

(1− θt+1)
‖ st
]

=
θt(s

∞)

(1− θt(s∞))
∈ [0, 1] s∞ − a.s.

2. There exists a random variable θ̂ on (S∞,B(S∞)). such that

θt(s
∞)

(1− θt(s∞))
→ θ̂(s∞)(

1− θ̂(s∞)
) s∞ − a.s.

Proof of Lemma 6. Consider first the case in which θ ∈ [0, 1/2]. As the full information plan is strictly

incentive compatible at θ = 1/2 for all k, conditions (39)-(42) for both agents and the fact that φ2 = 0

for θ ≤ 1/2 imply that28

θ′(k, θ, 1− θ; sL, s2)

(1− θ′(k, θ, 1− θ; sL, s2))
=
θ + φ1(k, θ, 1− θ)/π(sL)

(1− θ)
=

θ

(1− θ)
+
φ1(k, θ, 1− θ)
(1− θ) π(sL)

,

θ′(k, θ, 1− θ; sH , s2)

(1− θ′(k, θ, 1− θ; sH , s2))
=
θ − φ1(k, θ, 1− θ)/π(sH)

(1− θ)
=

θ

(1− θ)
− φ1(k, θ, 1− θ)

(1− θ) π(sH)
,

28In the paper, the state variables were denoted by (k, θ). Here we abuse notation and make the state
(k, θ1, θ2).
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for all s2. This implies that

E

[
θ′(k, θ, 1− θ; s1, s2)

(1− θ′(k, θ, 1− θ; s1, s2))

]
=

θ

(1− θ)
. (52)

We argue now that this expectation (52) is bounded by 1.

Note first that for all θ ∈ [θ∗, 1/2] no incentive compatibility constraint binds and so

θ′(k, θ, 1− θ; s1, s2)

(1− θ′(k, θ, 1− θ; s1, s2))
=

θ

(1− θ)
≤ 1 (53)

for all k, all (s1, s2).

Note that θ′(k,θ,1−θ;s1,s2)
(1−θ′(k,θ,1−θ;s1,s2)) is homogeneous of degree 0 with respect to (θ, 1− θ). In addition, it

is an standard exercise to show that
θ′
(
k, θ

(1−θ) ,1;s1,s2
)

(
1−θ′

(
k, θ

(1−θ) ,1;s1,s2
)) is increasing in θ

(1−θ) . This implies that for

all θ ≤ θ∗

0 ≤ θ′ (k, θ, 1− θ; s)
(1− θ′ (k, θ, 1− θ; s))

≤
θ′
(
k, θ

(1−θ) , 1; s
)

(
1− θ′

(
k, θ

(1−θ) , 1; s
)) ≤ θ′

(
k, θ∗

(1−θ∗) , 1; s
)

(
1− θ′

(
k, θ∗

(1−θ∗) , 1; s
)) =

θ∗

(1− θ∗)
≤ 1.

(54)

for all k and all s.

Conditions (53) and (54) imply that θt(s∞)
(1−θt(s∞)) ∈ [0, 1] as θ0 ∈ [0, 1/2] and (52) reads

E

[
θt+1

(1− θt+1)
‖ st
]

=
θt(s

∞)

(1− θt(s∞))
s∞ − a.s.

Hence, { θt(s∞)
(1−θt(s∞))}

∞
t=0 follows a bounded martingale and so it follows by the martingale convergence

theorem that
θt(s

∞)

(1− θt(s∞))
→ θ̂(s∞)(

1− θ̂(s∞)
) s∞ − a.s.

for some random variable θ̂ on (S∞,B(S∞)).

Proof of Proposition 3. Suppose that the full information plan is strictly incentive compatible at θ =

1/2 for all k. Using the same arguments developed in the proof of Proposition 1, it follows by

continuity of the full information policy functions that there exists θ∗ ∈ (0, 1/2) such that if (θ, k) ∈
[θ∗, 1− θ∗]× [kmin(θ), kmax(θ)], both agents’ incentive compatibility constraints do not bind.

1. Suppose that (θt, kt) ∈ [θ∗, 1 − θ∗] × [kmin(θt), kmax(θt)] at some t. It follows by definition

of θ∗ that no agent incentive compatibility constraint binds in this case. Consequently, the private

information plan and the full information plan coincide and that implies by Lemma 1 that θ′(s)(θ, k) =

θ for all (s, θ, k) and k′ ∈ [kmin(θ), kmax(θ)] = [kmin(θ′), kmax(θ′)]. and so θt+n = θt for all n ≥ 0.

2. Suppose that (θt, kt) ∈ [0, θ∗) × [kmin(θt), kmax(θt)] at some t. Notice that, by definition of θ∗,

the agent 2’s incentive compatibility constraint does not bind. It follows by Lemma 6 that the ratio
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of ownership shares is a non-negative martingale.

