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Abstract

This paper investigates the out-of-sample predictability of bond excess returns. We assess

the economic value of the forecasting ability of empirical models based on long-term forward

interest rates in a dynamic asset allocation strategy. The results show that the information

content of forward rates does not generate systematic economic value to investors. Indeed,

these models do not outperform the no-predictability benchmark. Furthermore, their relative

performance deteriorates over time.

JEL classi�cation: G0; G1; E0; E4.
Keywords: bond excess returns, term structure of interest rates, expectations hypothesis,

forecasting.
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1 Introduction

The predictability of bond excess returns has occupied the attention of �nancial economists for

many years. In past decades, several studies have reported evidence that empirical models based

on forward rates or forward spreads are able to generate accurate forecasts of bond excess returns.

Since forward rates represent the rate on a commitment to buy a one-period bond at a future date,

it is natural to hypothesize that they incorporate information that is useful for predicting bond

excess returns. In support of this conjecture, Fama and Bliss (1987, henceforth FB) �nd that the

forward-spot spread has predictive power for the change in the spot rate and excess returns and that

the forecasting power increases as the forecast horizon lengthens. Recently, Cochrane and Piazzesi

(2005, henceforth CP) extend FB�s original work by proposing a framework in which bond excess

returns are forecast by the full term structure of forward rates. They �nd that their speci�cation

is able to capture more than 30 percent of the variation of bond excess returns over the period

January 1964 - December 2003. More recently, Cochrane and Piazzesi (2008) con�rm these results

using a larger set of maturities. 1 2

We contribute to the existing literature on the predictive ability of forward rates for bond excess

returns in two ways: First, since a model�s in-sample predictive performance tends to correlate

poorly with its ability to generate satisfactory out-of-sample forecasts (Inoue and Kilian, 2004;

2006), we evaluate the forecasting ability of predictive models based on forward rates in a genuine

out-of-sample forecasting exercise. Second, given that statistical signi�cance does not mechanically

imply economic signi�cance (Leitch and Tanner, 1991; Della Corte et al., 2008; 2009), we assess the

economic value of the predictive power of forward rates by investigating the utility gains accrued

to investors who exploit the predictability of bond excess returns relative to a no-predictability

alternative associated with the validity of the expectations hypothesis.

In the spirit of Fleming et al. (2001), Marquering and Verbeek (2004), and Della Corte et

al. (2008; 2009), we quantify how much a risk-averse investor is willing to pay to switch from a

dynamic portfolio strategy based on a model with no predictable bond excess returns to a model
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that uses either forward spreads (FB) or the term structure of forward rates (CP), with and

without dynamic volatility speci�cations. We consider two volatility speci�cations: a constant

variance consistent with a standard linear regression and a rolling sample volatility model (Foster

and Nelson, 1996; Fleming et al. 2001; 2003). The latter is computationally e¢ cient and is �exible

enough to capture the features of bond excess returns data. In order to take into account the

problems arising from potential mispeci�cation and parameter changes in models of conditional

mean excess returns, the parameters are estimated over time using all past observations available

up to the time of the forecast (recursive scheme) and a selected window of past observations (rolling

scheme). In addition, we also allow for parameter uncertainty when constructing optimal portfolios.

Speci�cally, we impose an informative prior to de�ne the distribution of the parameter estimates

used to carry out the asset allocation problem, as in Kandel and Stambaugh (1996) and Connor

(1997).3

We �nd that none of the predictive models based on forward rates is able to add signi�cant

economic value to investors relative to the no-predictability benchmark. However, the extent of the

underperformance varies across speci�cations, especially when parameter uncertainty is taken into

account. Also, predictive regressions with conditional volatility show no signi�cant improvement

relative to the constant volatility alternative. Finally, we �nd that the relative performance of

the predictive models deteriorates over time. In particular, as suggested by Cochrane (2011), the

predictive models seem to be especially unsatisfactory during the recent 2007-2009 �nancial crisis.

Various studies have attempted to validate, with mixed success, the early empirical �ndings

reported in FB and CP. Rudebush et al. (2007) show that the empirical estimates of the term

premia implied by CP are less correlated with other available measures and are more volatile.

Similarly, using a reverse regression methodology, Wei and Wright (2010) �nd that ex ante risk

premia on long-term bonds are both large and volatile because the underlying parameters appear

to be imprecisely estimated.

Other studies have investigated the source of information embedded in forward rates and their
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genuine predictive power. Radwanski (2010) shows that the one-year-ahead expected in�ation

extracted from the cross-section of forward rates, together with a level factor capturing the average

level of forward rates, is able to attain results similar to CP. Almeida et al. (2011) �nd that term-

structure a¢ ne models that include interest rate option prices in the estimation are able to generate

bond risk premia that better predict excess returns for long-term rates. The R2 estimates that

they obtain are similar in magnitude to those reported in earlier studies. Cieslak and Povala (2011)

decompose long-term yields into a persistent in�ation component and maturity-related cycles. They

show that the CP predictive regressions are special cases of a more general return-forecasting

regression where the CP factors are constrained linear combinations of cycles. Using this framework,

they obtain in-sample R2 that are twice those reported by CP. Du¤ee (2011) criticizes the notion

that term structure models ought to rely on bond yields (and linear combinations of them, such as

forward rates) to serve as the factors in theoretical and empirical models. He shows that almost

half of the variation in bond excess returns can be associated with a (hidden) �ltered factor that

is not related to the cross-section of bond yields. Furthermore, when the �ltered factor is added

to the CP regressions, the term structure of forward rates is no longer statistically signi�cant at

conventional levels.

The statistical properties of bond yields also give a reason to be skeptical of the forecasting

power of predictive regressions based on forward rates. First, the empirical frameworks proposed

in this literature implicitly embed long-horizon returns. It is well known that OLS estimations of

regressions of bond excess returns on the term structure of yields su¤er from small-sample bias and

size distortions that exaggerate the degree of predictability. Hence, the estimates of R2 reported

in the existing literature are inadequate measures of the true in-sample predictability (Kirby, 1997;

Valkanov, 2003, Campbell and Yogo, 2006; Boudoukh et al., 2008; Wei and Wright, 2010 and the

references therein).

Second, bond yields are highly serially correlated and correlated across maturities. If both

regressors and regressands exhibit a high serial correlation, the predictive regressions based on for-
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ward rates may su¤er from a spurious regression problem (Ferson et al., 2003a,b, and the references

therein).4 5 6 Consequently, evidence of in-sample predictability need not be a useful indicator

of out-of-sample predictive performance. Moreover, the parameters of these empirical models may

vary over time (Fama, 2006; Wei and Wright, 2010) and this, in turn, a¤ects the performance of

the empirical models when used out of sample.

Our paper is closely related to Du¤ee (2010) and Barillas (2010), who explore the predictability

of bond excess returns from a similar perspective. Du¤ee (2010) investigates the conditional max-

imal Sharpe ratios implied by fully �exible term structure models and �nds that in-sample model

over�tting leads to astronomically high Sharpe ratios. Barillas (2010) investigates the optimal bond

portfolio choice of an investor in a model that captures the failure of the expectations hypothesis

of interest rates. In an in-sample exercise, the author �nds that investors conditioning on bond

prices and macroeconomic variables would be willing to give up a sizable portion of their wealth in

order to live in a world where the risk premia state variable is observable. Our analysis di¤ers from

these studies in three important respects. These studies investigate the in-sample predictability

of predictive models while we assess the economic value from using these models out of sample.

