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Abstract

The Malthusian theory of evolution disregards a pervasive fact about human
societies: they expand through conflict. When this is taken account of the long-run
favors not a large population at the level of subsistence, nor yet institutions that
maximize welfare or per capita output, but rather institutions that maximize free
resources. These free resources are the output available to society after deducting
the payments necessary for subsistence and for the incentives needed to induce pro-
duction, and the other claims to production such as transfer payments and resources
absorbed by elites. We develop the evolutionary underpinnings of this model, and
examine the implications of free resource maximization for the evolution of soci-
eties in several applications. Since free resources are increasing both in per capita
income and population, evolution will favor large rich societies. We will show how
technological improvement is likely to increase per capita output as well as increase
population, and how economically inefficient institutions such as bureaucracy arise.
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1. Introduction

no possible form of society [can| prevent the almost constant action of
misery upon a great part of mankind

There are some men, even in the highest rank, who are prevented from
marrying by the idea of the expenses that they must retrench

Malthus |[51]

The overall goal of this paper is to establish a theoretical setting of interacting soci-
eties in which it is conflict that determines long run success or failure. We identify
assumptions under which “the strongest society wins” in the long-run, and examine
the limitations and subtle implications of these assumptions. What will matter is
willingness to expand and total resources which can be devoted to expansion - hence
size matters. We attempt to build the theoretical setting in a way that can easily be
applied to study practical problems of particular societies both contemporary and
historical in order to understand which institutions are likely to be persistent. To
illustrate this we examine several simple applications.

A key idea of the paper is that conflict resolution depends not only on the ability
of players to influence their neighbors, but also on their desire to do so. Our main
conclusion that with a single dimensional measure of strength the strongest society
will be observed most of the time over the long run is rather intuitive. However,
as those familiar with the evolutionary literature will appreciate, to actually estab-
lish such a result in a clean form is not trivial. Moreover, not all implications of
our assumptions are so obvious as the fact that the strongest society wins. Indeed,
strictly speaking, the strongest society does not win. Rather it is the strongest in-
centive compatible arrangement that matters - non-Nash equilibria stand no chance
in the long run, no matter how strong they might be. Second, it is not the strongest
Nash equilibrium that wins. Societies can differ in their attitudes towards influ-
encing neighbors. Societies, no matter how strong, that do not attempt to expand
aggressively also will not survive in the long run. Rather it is the strongest incentive
compatible and expansionary society that wins. Another point that is subtle is that
expansionary attitudes are not important from the perspective of imposing partic-
ular institutions on neighbors - in fact the actual work of disrupting societies in the
theory as well as in reality are by barbarian hordes - aggressive, powerful groups that
however do not have especially durable institutions. Alexander the Great comes to

mind in this context. Rather the importance of an aggressive expansionary posture



is that when invaders achieve some success by conquering land the outward look-
ing society aggressively attempt to recover the lost land, thus preventing gradual
“whittling away” of territory.

The other key notion of the paper is the scalar measure of the ability of a
society to disrupt neighbors or avoid disruption. We refer to this as “free resources”
meaning resources that are not being used for purposes that make them unavailable
for attack or defense. The idea is best illustrated through a simple example. We are
all familiar with the caricature of the Malthusian theory of population: population
grows until it is checked by disease and starvation. In the long-run we are all at
the boundary of subsistence, on the margin between life and death. And while
we may seem to have escaped for a time, perhaps ultimately the rapidly growing
developing countries will overwhelm the gradually shrinking rich developed world
and sink us all back into misery. Malthus was more subtle in his thinking than
this caricature: while he wrote of positive checks on population such as disease and
starvation, he also wrote of preventative checks such as delayed marriage. Now let
us take into account that societies do interact, and imagine two societies side by side.
One is a society of unchecked breeders, of subsistence farmers living on the edge of
starvation, their population limited only by the lack of any additional food to feed
extra hungry mouths. Next door is a society with high property requirements for
marriage and strong penalties for out-of-wedlock birth - a social arrangement quite
common in history. This non-Malthusian society naturally has output well in excess
of subsistence. Both social arrangements are is incentive compatible. Who will
dominate in the long-run? What happens when a disciplined and rich society turns
its covetous eye towards the land of their more numerous but poorer neighbors?
How indeed are the wretched poor - for whom to take even an hour away from
toil in the fields is to starve - to be able to defend themselves from well-fed and
well-armed intruders? The question answers itself. In this view free resources are
the output available to society after the payments necessary for subsistence and for
the incentives needed to induce production are made and after other claims such as
transfer payments and resources absorbed by elites are paid.