Using the notation of Lemma 6, take any arbitrary s∞ ∈ Ω = {s∞ ∈ S∞ : θt(s
∞) → θ̂(s∞) ∈

[0, 1/2]}.
If θ̂(s∞) = 0 , then the limiting plan reaches a full information plan as it is a sole-proprietorship.

If θ̂(s∞) ∈ [θ∗, 1/2], it follows by part 1 above that the limiting plan coincides with a full information

plan as no incentive compatibility constraint binds.

We need to show that θ̂(s∞) /∈ (0, θ∗); i.e., the limiting plan can converge to a plan where some

ICC is binding only for zero-probability sequences.

Step 2.1. θ̂(s∞) < θ(k) ≤ θ∗ for all k.

It follows by definition that agent 1’s incentive compatibility constraint binds for all k. Suppose

that the state (sH , sL) occurs infinitely often and consider an infinite subsequence {(s1,tn , s2,tn)}∞n=0 in

which (s1,tn , s2,tn) = (sH , sL) for all n. Since {ktn}∞n=0 is a sequence in a compact set, it must have a

convergent subsequence with limit k̂(s∞) ∈
[
kmin(θ̂(s∞)), kmax(θ̂(s∞))

]
. To simplify notation, suppose

that it is the sequence {ktn}∞n=0 itself. Since θtn+1 = θ′(θtn , ktn ; sH , sL), it follows by continuity that

taking the limit gives

θ̂(s∞) = θ′(θ̂(s∞), k̂(s∞); sH , sL);

i.e. the the agent 1’s incentive compatibility constraint does not bind. But this contradicts that

θ̂(s∞) /∈ (0, θ∗) and consequently, as in Thomas and Worral (1990), {θt}∞t=0 can converge to some

number in the interval (0, θ∗) only for sequences where (sH , sL) occurs only finitely often. Those

events occur with zero probability.

Step 2.2: θ̂(s∞) < θ(k) ≤ θ∗ for some k ∈ (kmin(θ̂(s∞)), kmax(θ̂(s∞))).

Let k̂(s∞) be defined such that θ̂(s∞) = θ(k̂(s∞)) . Hence k̂(s∞) ∈ (kmin(θ̂(s∞)), kmax(θ̂(s∞))).

As long as θ̂(s∞) ≥ θ(kt(s
∞)), then it follows that θ′

(
θ̂(s∞), kt(s

∞)
)

(s1,t, s2,t) = θ̂(s∞) for all

(s1,t, s2,t) (i.e. no incentive compatibility constraint binds). Since s∞ belongs to a set with positive

probability and under the assumption that θ̂(s∞) < θ(k) for some k ∈ (kmin(θ̂(s∞)), kmax(θ̂(s∞))),

there exists some finite T such that θ̂(s∞) < θ(kT (s∞)). But then the full information plan does not

satisfy the agent 1’s incentive compatibility constraint at (θ̂(s∞), kT (s∞)) and so the argument follows

as in Step 2.1.

3. Notice that symmetry implies that

c1(k, θ, 1− θ; s) = c2(k, 1− θ, θ; s),

k′(k, θ, 1− θ)(s) = k′(k, 1− θ, θ; s)

for all s, for all k and for all θ ∈ [0, 1].

Therefore, the analysis for the case in which (θt, kt) ∈ [1− θ∗, 1]× [kmin(θt), kmax(θt)] at some t, is

analogous to 2 above.
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D Additional results

In this section we discuss the dynamics in the CAE under Private Information and the role played by

internal financing and symmetry across agents.

D.1 Dynamics in the CAE under Private Information

When the Pareto weight is smaller than the threshold described in Proposition 1, the constrained

efficient allocation changes with respect to the full information allocation to provide incentives for

truthful revelation. In particular, it changes in three dimensions: consumption, continuation weights,

and investment. The distortions in consumption are standard in the literature; i.e., the constraint

efficient allocation provides less consumption insurance in order to provide incentives. We now study

how continuation weights and investment are distorted in the constrained efficient allocation.

Continuation weights are manipulated to provide incentives for truthful revelation of the shock.

Lemma 7 characterizes how future values of Pareto weights under private information depend on the

reports. In general, to provide incentives to report low preference shocks, the constraint efficient

allocation punishes the report of a high preference shock by assigning a lower future weight than for

reports of low preference shocks. When agent 1’s incentive compatibility constraint does not bind,

there is no need to provide incentives for agent 1, and as a consequence future weights are independent

of his report. But weights could still depend (and, in general, will) on the other agent’s report. By

symmetry, if agent 2 reports a high shock, his future weight will be lower than if she reports a low

shock. Finally, note that when both incentive compatibility constraints are slack and there is no need

to provide incentives, future weights are equal to current weights and independent of reports about

preference shocks.29

Lemma 7 (Dynamics of weights). Agent’s 1 Pareto weight evolves as follows:

1. θ′1 (k, θ; sL, s2) ≥ θ′1 (k, θ; sH , s2) for s2 ∈ {sL, sH}.