In addition, we investigate the impact of parameter uncertainty on bond excess return predictions

and we also explicitly incorporate estimates of the conditional variances of bond returns into the

portfolio allocation problem.7

The remainder of the paper is as follows: Section 2 introduces the empirical framework used to

model the conditional mean and volatility of bond excess returns. Section 3 discusses the framework

for assessing the economic value of bond excess returns predictability for a risk-averse investor with

a dynamic portfolio strategy. Section 4 reports the main empirical results and Section 5 explores

the performance of the predictive models over time during the past 30 years. Section 6 discusses

the results of various robustness checks and a �nal section concludes.
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2 The predictive power of forward rates

In line with the existing literature, we de�ne the log-yield of an n-year bond as

y
(n)
t � � 1

n
p
(n)
t ; (1)

where p(n)t is the log price of an n-year zero-coupon bond at time t, i.e., p(n)t = lnP
(n)
t , where

P (n) is the nominal dollar-price of a zero coupon bond paying $1 at maturity. A forward rate with

maturity n is then de�ned as

f
(n)
t � p

(n�1)
t � p(n)t : (2)

The excess return of an n-year bond is computed as the log-holding period return from buying an

n-year bond at time t and selling it after one year less the yield on a one-year bond at time t,

rx
(n)
t+1 � p

(n�1)
t+1 � p(n)t � y(1)t : (3)

Recent empirical research has uncovered signi�cant forecastable variations in bond excess returns.

More speci�cally, several studies recorded that bond excess returns vary over time and they are a

quantitatively important source of �uctuations in the bond market (see, inter alia, Ludvigson and

Ng, 2009; Piazzesi and Schneider, 2011). In this empirical study we select two key models that

have been proved successful in explaining and forecasting bond excess returns by means of forward

rates and forward spreads.

Using monthly data for bond yields with maturities ranging between one and �ve years, FB

estimate the excess return equations8

rx
(n)
t+12 = �0 + �1(f

(n)
t � y(1)t ) + �

(n)
t+12; (4)

where n = 2; :::; 5 denotes the forward rate maturity, expressed in years. Using equation (4),

FB �nd that the forward-spot spread has predictive power for bond excess returns and that the

forecasting power increases as the forecast horizon lengthens.
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CP propose a modi�ed version of the FB excess returns equation. Speci�cally, they estimate

a general regression where bond excess returns are predicted by the full term structure of forward

rates and the one-period bond yield, i.e.,

rx
(n)
t+12 = �0 + �1y

(1)
t + �2f

(2)
t + :::+ �5f

(5)
t + "

(n)
t+12: (5)

They �nd that their forward rate equation explains between 30 and 35 percent of the variation of

bond excess returns over the same bond maturity spectrum investigated by FB.9

Note that equations (4) and (5) can be written more generally as

rx
(n)
t+12 = c+ �0Zt + �

(n)
t+12; (6)

where Zt = Z
(n)
t = (f

(n)
t � y

(1)
t ) or Zt =

h
y
(1)
t f

(2)
t ::: f

(5)
t

i0
in equations (4) and (5), respec-

tively.

When � = 0, bond excess returns are not predictable and equal to a constant c. This case is

consistent with the expectations hypothesis of the term structure of interest rates, which is fre-

quently used as benchmark against which other empirical bond excess return models are compared.

We label this model as EH.

As reported in various studies, and documented later in this paper, there is considerable evidence

indicating that the volatility of bond yields and bond excess returns is time-varying and predictable

(Gray, 1996; Bekaert et al. 1997; Bekaert and Hodrick, 2001). Hence, in addition to equation

(6), we model the dynamics of the conditional variance-covariance matrix of bond excess returns

with a simple linear regression model and with a rolling sample variance estimator (Foster and

Nelson, 1996; Fleming et al., 2001; 2003). More speci�cally, the linear regression model assumes

that the conditional covariance matrix of the residuals �t+12jt = Et
�
�t+12�

0
t+12

�
with �t+12 =h

�
(2)
t+12 ::: �

(5)
t+12

i
is constant over time, i.e., b�t+12jt = b�: The rolling sample variance estimator

is of the general form

b�t+12jt = 1X
l=0


t�l � �t�l�0t�l; (7)
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where 
t�l is a symmetric 4�4 matrix of weights and � denotes element-by-element multiplication.

The logic behind this approach is that if �t+12 is time-varying, then its dynamics are re�ected in

the sample path of past excess returns. Hence, if a suitable set of weights are applied to squares

and cross-products of excess return innovations, it is possible to construct a time series estimate of

�t+12 (Foster and Nelson, 1996). In our empirical application, we follow Fleming et al. (2003) and

select the optimal weight for a one-sided rolling estimator 
t�l = � exp (��l)110, where 1 denotes

a 4� 1 vector of ones and � is the decay rate that governs the relative importance assigned to past

excess return innovations. As in Fleming et al. (2001, p. 334), we impose that the decay parameter

is unique across all cross products of excess return innovations in order to ensure the positivity of

the matrix �t+12:. We use this estimation method to compute the conditional covariance matrix

�t+12 since it is not heavily parametrized and it is less di¢ cult to estimate than multivariate ARCH

and GARCH models10 (see, inter alia, Bawens et al., 2006 and the references therein). In fact,

for certain choices of 
t�l the rolling sample estimator resembles the �t+12 process implied by a

multivariate GARCH model (Fleming et al., 2003 p. 479).

3 Assessing bond excess returns predictions

3.1 The asset allocation framework

This section explores the economic signi�cance of the predictive information embedded in forward

rates and forward spreads relative to the no-predictability alternative. A classic portfolio choice

problem is used (Della Corte et al., 2008; 2009). Speci�cally, we consider an investor who optimally

invests in a portfolio comprising K+1 bonds similar in all respects but with di¤erent maturities: a

risk-free one-period bond and K risky n-period bonds. The investor constructs a monthly dynam-

ically rebalanced portfolio that minimizes the conditional portfolio variance subject to achieving a

given target of expected return.

Let the conditional expectation and the conditional variance-covariance matrix of the K � 1

vector of bond excess returns, rxt+12; be equal to �t+12jt = Et (rxt+12) and �t+12jt = Et[(rxt+12 �
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�t+12jt)(rxt+12��t+12jt)0]; respectively. At the end of each period the investor solves the following

problem:

min
wt

w0t�t+12jtwt

s:t: �0t+12jtwt = ��p; (8)

where wt =
h
w
(2)
t ::: w

(5)
t

i0
is the K � 1 vector of portfolio weights on the risky bonds and

��p =
�
��p � y

(1)
t

�
is the target of conditional expected return of the full portfolio returns. The

solution to the optimization problem delivers the following weights on the risky n-period bonds,

wt =
��p
Ct
��1t+12jt�t+12jt; (9)

where Ct =
�
�t+12jt

�0
��1t+12jt

�
�t+12jt

�
and the weight on the one-period bond is equal to 1�w0t�;

where � is a K � 1 vector of ones.

In the empirical analysis, we winsorize the weights to each of the n-period bonds to �1 �

w
(n)
t � 2 to prevent extreme investments (Goyal and Welch, 2008; Ferreira and Santa Clara, 2011).

These constraints essentially allow for the full proceeds of short sales (see, inter alia, Vayanos and

Weill, 2008 and the references therein).

3.2 Modelling bond excess returns and their volatility: the role of parameter
uncertainty

In order to construct the optimal portfolio weights, wt, estimates of conditional expected bond

excess returns �t+12jt and conditional variance-covariance matrices �t+12jt are required. Three dif-

ferent conditional mean strategies are considered: the benchmark model of no predictability (EH),

the FB model, and the CP model. The three models are estimated using both constant volatil-

ity (CVOL henceforth) and time-varying volatility (TVOL henceforth) to compute the volatility

forecasts.