We explore the consequences of free resource maximization in a series of ex-
amples. In the Malthusian model the theory gives a positive theory of population
size: as long as there are incentive compatible institutions that control population
growth, the equilibrium population is the one that maximizes total free resources.

This is inconsistent with growing so large as to reach subsistence, as such a society



generates no free resources. It is equally inconsistent with maximizing per capita
output, since this requires a very tiny society that generates many free resources
per person, but very few in total.® Rather the long-run population is at an inter-
mediate level, greater than that which maximizes per capita income, but less than
subsistence.

We then examine the impact of technological change in a population setting and
uncover very non-Malthusian results. Malthus predicts that the benefits of tech-
nological change will in the long-run be dissipated entirely in increased population
with no increase in per capita output, which remains at subsistence. When there
is relatively strong diminishing returns on plots of land, maximization of free re-
sources implies that improved technology results primarily in increased per capita
output. However, depending on the underlying returns to population size, techno-
logical change can also result in diminished per capita output in some parameter
range. The Malthusian case of per capita output independent of technology will
only occur as a non-generic accident. For simple and plausible cases, continued
technological improvement first lowers then raises per capita output. This theory is
very much more in accord with the evidence than Malthusian theory.*

Maximization of free resources leads more broadly to a positive theory of the
State: it has implications for institutions other than those that govern population
size. It does not imply, as does, for example, the theory of Ely, economic efficiency.’
Ely [34] shows that if institutions spread through voluntary migration people will
move to the more efficient locations and that in the long run this favors efficient
institutions over inefficient ones. But we do not believe that historically people have
generally moved from one location to another through a kind of voluntary immi-
gration into the arms of welcoming neighbors. Rather people and institutions have
more often spread through invasion - most often in the form of physical conquest,

but also through means such as proselytizers and missionaries, or just exploration

3Maximizing free resources is clearly not the same as maximizing per capita output. Anticipating
some notation, if total output is a function Y (z) of population size z and B is subsistence level of
per capita output, free resources in a simple population model are Y (z) — zB = z[Y (z)/z — B].

4This theory of population size of a given geographical extent should be compared to the theory
of Alesina and Spolaore [6] who examine the optimal geographical extent of a nation.

5Ely uses a model similar to the one used here, but similar results using more biologically oriented
models have been around for some time. For example Aoki [1] uses a migration model to study
efficiency, while more recently Rogers, Deshpande and Feldman [57] use a migration model to show
how unequal resources can lead to long-run inequality.



of new territory. In a setting of moral hazard, we show how maximization of free
resources can indeed lead to inefficiently low levels of output (Section 6). We also
use the example to explore in greater detail how individual choices can result in free
resources or not.

Our final example examines a simple model of a bureaucratic State in a setting of
hidden endowments. (Section 7) Here bureaucrats serve as specialists in converting
resources that individuals might prefer to consume into free resources. We find
that when bureaucrats are relatively ineffective free resource maximization leads
to a non-bureaucratic and efficient state. As bureaucrats become more effective
their number jumps up, and then with further increases in effectiveness it declines.
Hence a free resource maximizing highly ineffective or effective bureaucracy leads to
relative efficiency, while intermediate degrees of bureaucracy effectiveness lead to a
higher degree of inefficiency.