2. Moreover, if the incentive compatibility constraint of agent 1 does not bind, then

θ′1 (k, θ; sL, s2) = θ′1 (k, θ; sH , s2) for s2 ∈ {sL, sH}.

3. Moreover, if no incentive compatibility constraint bind, then θ′1 (k, θ; s1, s2) = θ

for (s1, s2) ∈ {sL, sH} × {sL, sH}.

Proof of Lemma 7. Note that:

1. Equations (43)-(46) imply that if φ1 = φ2 = 0, then θ′(k, θ, s1, s2) = θ for (s1, s2) ∈ {sL, sH} ×
{sL, sH}.

29There is a subtle difference here between future utility and future Pareto weights. Imagine the case in
which both incentives constraints are slack. As we mentioned, in that case the future Pareto weights will
be independent of the report. However, promised utilities will not be independent of the report, as capital
accumulation does depend on the report even in the full information allocation.
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2. Equations (43)-(46) imply that

θ
′
1 (sL, sL)− θ′1 (sH , sL) =

(
φ1

π (sH)π (sL)

) (1− θ) + φ2
π(sL)(

1 + φ1
π(sL) + φ2

π(sL)

)(
1− φ1

π(sH) + φ2
π(sL)

) (55)

θ
′
1 (sL, sH)− θ′1 (sH , sH) =

φ1

π (sH)

(1−θ)
π(sL) − 2 φ2

π(sH)(
1 + φ1

π(sL) −
φ2

π(sH)

)(
1− φ1

π(sH) −
φ2

π(sH)

) (56)

Hence, if φ1 = 0, then θ′(k, θ, sL, s2) = θ′(k, θ, sH , s2) for all s2 ∈ {sL, sH}.

3. Note that if s2 = sL, then (55) implies that θ′(k, θ, sL, sL) ≥ θ′(k, θ, sH , sL).

4. If s2 = sH , then (44) and (46) implies that θ′(k,θ,sL,sH)
θ′(k,θ,sH ,sH) ≥ 1 if φ2 ≤ (1 − θ)π(sH) and this

condition is satisfied due to (42).

D.2 Investment distortions

Recall that there are two sources to finance the extra consumption that an agent receives after reporting

high liquidity needs—namely, redistribution and disinvestment. Consider the increment of agent 1’s

consumption as he reports high liquidity needs compared with the case in which he reports low needs.

His consumption is still conditional on agent 2’s report, s2. Define the share of this increment that is

financed by means of disinvestment as

DInv(k, θ, s2) =
k′(k, θ; sL, s2)− k′(k, θ; sH , s2)

c1(k, θ; sH , s2)− c1(k, θ; sL, s2)
; (57)

that is, the fraction of the higher consumption financed by investing less. Figure 5 precisely shows how

this additional margin (disinvestment) is distorted under private information to provide incentives. It

displays the disinvestment share for private information relative to that of full information (i.e., the

ratio of equation (57) in private information to full information). Note that this ratio is above one

for low values of θ, when agent 1’s incentive constraint is binding. To understand this, recall that the

reduction in investment following a report of a high preference shock is the cost of cheating. Thus, to

prevent cheating, it is natural that the optimal contract prescribes more disinvestment.
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Figure 5: Investment distortions under private information
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D.3 External Financing

To study the role of external financing, we consider an extreme case in which the agents have perfect

access to capital market. To operationalize this, we contemplate an environment similar to Marcet

and Marimon (1992), in which agent 2 is risk neutral, faces no shocks, and has deep pockets.30

In this setup, for all θ ∈ (0, 1), the first-order condition that characterizes optimal investment of

the private information plan implies

1 = β
(
f ′(k∗) + (1− δ)

)
.

This finding is analogous to the result in Marcet and Marimon (1992), who find that private information

does not distort optimal investment. This result is a direct consequence of evaluating the investment

decision with the intertemporal marginal rate of substitution of the risk-neutral agent.

Note that the capital stock in this setup will jump directly from k0 to k∗ and remain constant

forever (in particular, the reports of the agent with private information do not change investment).

Therefore, under full information, future utility is independent of the reports, and as we explained in

the case of the endowment economy, this implies that the full information plan violates the incentive

compatibility constraints for all θ ∈ (0, 1).

D.4 Symmetry

Although throughout the paper we assume that agents are symmetric (the agents are ex-ante identical),

our theory is certainly more general. This assumption is important for the result that the too-big-to-

30The assumption that agent 2 does not face shocks is made only for simplicity.
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cheat region is around 50-50. If agents were asymmetric we would find two thresholds, θ1 and θ2, such

that this region would be [θ1, θ2]. Note that if the asymmetry is sufficiently large this region might

not include θ = 1/2. For instance, if only agent 1 faces preference shocks, then the too-big-to-cheat

region is [θ1, 1].
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