Given the statistical problems noted in the previous section, it seems likely that there could

be uncertainty about the parameter estimates or even the overall parametrization of the data-
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generating process.11 This complicates the asset allocation process because the investor does not

know over which parameter set to minimize the portfolio variance�s function. In the spirit of the

literature on portfolio choice under parameter uncertainty, we follow Kandel and Stambaugh (1996)

and Connor (1997), who recommend imposing an informative prior to de�ne the distribution of

the parameter estimates used to carry out the asset allocation problem.12 More speci�cally, we

advocate a weak-form e¢ ciency of the bond markets consistent with the expectations hypothesis,

i.e., estimates of b� are assumed equal to zero. Kandel and Stambaugh (1996) demonstrate that,
in a Bayesian regression setup, this prior yields a posterior of the parameter estimates which is

the product of the OLS estimates and a shrinking factor that is a function of the precision of

the parameter estimates. The smaller the precision of the parameter estimates, the stronger the

shrinkage towards their prior mean of zero.

The empirical investigation in this paper takes into account Kandel and Stambaugh�s (1996)

�ndings by implementing the procedure introduced by Connor (1997). That is, each of the j

parameter estimates in equation (6) are computed as

b�j;bayes =
24 T

T +
�
1
�j

�
35 b�j;OLS ; (10)

where the shrinking factor in brackets is a function of the sample size T and a parameter �j , which

represents the marginal degree of predictability of the predictive variable j. �j is computed as

�j = E

"
R2j

1�R2

#
; (11)

where R2j denotes the marginal R
2 of variable j and R2 is the coe¢ cient of determination of the full

predictive regression (6) using forward rates (or forward spreads) as predictive variables.13 Hence,

estimates based on parameter uncertainty will be closer to the OLS estimates the larger the sample

size and the larger is R2j .
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3.3 The economic value of excess returns predictability

The economic value of the predictability of forward rates is assessed by assuming quadratic utility,

as in West et al. (1993), Fleming et al. (2001), and Della Corte et al. (2008; 2009); and the average

realized utility, U (�) ; for an investor with initial wealth W0 is given by

U (�) = W0

T � 12 + 1

T�12X
t=0

�
Rp;t+12 �

�

2 (1 + �)
(Rp;t+12)

2

�
; (12)

where Rp;t+12 = 1+ y
(1)
t +w0trxt+12 is the period t+12 gross return on the portfolio and � denotes

the investor�s degree of relative risk aversion (RRA). It is also assumed that W0 = 1. 14

As in Fleming et al. (2001), the measure of the economic value of alternative predictive models

is obtained by equating average utilities of selected pairs of portfolios. For example, assume that

holding a portfolio constructed using the optimal weights based on the EH strategy with constant

volatility (EHCV OL) yields the same average utility as holding the portfolio implied by the CP strat-

egy with constant volatility (CPCV OL). The latter portfolio is subject to management expenses,

�, expressed as a fraction of wealth invested in the portfolio. If the investor is indi¤erent between

these two strategies, then � can be interpreted as the maximum performance fee the investor would

be willing to pay to switch from the EHCV OL to the CPCV OL strategy. In general, this criterion

measures how much a risk-averse investor is willing to pay for conditioning on the information in

the forward rates since the benchmark used implies no predictability in either the conditional mean

or the conditional variance. The performance fee is the value of � that satis�es

T�12X
t=0

��
RFp;t+12 � �

�
� �

2 (1 + �)

�
R�p;t+12 � �

�2�
=
T�12X
t=0

�
REHCVOLp;t+12 � �

2 (1 + �)

�
REHCVOLp;t+12

�2�
;

(13)

where RFp;t+12 denotes the gross portfolio return constructed using the predictions from regres-

sion (6) in which forward rates or forward spreads are used as predictors, i.e., F = FB;CP , and

REHCVOLp;t+1 is the gross portfolio return implied by the bond excess returns no-predictability bench-

mark with constant volatility, EHCV OL. If there is no predictive power embedded in forward rates
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or forward spreads, then � � 0; whereas, if forward rates or forward spreads help to predict bond

excess returns, � > 0.

In the context of mean-variance analysis, several other measures of performance are routinely

employed. A measure frequently used is the Sharpe ratio (SR), which is calculated as the ratio of

the average portfolio excess returns to its standard deviation, i.e., 1
T�12+1

T�12X
t=0

�
rFp;t+12 � y

(1)
t+12

�
=�F

for any predictive model; where rFp;t+12 = RFp;t+12 � 1 and �F denotes the standard deviation of�
rFp;t+12 � y

(1)
t+12

�
: The statistical signi�cance of the di¤erence of the SR from two competing models

is tested by using the bootstrap procedure introduced by Ledoit and Wolf (2008). This procedure

has been shown to be robust to portfolio returns that are nonnormal and serially correlated. In

particular, we construct a studentized time series bootstrap con�dence interval for the di¤erence of

the SR, using a variant of the circular block bootstrap (Politis and Romano, 1992) and test whether

zero is contained in the interval.15

While Sharpe ratios are commonly used, they exhibit some drawbacks. Speci�cally, they do

not take into account the e¤ect of nonnormality (Jondeau and Rockinger, 2008), they tend to

underestimate the performance of dynamic strategies (Marquering and Verbeek, 2004; Han, 2006

and the references therein), and they can be manipulated in various ways (Goetzmann et al., 2007).

In order to take into account these concerns, we follow Goetzmann et al. (2007), who suggest a

set of conditions under which a manipulation-proof measure exists. This performance measure can

be interpreted as a portfolio�s premium return after adjusting for risk. We build on Goetzmann et

al. (2007) and calculate a risk-adjusted abnormal return of the predictive models relative to the

EHCV OL strategy as follows:

GISW =
1

(1� �)

264ln
0B@ 1

T � 12 + 1

T�12X
t=0

24 RFp;t+12�
1 + y

(1)
t+12

�
351��

1CA
� ln

0B@ 1

T � 12 + 1

T�12X
t=0

24 REHCVOLp;t+12�
1 + y

(1)
t+12

�
351��

1CA
375 : (14)

In dynamic investment strategies of the kind used here, portfolio rebalancing entails a signi�cant
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role for transaction costs. In the U.S. Treasury secondary market, traders charge transaction costs

according to counterparty types and trade size. We do not take a speci�c stand as to how large the

transaction costs should be. Instead a break-even transaction cost, �BE�i.e., the one that renders

investors indi¤erent between two competing strategies (Han, 2006; Della Corte et al., 2009) � is

computed. This is accomplished by assuming that transaction costs equal a �xed proportion (�) of

the value traded in the di¤erent bonds, V . The average (monthly) transaction cost of a strategy is

computed as � � V , where

V =
1

T � 12 + 1

T�12X
t=0

KX
k=1

������w(k)t � w(k)t�1
1 + w

(j)
t

�
rx
(n)
t+12 + y

(1)
t

�
Rp;t+12

������ : (15)

Following Jondeau and Rockinger (2008), the break-even transaction cost �BE is computed as

�BE =

�
1

T�12+1
PT�12
t=0 rFp;t+12

�
�
�

1
T�12+1

PT�12
t=0 rEHCVOLp;t+12

�
V F � V EHCVOL ; (16)

where V F and V EHCVOL denote the value traded in the di¤erent bonds associated with the predic-

tive models F = FB;CP and the benchmark, respectively. In comparing any predictive model F

with EHCV OL; an investor who pays transaction costs lower than �BE will always prefer model F

to the benchmark. Break-even transaction costs are computed only when they can be meaningfully

interpreted, i.e., when the performance fees in equation (13) are positive.

4 Empirical results

4.1 Data and preliminary results

The data set used in this study, consistent with early studies on the predictability of bond excess

returns, comprises monthly one- to �ve-year zero-coupon bond prices from June 1952 through

December 2010.