The technical approach we take is the evolutionary one pioneered by Kandori,
Mailath and Rob [46] and Young [61]. Like the earlier literature we suppose that
people adjust relatively rapidly to new circumstances. In that literature this was
represented by what is often called the “deterministic” dynamics which is generally a
variation on the best-response or replicator dynamic. Those deterministic dynamics
suppose an adjustment process towards individually optimal strategies, and if they
converge generally speaking the incentive constraints are satisfied and the point of
convergence is a Nash equilibrium. However, as a reader of that literature might be
aware, these dynamics are badly behaved in many games, and the earlier evolution-
ary literature focused on particular limited classes of games such as coordination
games in which the deterministic dynamic is particularly well behaved. We do not
think the misbehavior of the deterministic dynamic is especially interesting as peo-
ple seem in fact to rapidly reach Nash equilibrium, and, as pointed out, for example,
in Fudenberg and Levine [37], the behavior of these dynamics when they do not
converge is not especially plausible. As underlying model of “rational” individual
behavior we take not these deterministic dynamics, but rather a simplified version
of the stochastic dynamics developed more recently by [Foster and Young|. This

gives global convergence, at least in the stochastic sense, and enables us to give

5There are many other channels through which evolution can lead to inefficiency. For examples
Bowles [19] discusses how inefficiency can arise in a Kandori, Mailath and Rob [46] and Young [61]
type of setting with groups when they are of different sizes or have different memory lengths.



clean theorems without limiting attention to particular classes of games.

While the earlier literature supposed that the deterministic dynamic was per-
turbed by random mutations, we take the view that these small random changes
- disruptions to existing arrangements if you like - are influenced instead by the
relative strength of societies. Our strongest assumption is that this strength is mea-
sured by a single scalar quantity. We also assume that initially a tiny “invading”
society has a negligible chance of disrupting existing social arrangement, but that
once it becomes comparable in size to the pre-existing society the chances it is able
to further disrupt the status quo becomes appreciable. Our approach is a variation
on the conflict resolution function introduced by Hirshleifer [43] and subsequently
studied in the economic literature on conflict.”

The idea that evolution can lead to both cooperation and inefficiency is scarcely
new, nor is the idea that evolutionary pressure may be driven by conflict. There is
a long literature on group selection in evolution: there may be positive assortative
matching as discussed by Bergstrom [10]. Or there can be noise that leads to a
trade-off between incentive constraints and group welfare as in the work of Price
[54, 55]. Yet another approach is through differential extinction as in Boorman and
Levitt [17]. Conflict, as opposed to migration, as a source of evolutionary pressure
is examined in Bowles [20], who shows how intergroup competition can lead to the
evolution of altruism. Bowles, Choi and Hopfensitz [24] and ? | study in group
altruism versus out group hostility in a model driven by conflict . Rowthorn and
Seabright [58] explain a drop in welfare during the neolithic transition as arising
from the greater difficulty of defending agricultural resources.

More broadly, there is a great deal of work on the evolution of preferences as
well as of institutions: for example Blume and Easley [13], Dekel, Ely and Yilankaya
[29], Alger and Weibull [7], Levine et al [48] or Bottazzi and Dindo [18]. Some of
this work is focused more on biological evolution than social evolution. As Bisin
[11] and Bisin and Topa [12]| point out the two are not the same.

This paper is driven by somewhat different goals than earlier work. We are inter-
ested in an environment that can encompass relatively general games and strategy

spaces; in an environment where individual incentives matter a great deal; and in

"See, for example, Garfinkel and Skaperdas [40] or Hausken [42]. An important focus of this
literature has been in figuring out how shares [which shares?] are determined by conflict resolution
function.



an environment where the selection between the resulting equilibria are driven by
conflict over resources (“land”). By employing the stochastic tools of by Kandori,
Mailath and Rob [46] and Young [61] we are able with relatively weak assumptions
to characterize stochastically stable states - the “typical” states of the system - as
those among the incentive compatible states that feature large societies maximizing

free resources.

2. The Economic Environment

Time lasts forever t = 1,.... There are J identical plots of land j =1,...J. On
each plot of land there are N players ¢ = 1,... N. In each period ¢ each player ¢
on each plot of land j chooses one of a finite number of actions aij € Al Actions
describe production, consumption, reproduction and political decisions. We use
a{ € Aand a, e A~ for profiles of actions on a particular plot of land j in period
t.

Players care only about the actions taken by players living in the current period
- they are myopic, which is to say we assume that periods are long enough to
encompass the horizon of the players - and they care only about actions taken on
the same plot of land on which they reside. Preferences of player ¢ are described by
a utility function ui(ag ). We refer to the game on a particular plot of land induced
by these utility functions during a particular period as the stage game.

Of particular interest on each plot are the (pure) Nash equilibria of the stage
game. These are the profiles a{ such that aij is a best-response to a, 7 for all
j. There is of course no guarantee that pure strategy equilibria exist. However,
as is standard, we may introduce a finite grid of mixed strategies and by doing
so guarantee the existence of approximate equilibria. We can then weaken the
behavioral assumption below so that approximate equilibria are absorbing or we
may perturb payoffs a small amount to get exact equilibria. In this sense existence
is not an important conceptual problem, and indeed we are interested not in the
case where existence may be problematic, but the case, such as in repeated or social
norm games, where there are many, many equilibria. To avoid any technical issue,
we will subsequently assume existence.

Plots of land do interact with each other, but only through conflict. Interactions
between plots, as well as behavior, are probabilistic and some consequences have
negligible and other appreciable probability. To formalize this we introduce a a noise

parameter € > 0. Subsequently we will be considering limits as ¢ — 0. Following



the standard terminology of evolutionary theory, such as Young [61], suppose that
Qle] is a function of e. We say that @ is regular if r[Q] = lim._,o log Q[¢]/ log € exists
and 7[Q] = 0 implies lime_,o Q[¢] > 0. For a regular @ we call r[Q] the resistance
of Q. Notice that a “lower probability” in the sense of a more rapid decrease as
€ — 0 means a higher resistance; by an appreciable probability we mean a resistance
of zero. Otherwise we say that the probability is negligible.

Conflict is resolved through a conflict resolution function. Formally, depending
on players play on the various plots, there is a possibility each period ¢ that a sin-
gle plot of land k is disrupted to an action profile a{ 41 € A the following period.
This disruption may have the form of conquest, that is the new profile that k is
forced to play may be the same as that of a “conqueror” j, but it is a more general
concept: for example, the result of conquest may not be that the conquered adopt
the customs of the conquerors, but rather than the conquered fall into anarchy. Let
a; = (ag y7=LJ denote the profile of actions over players and plots. The probabil-
ity that plot k is disrupted to action az 41 (which it will play at ¢ 4 1) is given by
the conflict resolution function 7 (a],,,a;)[e] > 0 where since at most one plot can
be disrupted Zizl ZG{H;&(I{ wk(agﬂ, at)[e] < 1. We assume that this inequality is
strict, so that there is a strictly positive probability that no disruption occurs, and
that Wk(ag +150t)[e] > 0 for all j when € > 0. Notice in particular that the con-
flict resolution function depends on the noise parameter € and in particular admits

negligible probabilities.

2.1. Histories and Player Behavior

The behavior of players depends on the history of past events as well as their
incentives. Let H denote the set of L-length sequences of action profiles in all plots.
At the beginning of a period the state is s; € S = H' x ... H' x {0,1,2,...J} x A,
that is a list of what has happened on each plot for the previous L > 2 periods
T=t—L+1,t—L+2,...t, plus an indicator of which plot has been disrupted
and the action to which it was disrupted. So an element s; of the state space S
has J + 2 coordinates: the first J are histories of the actions, s{ = h{, 7=1,...J
where h! = (aj)tT:t_L_H; coordinate s/ ™! € {0,1,2,...J} denotes the disrupted

,}] 1 — 0 is used to mean that no plot has been disrupted; and the last

coordinate indicates the new action (if any), so 5,}] 2 ¢ A. The stochastic process

plot, where s

on which the paper is focused will be defined to be Markov on this state space, and

we assume that there is a given initial condition s;.