Log-bond excess returns are computed from bond prices as described in Section 2. The summary

statistics of the resulting time-series are reported in Table 1, Panels A) and B). Bond excess returns

are found to be close to zero on average (ranging between 0.4% and 1% per annum) but all are
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statistically signi�cant at the 5 percent statistical level. Panel A) also reports the autocorrelation

coe¢ cients of order 1 and 12 for the individual time series that show that bond excess returns are

highly serially correlated.

Panel B) of Table 1 reports the same summary statistics for absolute bond excess returns used as

a proxy for bond excess return volatilities. Absolute bond excess returns exhibit average values that

are higher the longer the term to maturity, and they are all statistical signi�cant at the conventional

5 percent signi�cance level. Furthermore, in line with previous studies and the results reported in

Panel A), absolute bond excess returns are also highly serially correlated.

In addition to reporting the autocorrelation coe¢ cients, we also compute the correlation between

all pairs of bond excess returns. Figures 1 and 2 show the average cross-correlations of bond

excess returns and absolute excess returns over di¤erent 10-year subperiods of the sample. The

correlation coe¢ cients are high for both excess returns and absolute excess returns (larger than 0.8

in all cases) and there is some evidence of time variation over the sample period. In particular,

the correlation coe¢ cients across maturities increase between the 1960s and the 1980s and then

generally decline over the past two decades. This pattern is also exhibited by the correlation

coe¢ cients between absolute bond excess returns. The �nding of time-varying correlation among

excess returns innovations is also corroborated by the Lagrange Multiplier test developed by Tse

(2000) that rejects the null of constant conditional correlations with a p-value of virtually zero.16

In related contexts, there is evidence that shocks generated by negative news may have greater

impact on subsequent volatilities than positive shocks of the same magnitude (Engle and Ng, 1993;

de Goeij and Marquering, 2006). In order to investigate this issue, we have estimated the following

threshold GARCH(1,1) model (Glosten et al., 1993; Zakoïan, 1994) for each of the four bond excess

returns time series:

h
�
(n)
t

i2
=  0 +  1

h
�
(n)
t�1

i2
+  2

h
�
(n)
t�1

i2
+  3

h
�
(n)
t�1

i2
I�t�1 + �t;

where �(n)t is the conditional volatility of the n-period bond excess return, �(n)t�1 is the lagged residual
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from the mean equation17 and I�t�1 is a dummy variable that is equal to 1 if �
(n)
t�1 < 0 and zero

otherwise. The symmetry in the excess returns conditional volatility is assessed by testing H0 :

 3 = 0. The results of the estimations over the full sample period and for all bond maturities, not

reported to save space, suggest that the null hypothesis of symmetry is not rejected at conventional

levels.

The preliminary exploration of the data is completed by estimating the parameters of the three

candidate models over two sample periods: the full sample period 1952-2010 and the CP�s sample

period, 1964-2003. The in-sample estimates are reported in Table 2 Panels A)-C). Estimates of

FB and CP models computed over the sample period 1964-2003 are similar to those reported in

Cochrane and Piazzesi (2005, 2006). A comparison of the FB model over the two sample periods

shows that the estimates of �R2 are somewhat smaller over the full sample period; however, the

estimates of the parameters changed little. Nevertheless, the parameters estimated over the full

sample period generally lie outside the con�dence interval of the ones estimated over the smaller

sample period for all n.

The comparison of CP�s model for the two samples shows a marked reduction in the estimates of

�R2: the estimates over the full sample are at least 45 percent lower relative to CP�s sample period.

While the tent shape of the parameter estimates noted by CP is evident in both samples, the

estimates of the parameters are considerably di¤erent. Speci�cally, with the exception of estimates

of �4, the estimates are much smaller in absolute value over the full sample period, and in most

cases the parameters estimated over the full sample period lie outside the con�dence interval of the

ones estimated over the smaller sample. This �nding is indicative of a considerable time variation

in the parameter estimates, which in turn is re�ected in the marked reduction in the estimates of

�R2 and potentially a¤ect the model�s out-of-sample performance.

4.2 Economic value calculations

This section reports the results of the economic value calculations discussed in Section 3. Forecasts

are generated using parameters that are estimated using information only available at the time
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the forecast is made. More speci�cally, we also employ two forecasting schemes: 1) a recursive

scheme, which uses all the observations available up to the time of the forecast, and 2) a rolling

scheme where only a window of past observations is used. We consider a rolling scheme since it

is likely that because of changes in the macroeconomic environment (shifts in the Fed policy etc.),

parameters estimated using data from very past periods may not be necessarily useful to make

current out-of-sample predictions.18 Furthermore, as outlined in Section 3.2, we incorporate the

role of parameter uncertainty in the conditional mean and compute the parameter estimates with

and without the correction reported in equations (10) and (11).

The combination of the six models (i.e. FB, CP an EH with and without time-varying volatility)

and the four scenarios (i.e. recursive and rolling estimations with and without parameter uncer-

tainty) yields 24 sets of results. The performance measures are calculated for the out-of-sample

period January 1970 through December 2010 assuming � = 5; in line with the value used in pre-

vious studies (Barberis, 2000; Della Corte et al., 2008 and the references therein). We also use

two annual targets of portfolio excess returns, ��p = 0:01; 0:02. The target portfolio excess returns

are consistent with reasonable average excess returns obtained by portfolios of Treasury bonds and

are higher than the average bond excess returns reported in Table 1, Panel A). The performance

measures SR and GISW and the performance fees � are reported as annualized. The GISW and

� measures are expressed in decimals (i.e., 0.01 = 1 annual percentage point). The time-varying

variance-covariance matrix of excess returns is computed using � = 0:05; a value within the range

of those reported in existing studies (Foster and Nelson, 1996; Fleming et al., 2001; 2003). Finally,

the rolling forecasting scheme is implemented using a window of the past 120 months.19

Table 3 shows the results of these exercises in four panels. Panel A) presents the results on

the recursive forecasting scheme with no parameter uncertainty. The results indicate the FB and

CP predictive models with constant volatility provide no economic value relative to the EHCV OL

benchmark. Their estimated SR are lower than the one of the benchmark model for either choice

of ��p. However, in nearly all instances, the di¤erence is not statistically signi�cant at conventional
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levels. In the few cases where the di¤erence is statistically signi�cant, the EHCV OL model generates

larger economic gains than the competing predictive models. Qualitatively, the results are iden-

tical with the GISW measure. All of the estimates are negative and range between �2:2 percent

(EHTV OL) and �1:0 percent (CPCV OL).

The conclusions are unchanged when we allow for parameter uncertainty, Panel B). In this case,

however, the EHCV OL model is superior to both the FBCV OL and CPCV OL models at the 5 percent

signi�cance level using the SR measure in three of the four cases reported. As in the case of no

parameter uncertainty, all of the estimates of GISW are again negative and are in a range that is

only slightly narrower that of Panel A).

The conclusions are invariant to the rolling forecasting scheme, reported in Panels C) and D).

The estimates of SR for the EHCV OL are generally smaller than those with recursive estimation.

However, the equality null hypothesis is rejected in only two instances. The pattern based on SR is

con�rmed by estimates of GISW. Indeed, they are either zero or negative and of similar magnitude

to those obtained with the recursive scheme.