We now describe how the action profile on each plot j is determined at time ¢. If
a plot was disrupted, that is j = s;]_+11 > 0, then players on that plot play ag = s;] +2,
Otherwise play is stochastic, each player plays independently, and play depends only
on the history at that plot: we denote by Bi(sz_l) the probability distribution over
A® played by player i at time ¢ on plot j.

For each player we distinguish two types of states:

Definition 1. A quiet state s; for player ¢ on plot j is a state in which the action
profiles have not changed on that plot, a]_; ; =a;_; ., =--- = a}, and for which

aij is a best response to at_i’j. We call a,;j the status quo response. Any state state

for player ¢ on plot j other than a quiet state is a noisy state.

In other words, in a quiet state, nothing has changed and player ¢ has been doing
the “right thing” for at least L periods. In this case, we assume that if not disrupted,
the player continues to play the same way; otherwise there is some chance of picking

any other action:

Assumption 1. If s; 1 is a quiet state where aij is the status quo response, then
Bi(si_l)‘(‘a?) = 1. If s;_1 is a noisy state for player i on plot j then B*(s]_;)(a;) > 0
for all ai € A",

Notice that in a noisy state the probability of change is appreciable because it
is positive and does not depend upon €. This means that in a noisy state change
is quite rapid until a quiet state is reached again. This will have the implication
that Nash equilibrium is reached relatively rapidly following a disruption. This
assumption captures the idea that even in changing times, while society as a whole
may be disrupted, people manage to accommodate themselves to new circumstances
and achieve incentive compatibility relatively quickly. For example, refugees during
time of war may be quite miserable, but never-the-less generally seem to adjust
in a sensible way to their new constraints. Similarly in prisoner of war camps,
people seem to quickly adjust develop new stable institutions with a well organized

hierarchy and trade - for example using cigarettes as currency.

Definition 2. A state s; is a Nash state if every plot of land is in a Nash equilibrium
and it is quiet for every player in every plot.

Notice that if a state is Nash then all plots are quiet, and hence unless there is a
disruption, the next state will be the same as the current state. On the other hand a

disrupted plot begins a possibly long epoch of turmoil which however, with positive



probability, will end with the plot entering an existing society, which will then be
strengthened. The process of evolution of societies is thus viewed as more flexible
and general than a military conquest followed by subimission of a loser. Societies
are introduced formally in the next section.

Remark 1. This dynamic is a simplified version of Foster and Young [35] - it is a
simple and relatively plausible model. It has the implication that in the absence of

conflict each plot will be absorbed in some Nash equilibrium, and that all of these
equilibria have some chance of occurring.

3. Societies and Conflict

We now wish to examine the conflict resolution function in greater detail. The
central idea of the paper is that conflict resolution depends in an important way on
two things: the ability of players to expand and their desire to do so.

The ability to expand depends on size: a prospective invader would find it much
easier to conquer, say, Singapore, than, for example, Shanghai. The reason is that
China, while per capita a poorer society than Singapore, has a much larger and more
capable military. In other words, plots of land are organized into larger societies,
and the ability of a society to defend itself - or to conquer other societies - depends
at least in part on the aggregate resources of that society, not merely the resources
of individual plots of land. To capture this idea we must specify how plots of land
aggregate into larger societies. Since we require that behavior on a plot of land
be governed by individual choices on the plot we want to assume that aggregation
choice depends on the chosen profile. The question arises as how the desires of
different plots are reconciled.