The fact that none of the model with time-varying volatility is superior to those with constant

volatility is consistent with the �ndings of Du¤ee (2002) and Cheridito et al. (2007). They �nd

that bond excess returns are best captured by constant volatility models, in spite of the fact that

such models cannot match the time-series variation in interest rate volatility.20

The results reported in Table 3 are corroborated by the estimates of the performance fees

reported in Table 4, Panels A)-D). All of the performance fees are negative, re�ecting the fact

that none of the alternative models is economically superior to the no-prediction benchmark with

constant volatility. The magnitude of the performance fees is relatively una¤ected by whether

parameter uncertainty is taken into account. The performance fees are frequently less negative,

however, when the models are estimated using a rolling scheme rather than recursively. Hence,

from the perspective of performance fees, there seems to be a gain from focusing on the most recent

data.
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5 Sub-sample analysis

This section re�nes the results reported in the previous section by assessing the predictive ability of

predictive models in di¤erent sub-sample periods. This exercise is motivated by a recent literature

suggesting that macroeconomic variables, and more speci�cally interest rates, have been more

di¢ cult to predict since the Great Moderation (e.g., Clark and McCracken, 2008 and D�Agostino

et al., 2006). Speci�cally, we investigate the economic value of the predictive ability of the FB and

CP models over four sub-samples: January 1970 through December 1979, January 1980 through

December 1989, January 1990 through December 1999 and January 2000 until December 2010.

The results of this exercise are summarized in Table 5 Panels A)-D), which reports the SR from the

various models together with the p-values from the Ledoit and Wolf�s (2008) test. The measures

are computed using a level of annual target of portfolio excess returns ��p = 0:01 and the other

parameters are set equal to the values used to carry out the baseline estimates reported in Tables

3 and 4.

The results for the di¤erent sub-periods con�rm the conclusion obtained using the full sample.

For every period except the decade of the 1970s, for all models and for all forecasting schemes the SR

from the benchmark EHCV OL is higher than that from the competing models. However, there are

only few instances where the economic performance of the EHCV OL model is statistically superior

at the 10 percent signi�cance level. During the 1970s all of the competing models generate a SR

larger than that of the EHCV OL model; however, there is only one instance where the di¤erence is

statistically signi�cant at the 10 percent level.

It is interesting to note that the performance of the predictive models relative to the EHCV OL

model deteriorated over time, i.e., the di¤erence between the SR of the EHCV OL and any competing

model generally increased over time. Indeed, the di¤erences are almost always the largest during

the 2000s. This performance deterioration is also re�ected in the GISW measure for the FB and CP

predictive regressions (Figure 3). The deterioration is smaller for the performance fees (Figure 4).

Both �gures plot the average of the performance measures computed over the decade of reference
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across all 24 speci�cations, as well as their across-speci�cation standard deviation. The average

GISW performance measures and the average performance fees are positive during the 1970s but

they deteriorate quickly during the 1980s, remaining negative until the end of the sample. These

results are generally consistent with the notion that forecasting has become more di¢ cult since

the Great Moderation. The general pattern of deterioration in these performance measures may

be associated with shifts in monetary policy in the late 1980s (see, inter alia, Sims and Zha, 2006;

and Thornton, 2006, 2010 and the references therein), which generated a greater persistence in the

Fed�s target and induced less predictability in excess returns.

We also compute the performance measures over the period of the recent �nancial crisis, January

2007 through December 2009. This analysis is motivated by the evidence that suggests that the

predictive ability of the FB model broke down during the recent �nancial crisis (Cochrane, 2011).

Figure 5 plots the GISW performance measures during the crisis period. It is interesting to note that

both FB and CP record negative GISWmeasures and the values are nearly four times larger than the

ones recorded over the full sample period across various speci�cations, especially when time-varying

volatility is taken into account. The rolling forecasting scheme seems to mitigate this negative

performance �however, only for FB with constant volatility and CP with constant volatility when

parameter uncertainty is not taken into account. During this period of high uncertainty, the

predictive models did not provide evident economic gains to investors seeking to rebalance their

portfolios.

6 Robustness

This section checks the robustness of the baseline results reported in Section 4.2. More speci�cally,

we test whether our results are sensitive to 1) di¤erent rolling window sizes, 2) di¤erent values

of the RRA coe¢ cient, �, and 3) di¤erent values of the decay parameter � used to calculate the

rolling sample estimator of the variance-covariance matrix of bond excess returns. We show that

our main results are robust to all of these issues.21
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The �rst robustness exercise involves the consideration of di¤erent window sizes used to carry out

the rolling forecasting scheme. Speci�cally, we consider a rolling window of 240 months. A longer

rolling window does not change the conclusions qualitatively. Indeed, the results are quantitatively

similar to the ones reported in Table 3. Virtually all of the competing models record SR that are

lower than the ones exhibited by the benchmark EHCV OL. The only exception, as in Table 3, is

represented by CPCV OL that records (1) SR that are slightly higher than the benchmark and (2)

positive but very small performance fees. However, very few of the di¤erences in SR are statistically

signi�cant at conventional levels.

As a second robustness test, we consider two alternative values of the RRA coe¢ cient � = 2; 3.

In all cases, the results are qualitatively and quantitatively similar to the ones reported in Tables

3 and 4. The performance measures tend to increase in absolute value for a lower RRA coe¢ cient.

As investors become less risk averse, the evidence against the predictive models strengthens in favor

of the EHCV OL benchmark.

The �nal test considers two alternative values of the decay parameter � = 0:01; 0:10: The results

show that our baseline �ndings do not hinge on the selected value of the decay parameter. Indeed,

thy are virtually identical to those reported in Tables 3 and 4.

7 Conclusions

This study investigates the economic gains accruing to an investor who exploits the predictability

of bond excess returns relative to the no-predictability alternative consistent with the expectations

hypothesis. In particular, we quantify how much a risk-averse investor is willing to pay to switch

from a dynamic portfolio strategy based on a model with no predictable bond excess returns to

a model where the forecasts are based on either forward spreads or the term structure of forward

rates.

The results show that the no-predictability benchmark is di¢ cult to beat in economic terms by

either of the competing forward-rate models. The evidence in favour of naive models replicates the
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one already recorded in similar or unrelated contexts (see, among others, Goyal and Welch, 2008;

Guidolin and Thornton, 2010 and the references therein). Indeed, the predictive regressions do

not record any signi�cant economic value over the no-predictability benchmark. The extent of the

underperformance varies across speci�cations. Generally, it is larger when model parameters are

estimated recursively and parameter uncertainty is taken into account. Moreover, the forecasts of

the variance-covariance matrix of excess returns computed by a rolling sample estimator generally

do not improve upon the performance of the predictive regressions with constant volatility. Impor-

tantly, the qualitative conclusions are robust to the sample period as well as the value of the key

parameters used in our baseline estimation. We also found that the performance of all predictive

models based on forward rates deteriorates over time. Indeed, the relative performance of these

models is generally worse in the decade of the 2000s. Overall, our �ndings con�rm that it is very

di¢ cult to improve upon a simple naïve benchmark and that the predictability of bond excess

returns found in the literature does not necessarily translate into economic gains for investors who

rely on forecasts from these models.
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Notes

1However, not all studies are supportive of the predictive power of forward rates. In fact, Hamburger and Platt

(1975), Fama (1984), and Shiller et al. (1983) �nd weak evidence that forward rates predict future spot rates.

2The predictability of excess returns recorded in these studies strongly corroborates the well-documented empirical

failure of the expectations hypothesis of the term structure of interest rates (Fama, 1984; Stambaugh, 1988; Bekaert

et al., 1997, 2001; Sarno et al., 2007), and it is generally assumed to be the consequence of the slow mean reversion

of the spot rate toward a time-invariant equilibrium anchor that becomes more evident over longer horizons (Fama,

1984; 2006, and the references therein).

3For a comprehensive overview of portfolio choice problems see, Brandt (2010) and the references therein.

4This argument is echoed in Dai et al. (2004) and Singleton (2006), who show that these predictive regressions are

a¤ected by a small-sample bias that causes the R2 statistics to be substantially higher than their population values.

5The evidence of the near unit-root nature of bond yields is strengthened by other studies that record that the slow

mean reversion of the spot rate toward a constant is no longer valid after 1986 (Fama, 2006) and its dynamics are better

approximated by a mean-reverting process that is anchored to a nonstationary central tendency that stochastically

changes over time (Balduzzi et al., 1998). Du¤ee and Stanton (2008) also show that the high persistence of interest

rates has important implications for the preferred method used to estimate term structure models.

6Strictly speaking, Ferson et al. (2003a,b) assume the regressand does not exhibit high serial correlation but the

regressor (predictor) does. However, the spurious regression may occur even without highly autocorrelated regressand

if its conditional mean is highly correlated.

7 It is interesting to note that Cochrane and Piazzesi (2006) also investigate trading rule pro�ts based on the CP

predictive model. Their results are supportive of their in-sample evidence; however, the real-time pro�ts are about

half of those obtained over the full-sample. Cochrane and Piazzesi (2006, p. 12) point out that �real trading rules

should [...] follow an explicit portfolio maximization problem. They also must incorporate estimates of the conditional

variance of returns�. These features are key ingredients of our empirical investigation.

8The new indexation in equations (4) and (5) re�ects the fact that data are sampled at a monthly frequency while
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bond maturities are of one year and above, and hence a multiple of 12 months.

9 It is instructive to note that the FB regression can be obtained from the CP regression by imposing that �1 =

�q = ��1 for q = n, �q = 0 for q 6= n and q > 0:

10The estimation problems are strongly exacerbated in the context of bond excess returns, where the high correla-

tions across bond maturities often cause variance-covariance matrices to be near-singular.

11 In our study we do not implement an analogue parameter uncertainty correction for the conditional volatility

model for various reasons. First, it is well known that volatility is highly persistent and therefore predictable. Hence,

the approach advocated by Kandel and Stambaugh (1996), which implies a prior of no predictability, is inappropriate.

Furthermore, the scope of the paper is to assess the economic value of the predictability of bond excess returns by

means of forward rates in the conditional mean. The extensions proposed in this study, which consider the case of

predictable bond excess returns volatilities, are included for completeness but they do not represent the main focus

of the paper.

12See Brandt (2010) and the references therein.

13The marginal R2j is de�ned as the full R
2 from equation (6) minus the R2 from the equation where the variable

j is dropped from the model. For further details, see Connor (1997, p. 50).

14A critical aspect of this analysis is that it relies, as in previous studies, on the assumptions of the normality of

bond returns and quadratic utility function. Although the quadratic utility assumption is appealing for its tractability

properties, it not necessary to justify the use of mean-variance optimization (Della Corte et al., 2009 p. 3501).

15Full details of the bootstrap procedure are reported in the appendix to the working paper version of this study

(Thornton and Valente, 2012).

16 In particular, we have estimated over the full sample period a multivariate GARCH(1,1) model using the residuals

from the EH model, i.e., where the conditional mean of bond excess returns is equal to a constant. Then we carried

out the LM test of conditional correlation by Tse (2000) on the multivariate GARCH model estimated assuming

a constant conditional correlation. The result is not reported to save space, but available from the authors upon

request.

17We have carried out the symmetry tests assuming that the mean equation contains only an intercept and an
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intercept and the predictive variables. In both cases, the results lead to the same conclusion.

18We thank the anonymous referee for suggesting this to us.

19The sensitivity of our baseline results to the choice of the relevant parameters is assessed in the robustness Section

6.

20However, a notable exception is represented by Almeida et al. (2011) who �nd, using the information embedded

in interest rate options, that the most successful models for predicting excess returns have risk factors with stochastic

volatility.

21The full set of results is reported in the Appendix to the working paper version of this study (Thornton and

Valente, 2012).
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Table 1. Summary Statistics

The Table reports the descriptive statistics for bond excess returns (Panel A) and absolute

bond excess returns (Panel B) computed over the di¤erent maturities, n. The data sample ranges

from June 1952 until December 2010 for a sample size of 703 monthly observations. *, **, ***

denote statistical signi�cance at 10%, 5% and 1% and statistical signi�cance is evaluated using

autocorrelation and heteroskedasticity-consistent standard errors (Newey and West, 1987). Mean

and Std Dev are reported in decimals per annum (i.e. 0.01 = 1 annual percentage point).

Panel A) Bond excess returns

n = 2 n = 3 n = 4 n = 5

Mean rx(n)t 0.004*** 0.007*** 0.009*** 0.010***

Std Dev rx(n)t 0.017*** 0.031*** 0.043*** 0.052***

Corr(rx
(n)
t ; rx

(n)
t�1) 0.929*** 0.933*** 0.933*** 0.923***

Corr(rx
(n)
t ; rx

(n)
t�12) 0.189*** 0.135*** 0.105*** 0.071**

Panel B) Absolute bond excess returns

n = 2 n = 3 n = 4 n = 5

Mean
���rx(n)t ��� 0.013*** 0.024*** 0.033*** 0.040***

Std Dev
���rx(n)t ��� 0.011*** 0.020*** 0.028*** 0.034***

Corr(
���rx(n)t ��� ; ���rx(n)t�1���) 0.860*** 0.867*** 0.865*** 0.847***

Corr(
���rx(n)t ��� ; ���rx(n)t�12���) 0.130*** 0.178*** 0.206*** 0.214***
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Table 2. In-sample Estimates

The table reports the estimates of the no predictability benchmark consistent with the expec-

tations hypothesis (Panel A) and the Fama and Bliss (1987) and Cochrane and Piazzesi (2005)

predictive regressions (Panels B,C). All equations are estimated assuming a constant conditional

variance of excess returns innovations. Equations in Panels A), B), and C) are estimated over two

sample periods: June 1952 - December 2010 and June 1964 - December 2003. n denotes the matu-

rity of forward rates and bond excess returns expressed in years. logL denotes the log-likelihood

value of the regressions and v is the estimated constant conditional volatility of excess returns

innovations. Values in parenthesis are asymptotic standard errors computed using least-square

estimators. *, **, *** denote statistical signi�cance at 10%, 5% and 1% level. R
2
denotes the

in-sample adjusted coe¢ cient of determination. See also notes to Table 1.

Panel A) No predictability

n = 2 n = 3 n = 4 n = 5

1952-2010

�0 0.004*** (0.001) 0.007*** (0.001) 0.009*** (0.001) 0.010*** (0.002)

v 0.017 0.031 0.043 0.052

logL 1384.22 1418.81 1193.13 1051.23

1964-2003

�0 0.005*** (0.001) 0.008*** (0.001) 0.010*** (0.002) 0.010*** (0.002)

v 0.019 0.034 0.048 0.059

logL 1219.57 929.34 772.90 675.05
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Panel B) Fama and Bliss (1987)

n = 2 n = 3 n = 4 n = 5

1952-2010

�0 0.001* (0.001) 0.001 (0.001) -0.001 (0.001) 0.001 (0.002)

�1 0.759*** (0.089) 1.001*** (0.113) 1.272*** (0.127) 0.995*** (0.147)

v 0.016 0.029 0.040 0.051

logL 1868.30 1455.97 1239.60 1073.43

R
2

0.09 0.10 0.12 0.06

1964-2003

�0 0.001 (0.001) -0.001 (0.001) -0.004 (0.001) -0.008 (0.003)

�1 0.975*** (0.104) 1.301*** (0.133) 1.526*** (0.152) 1.181*** (0.183)

v 0.017 0.031 0.044 0.057

logL 1259.57 973.05 818.62 694.95

R
2

0.15 0.16 0.17 0.07
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Panel C) Cochrane and Piazzesi (2005)

n = 2 n = 3 n = 4 n = 5

1952-2010

�0 -0.007*** (0.001) -0.012*** (0.003) -0.018*** (0.004) -0.024v (0.005)