There are many complicated possibilities for plots to form alliances: one plot
playing a{ = A may be willing to ally only with plots playing B, while a plot playing
B may be willing to ally with either A or C. As our goal is not to understand
the details of coalition formation we simply assume that profiles are partitioned
into societies, with the members of an element of the partition agreeing that they
are willing to ally themselves with any other profile in the same subset. Formally
we assign each action profile a{ an integer value X(a{) indicating which society
that profile wishes to belong to, with the convention that X(a{ ) = 0 indicates an
unwillingness to belong to any larger society. All plots j with a common non-zero
value x of X(az ) then belong to the corresponding society, which will then represented

by that integer x.

10



Notice that implicitly this requires that if a plot is willing to ally itself, it is
willing to ally itself with plots using an identical action profile. Moreover, a plot
that changes its profile may by doing so change societies. In the context of anony-
mous plots that are differentiated only by the action profiles of the individuals on
those plots this seems a sensible simplifying assumption. Moreover, from the broad
perspective of social behavior it makes sense the alliances are associated with sim-
ilarity of culture: for example is it widely thought that the EU intervened in the
Yugoslavian civil war because “Yugoslavia is a Western country” while not interven-
ing in various African civil wars because of a lack of affinity with those countries.
Similarly Islamic countries will generally support one another in conflicts with non-
Islamic nations such as the conflict between Israel and Palestine. However, we do
not rule out “multiculturalism”, that is, a plot may agree to be allied in a single
society with other plots that use different profile - the European Union springs to
mind as an example of such a society. We discuss aggregation map x in more detail
in section b.

Societies not only vary in size, but are also differentiated also by their inclination
to export their ideas and social norms. Regardless of the form of expansion, expan-
sionary institutions are not universal - an insular society is not likely to expand.®
Religions such as Christianity and Islam have historically been expansionary trying
actively to convert nonbelievers. By contrast since the diaspora Judaism has been
relatively insular in this respect, and the same has been true of other groups such as
the Old Believers in Czarist Russia. We have already denoted by X(a{ ) = 0 isolated
plots of land that are unwilling or unable to agree on belonging to a larger collec-
tivity. We classify the remaining societies into two types: expansionary for those
that actively attempt to spread themselves or non-expansionary for those that do
not, and as a formal matter, since we require that the attitude of a plot of land
reflect the underling individual actions taken there, we use positive values of X(a{ )
for those societies that are expansionary, and negative values for those that are not.

Since we are interested in settings with many Nash equilibria, we assume that

at least one Nash equilibrium is in fact expansionary:

Assumption 2. There is at least one stage game Nash equilibrium which is expan-
sionary, that is has x(a]) > 0.9

80ur notion of expansionism is connected to Aoki, Lehmann and Feldman [2011]’s theory of the
transmission of innovations.
9Note that whether or not a society is expansionary plays no role in the determination of Nash

11



3.1. Conflict Resolution and Free Resources

We now come back to the “ability to expand” aspect mentioned above and in-
troduce the notion of free resources as a measure of ability to expand. We begin
by describing how the organization of plots into societies and the actions taken on
those plots results in the disruption of plots of land through conflict between differ-
ent societies. This was represented formally by the conflict resolution function, now
described in greater detail.

First we define the probability of society = being disrupted, denoted by II(x, a;)[e],
as the probability that one of its plots is disrupted to an alternative action. Note

the € parameter. In the case x # 0 this is given by

(z, a)[e] = Z Z ﬂ-k(ag-l-l?at)[e]?

klx(af)=z ai}ﬁéa?

and for an isolated society playing af by

H(af,a)ld = Y w(af,y,a0)ld.

J k
@y 70y

We make the technical assumption that the disruption function II(x,a:)[e] is
regular and that resistance is bounded above. Without loss of generality we may
take the upper bound on resistance to be one so that r[II(z,a;)] < 1.