�1 -0.649*** (0.105) -1.118*** (0.192) -1.633*** (0.261) -2.035*** (0.325)

�2 0.378* (0.416) 0.049 (0.371) 0.130 (0.504) 0.255 (0.628)

�3 0.416*** (0.168) 1.553*** (0.305) 1.543*** (0.415) 1.550*** (0.517)

�4 0.328*** (0.127) 0.514** (0.231) 1.458*** (0.314) 1.491*** (0.391)

�5 -0.329*** (0.099) -0.787*** (0.181) -1.218*** (0.246) -0.928*** (0.306)

v 0.015 0.028 0.038 0.047

logL 1900.05 1486.62 1274.48 1123.40

R
2

0.16 0.17 0.20 0.18

1964-2003

�0 -0.015*** (0.002) -0.026*** (0.004) -0.037*** (0.006) -0.047*** (0.008)

�1 -0.938*** (0.124) -1.711*** (0.223) -2.481*** (0.302) -3.101*** (0.378)

�2 0.470* (0.254) 0.326 (0.458) 0.598 (0.620) 0.899 (0.775)

�3 1.173*** (0.213) 3.010*** (0.385) 3.532*** (0.520) 4.023*** (0.651)

�4 0.334** (0.156) 0.461 (0.282) 1.385*** (0.381) 1.374*** (0.477)

�5 -0.819*** (0.129) -1.745*** (0.233) -2.583*** (0.316) -2.649*** (0.395)

v 0.015 0.028 0.038 0.048

logL 1310.81 1028.14 883.28 776.01

R
2

0.30 0.33 0.36 0.33
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Table 3. Out-of-sample Performance Assessment: Performance Measures

The Table reports summary statistics of the returns from alternative portfolios constructed using the

out-of-sample forecasts from the benchmark of no-predictability model of bond excess returns with constant

volatility and the other competing models. FB, CP and EH denote Fama and Bliss (1987), Cochrane and

Piazzesi (2005) and the no predictability benchmark respectively. Recursive and Rolling Estimation denote

forecasts that are generated using all past observations available up to the time of the forecast and a window

of past 120 months, respectively. Parameter Uncertainty denotes the case when the expectations hypothesis

prior is imposed to de�ne the distribution of parameter estimates (Kandel and Stambaugh, 1996; Connor,

1997). The subscripts CVOL and TVOL denote models whose conditional volatility is estimated as a constant

and by means a rolling sample estimator (Foster and Nelson, 1996; Fleming et al., 2001; 2003), respectively.

SR denote Sharpe ratios achieved by each strategy and computed as the ratio of the sample average to the

sample standard deviation of portfolios�excess returns. Values in brackets are p-values of the null hypothesis

that the SR of the model is equal to the one of EHCV OL (Ledoit and Wolf, 2008). The p-values are computed

using V = 1; 000 bootstrap replications. GISW is a variant of the Goetzmann et al. (2007) manipulation-

proof measure of performance computed as portfolios�premium return above the benchmark after adjusting

for risk. The asset allocations for all models are carried out using two annual targets of portfolio excess

returns: ��p = 0:01; 0:02: Time-varying variance-covariance matrices of excess returns are estimated using

a decay parameter � = 0:05: GISW are computed using a Relative Risk Aversion (RRA) coe¢ cient � = 5.

The out-of-sample forecasting exercise runs from January 1970 through December 2010. SR are reported as

annualized and GISW are reported in decimals per annum (i.e. 0.01 = 1 annual percentage point).

Panel A) Recursive Estimation, No Parameter Uncertainty

EHCV OL FBCV OL CPCV OL EHTV OL FBTV OL CPTV OL

��p = 0:01

SR 0.464 0.211 0.272 -0.082 0.100 0.187

[0:01] [0:07] [< 0:01] [0:14] [0:17]

GISW � -0.013 -0.010 -0.022 -0.016 -0.014

��p = 0:02

SR 0.436 0.250 0.254 -0.049 0.074 0.213

[0:02] [0:21] [0:02] [0:13] [0:25]

GISW � -0.011 -0.012 -0.022 -0.018 -0.012
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Panel B) Recursive Estimation, Parameter Uncertainty

EHCV OL FBCV OL CPCV OL EHTV OL FBTV OL CPTV OL

��p = 0:01

SR 0.464 0.202 0.317 � 0.035 0.169

[< 0:01] [0:03] � [0:25] [0:10]

GISW � -0.014 -0.012 � -0.018 -0.014

��p = 0:02

SR 0.436 0.235 0.261 � 0.024 0.216

[0:01] [0:25] � [0:10] [0:14]

GISW � -0.011 -0.011 � -0.020 -0.012

Panel C) Rolling Estimation, No Parameter Uncertainty

EHCV OL FBCV OL CPCV OL EHTV OL FBTV OL CPTV OL

��p = 0:01

SR 0.304 0.261 0.304 0.144 0.095 0.189

[0:73] [0:99] [0:35] [0:21] [0:47]

GISW � -0.002 0.000 -0.005 -0.008 -0.004

��p = 0:02

SR 0.355 0.205 0.279 0.128 0.076 0.174

[0:12] [0:36] [0:19] [0:04] [0:25]

GISW � -0.006 -0.002 -0.008 -0.014 -0.007
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Panel D) Rolling Estimation, Parameter Uncertainty

EHCV OL FBCV OL CPCV OL EHTV OL FBTV OL CPTV OL

��p = 0:01

SR 0.304 0.288 0.157 � 0.105 0.139

[0:90] [0:31] � [0:25] [0:32]

GISW � -0.001 -0.005 � -0.006 -0.005

��p = 0:02

SR 0.355 0.228 0.156 � 0.081 0.130

[0:14] [0:19] � [0:02] [0:16]

GISW � -0.005 -0.008 � -0.014 -0.008

39



Table 4. Out-of-sample Performance Assessment: Performance Fees

The Table reports out-of-sample performance fees � based on out-of-sample forecasts of mean

and variance from competing models against the benchmark of no bond excess returns predictability

with constant volatility. The measures are computed for two levels of target portfolio excess returns

��p = 0:01; 0:02: The performance fees denote the amount the investor with quadratic utility function

and a Relative Risk Aversion (RRA) coe¢ cient � = 5 would be willing to pay for switching from

the model with no excess return predictability and constant volatility to the alternative model.

Performance fees are reported in decimals per annum (i.e. 0.01 = 1 annual percentage point). See

also notes to Table 3.

Panel A) Recursive Estimation, No Parameter Uncertainty

FBCV OL CPCV OL EHTV OL FBTV OL CPTV OL

Performance fees �

��p = 0:01 -0.010 -0.009 -0.022 -0.016 -0.010

��p = 0:02 -0.008 -0.012 -0.022 -0.018 -0.009

Panel B) Recursive Estimation, Parameter Uncertainty

FBCV OL CPCV OL EHTV OL FBTV OL CPTV OL

Performance fees �

��p = 0:01 -0.014 -0.007 � -0.018 -0.011

��p = 0:02 -0.011 -0.005 � -0.020 -0.008
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Panel C) Rolling Estimation, No Parameter Uncertainty

FBCV OL CPCV OL EHTV OL FBTV OL CPTV OL

Performance fees �

��p = 0:01 -0.001 -0.001 -0.005 -0.008 -0.003

��p = 0:02 -0.006 -0.004 -0.008 -0.014 -0.007

Panel D) Rolling Estimation, Parameter Uncertainty

FBCV OL CPCV OL EHTV OL FBTV OL CPTV OL

Performance fees �

��p = 0:01 -0.001 -0.004 � -0.005 -0.004

��p = 0:02 -0.005 -0.005 � -0.011 -0.007
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Table 5. Sub-sample Analysis

The Table reports out-of-sample the Sharpe ratios based on out-of-sample forecasts of mean

and variance from competing models and the benchmark of bond excess returns no-predictability

with constant volatility. The measures are computed for a level of annual target of portfolio excess

returns ��p = 0:01 over the four di¤erent subperiods. Values in brackets are p-values of the null

hypothesis that the SR of the model is equal to the one of EHCV OL (Ledoit and Wolf, 2008). See

also notes to Tables 3 and 4.