As we said, the ability to expand depends not only on the desire to do so, but
also on the resources available. Specifically we assume that the action profile in a
plot generates a strictly positive value f(a{ ) > 0 called free resources. This has
for the moment no economic content, but we ask the reader to interpret it as a
scalar measure of the ability to disrupt neighbors and avoid disruption; concrete
specifications of this function in terms of free resources is deferred to sections 5-
7. What matters, however, in resolving conflict are not merely free resources on a
particular plot of land but rather the aggregate free resources available to a society.
For a non-isolated society x #% 0 this is the sum of free resources belonging to the
plots of that society

Fla,a)= S flad).

x(al)==

equilibrium.

12



10 Note that if a society x is not present in a; then the corresponding aggregate
free resources F are zero. Notice also that due to multiculturalism, a society’s free
resources depend non-trivially on a; because the admitted profiles will have different

free resources, and the total depends on how many of each kind there are.

3.2. Disruption, Fxpansionism and Free Resources

We are now in a position to state our three assumptions relating the disruption
probability II to free resources. The basic idea is that the more free resources a
society has the more disruptive it is to its neighbors and the less likely it is to be
disrupted by its neighbors. Moreover, non-expansionary societies are not disruptive
to their neighbors. We capture these ideas through a number of specific assumptions.

The first assumption is that comparing two societies, resistance to disruption is
lower for the one with fewer free resources, and indeed resistance to disruption when
there is an expansionary society with at least as many free resources is zero. Let
E(x) denote whether x is expansionary or not, that is, E =1 if x > 0, and F =0

otherwise.

Assumption 3. [Monotonicity] If F(x,a) < F(2/,a¢) then r[I1(z, a;)] < r[(2, at)],
and r[(z,a;)] = 0 if E(x') = 1. Moreover, if ai+1 differs from a; solely in that
society x has lost a single plot of land, then r[II(z, ai+1)] < r[I(x, at)].

The first part says that if two societies coexist in the sense that they are part of
the same a; then the one with more free resources has at least the same resistance
as the one with fewer free resources. The second part strengthens this to say that
an expansionary society with at least as many free resources as a rival in fact has an
appreciable chance of disrupting it. This rules out the possibility of there simulta-
neously being multiple expansionary societies for a substantial length of time, and
enables us to use an analysis akin to Ellison [33|’s method of the radius. Without it,
the analysis is more akin to his method of the co-radius, and we have neither been
able to establish the result nor provide a counter-example in that case. The third

part says that losing land does not increase resistance.

10Tt may be that aggregate free resources grow less than linearly with the number of plots. For
example two plots each with a unit of free resources may be weaker than a single plot with two
units of free resources if not all the units can be mobilized for joint operations or there are other
coordination problems between the plots. <insert ref to old version> showed that the results here
remain unchanged if linear aggregation is replaced with a non-linear aggregation provided that
aggregate free resources for a society are strictly increasing in the free resources on individual plots.

13



Our next assumption on II specifies that resistance depends only on the ratio of
free resources when there are only two societies. Say that a; is binary if there are

only two societies, which we denote as x and /.

Assumption 4. [Ratio] If a; is binary then
r[(z,a)] = q(F(2',a1)/F (2, a1), E(2)),

where q is non-increasing and left continuous in the first argument, q(0,F) =
q(#,0) = 1 and there exists ¢ > 0 such that q(¢p,1) > 0.

In other words, resistance in the binary case depends monotonically on free re-
sources and whether or not the rival society is expansionary. Moreover ¢(0, F) = 1
says that when the opponent has zero free resources resistance is at the highest
possible level - recall that we have assumed that resistance is always bounded above
by one. In addition g(¢,0) = 1 asserts that a plot that is not expansionary always
generates the same maximal resistance regardless of how many free resources it has
available. Notice that the assumption ¢(0, E) = 1 applies to mutations - actions
that are not currently being used. In this setup the chance of a mutation entering
the population is the same (in resistance terms) for all mutations - the free resources
associated with the mutant action profile become available for initiating or defend-
ing against disruption only after it enters the population - that is, the period after
the mutation takes place. This follows from our assumption that the societies cor-
responding to action profiles that are not currently in use have zero free resources.
The idea is that mutants need a period to get organized.

Observe that Assumption 3 implies that ¢ = inf{¢|q(¢,1) = 0} < 1, since
eventually if an expansionary society has enough free resources, it has an appreciable
chance of disrupting a rival plot of land. Note that because r[q(¢,1)] is left rather
than right continuous we must use the inf here, and because we have assumed
explicitly that there is some value of ¢ > 0 for which the resistance is strictly
positive, we know that ¢ > 0. Looking at what this means in terms of probability,
we see that this zero up to ¢ after which it becomes strictly positive. That is, in
the limiting case a sufficiently small society has no chance at all of disrupting a plot
from a larger one.

The last assumption on II states that disruption is not more likely when oppo-
nents are divided. Let T (a;) denote all the societies in a;, that is the values of x # 0
in the range of x plus the different values of ag that correspond to isolated societies,
that is with x(al) = 0.
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Assumption 5. [Divided Opponents| If a; is binary, a; has F(x,at) = F(x,a:) and
Dwrer(ane F@a) = 3 per@ne F @) then rIl(z, ar)] < r[ll(z,a)].

4. Dynamics and Stochastically Stable States

The dynamics of the stage game and of disruption together with the behavioral
rules of the players induce a Markov process M (e, J) on the state space S defined
in section 2.1. We are interested in this process, but primarily in the limit of this

process as € — 0.

Theorem 1. For ¢ > 0 the process Mle, J] is aperiodic and irreducible and hence
has a unique invariant distribution ule, J].

Proof. This follows from the fact that every combination of actions on every plot
has positive probability. ]

We denote by S[0, J] the ergodic classes of M]0, J].

Proposition 1. o € S[0,J] if and only if: (i)o is a singleton, that is, o = {s;},
(ii) s; is a Nash state, and (iii) sy has either no expansionary society, or a single
expansionary society such that all other societies (if any) have positive resistance to
disruption.

Proof. Follows directly from the definitions. See Appendix I. O

Hereafter we simply write s; € S[0,J]. Recall that Nash states are quiet on
every plot, that is on each plot there is a Nash equilibrium which has been played
for at least L periods; in particular a Nash state assigns a single Nash equilibrium
profile to each plot.

By Proposition 1 there are three types of Nash states in S[0,J]. There are
monolithic expansionary states consisting of a single expansionary society; there
are mized states consisting of a single expansionary society and at least one non-
expansionary society, and there are non-ezxpansionary states in which there is no
expansionary society.

We use the following Theorem from Young [61]:
Theorem 2. m = lim._,o ule, J| exists and m(se, J) > 0 implies s, € S[0, J].

Let S[m,J] C S[0,J] to be the set of states that have positive probability in
the limit (that is s; € S[m, J] iff m(s¢, J) > 0). These are called the stochastically

stable states. Our main result characterizes these states. To do so we must consider

monolithic expansionary states in more detail.
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Recall that societies are integers, in particular expansionary societies are positive
integers. Since there are finitely many profiles not all integers are in the image of
the x map. For positive = in the image of x consider the set x~!(z) of profiles a{
which map to . Then z can contain any combination of these profiles. So for any
expansionary society = there will be some collection - empty if x~*(z) is empty - of
corresponding monolithic expansionary states S(x) C S[0, J]|, which correspond to
different combinations of Nash states with profiles x ! () allowed by that society. As
already mentioned, these different profiles may have different levels of free resources.
Let f(x) denote the least average per plot free resources in any of these states (or
zero if S(x) is empty). It is obvious but useful to point out for later reference
that this minimum is achieved when all plots play profiles generating the least free
resources. We say that x is a strongest ezpansionary society if f(z) = max,~q f(2').
Note by Assumption 2 and the assumption that free resources are strictly positive
there is indeed at least one strongest expansionary society.

W