Panel A) Recursive Estimation, No Parameter Uncertainty

EHCV OL FBCV OL CPCV OL EHTV OL FBTV OL CPTV OL

1970-1979 -0.137 -0.045 -0.019 -0.035 -0.041 0.165

[0:78] [0:67] [0:78] [0:77] [0:35]

1980-1989 0.385 0.199 0.219 -0.067 0.019 0.196

[0:42] [0:28] [0:32] [0:23] [0:38]

1990-1999 0.541 0.371 0.405 -0.033 0.059 -0.016

[0:64] [0:40] [0:41] [0:21] [0:15]

2000-2010 0.856 0.460 0.426 -0.236 0.404 0.441

[0:13] [0:09] [0:12] [0:11] [0:16]

Panel B) Recursive Estimation, Parameter Uncertainty

EHCV OL FBCV OL CPCV OL EHTV OL FBTV OL CPTV OL

1970-1979 -0.137 -0.090 0.053 � -0.072 0.190

[0:85] [0:56] � [0:82] [0:26]

1980-1989 0.385 0.204 -0.026 � -0.142 0.043

[0:42] [0:10] � [0:18] [0:31]

1990-1999 0.541 0.365 0.267 � 0.061 0.140

[0:66] [0:09] � [0:30] [0:06]

2000-2010 0.856 0.465 0.671 � 0.396 0.354

[0:13] [0:38] � [0:07] [0:21]
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Panel C) Rolling Estimation, No Parameter Uncertainty

EHCV OL FBCV OL CPCV OL EHTV OL FBTV OL CPTV OL

1970-1979 -0.243 -0.126 -0.103 0.226 0.124 0.082

[0:59] [0:42] [0:15] [0:12] [0:24]

1980-1989 0.481 0.241 0.291 0.009 -0.147 0.366

[0:06] [0:30] [0:25] [0:02] [0:77]

1990-1999 0.737 0.462 0.525 0.291 0.333 -0.026

[0:17] [0:18] [0:24] [0:62] [0:19]

2000-2010 0.709 0.455 0.462 0.155 0.359 0.285

[0:27] [0:18] [0:10] [0:25] [0:13]

Panel D) Rolling Estimation, Parameter Uncertainty

EHCV OL FBCV OL CPCV OL EHTV OL FBTV OL CPTV OL

1970-1979 -0.243 -0.129 0.304 � 0.040 0.177

[0:64] [0:04] � [0:32] [0:13]

1980-1989 0.481 0.263 -0.054 � -0.132 0.172

[0:06] [0:01] � [0:04] [0:46]

1990-1999 0.737 0.519 0.021 � 0.403 0.158

[0:69] [0:06] � [0:69] [0:29]

2000-2010 0.709 0.452 0.253 � 0.368 0.049

[0:20] [0:11] � [0:23] [0:08]
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Legends to the Figures

Figure 1. Sub-sample Correlations: Excess Returns

The Figure shows the correlation coe¢ cient computed for all excess return pairs over the sample

period June 1952 - December 2010. The correlation coe¢ cients are computed using monthly data

sampled over each decade. corr(er_i; er_j) denotes correlation coe¢ cients computed between

excess returns with maturity i and j, respectively.

Figure 2. Sub-sample Correlations: Absolute Excess Returns

The Figure shows the correlation coe¢ cient computed for all absolute excess return pairs over

the sample period June 1952 - December 2010. The correlation coe¢ cients are computed using

monthly data sampled over each decade. corr(jer_ij; jer_jj) denotes correlation coe¢ cients com-
puted between absolute excess returns with maturity i and j, respectively.

Figure 3. Sub-sample Analysis: GISW Performance Measure

The Figure shows GISW measures of performance computed for each decade in the out-of-

sample forecasting period (January 1970 - December 2010). For each sub-sample GISW measures

are computed for all predictive models and all scenarios, as discussed in Sections 3 and 4 of the main

text. The solid square and the relative vertical lines in each of the two graphs denote the average

and standard deviation of GISW measures computed across all speci�cation. GISW measures are

reported in decimals per annum (i.e. 0.01 = 1 annual percentage point).

Figure 4. Sub-sample Correlations: Performance Fees, �

The Figure shows performance fees � computed for each decade in the out-of-sample forecasting

period (January 1970 - December 2010). For each sub-sample � are computed for all predictive

models and all scenarios, as discussed in Sections 3 and 4 of the main text. The solid square and

the relative vertical lines in each of the two graphs denote the average and standard deviation of

� computed across all speci�cation. � are reported in decimals per annum (i.e. 0.01 = 1 annual

percentage point).

Figure 5. Predictive Performance During the Crisis

The Figure shows GISW measures computed for all predictive models and all scenarios over the

period January 2007 through December 2009. Rec and Roll denote recursive and rolling forecasting

schemes, respectively, as discussed in Section 4.2 of the main text. PU and NPU denote estimations

with and without correction for parameter uncertainty, respectively, as discussed in Section 3.2.

See also notes to Figure 3 and Tables 3 and 4.
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Appendix to Out-of-Sample Predictions of Bond
Excess Returns and Forward Rates: An Asset

Allocation Perspective

This version: February 2012

A Bootstrap Test for the Equality of SR

We employ the boostrap procedure introduced by Ledoit and Wolf (2008) to test for the null hy-

pothesis that the di¤erence between the SR obtained from portfolio returns based on the fore-

cast of a given predictive model F =FB;CP is equal to the one implied by the forecasts of

the benchmark EHCV OL. More speci�cally, given the returns from the two portfolios rFt and

rEHCVOLt over the forecasting period t = 1; :::; T , we compute the two sample means, mF ;mEHCVOL

and the two uncentered second moments sF = E
h�
rFt
�2i
, sEHCVOL = E

��
rEHCVOLt

�2�
. Let

� =
h
mEHCVOL mF sEHCVOL sF

i0
and de�ne

� = f (�) =
mEHCVOL

p
sEHCVOL �mEHCVOL

� mF
p
sF �mF

:

where b� = f (b�) : Ledoit and Wolf (2008) propose to test H0 : � = 0 by inverting a bootstrap

con�dence interval (with nominal level 1-p) for �. If this interval does not contain zero, then H0

is rejected at the nominal level p. The null hypothesis is tested by bootstrapping the original

series in order to obtain the estimate of standard error of �; denoted as &
�b��� : Given that our

portfolio returns are serially correlated, we generate our bootstrap data by means of the circular

block bootstrap by Politis and Romano (1992). The algorithm consists of the following steps:

1. We �rst select a set of reasonable block sizes b,

1



2. We generate L boostrapped sequences
�
rFt
��
and

�
rEHCVOLt

��
and for each sequence L and

for each b we compute a con�dence interval CIq;b, q = 1; :::; L with nominal level 1� 0:05 for

b�
3. We then compute g (b) as the number of times b� 2 CIq;b divided by the number of sequences
L. We compute eb as the value of b that minimizes jbg (b)� 0:05j

4. Once we have selected the optimal block size eb, we compute h =int�eb=T� where int(�) denotes
the integer part.

5. We then bootstrap the data series and compute

z�t =

2666664

�
rEHCVOLt

��
�
�
mEHCVOL

���
rFt
�� � �mF��h�

rEHCVOLt

��i2
�
�
sEHCVOL

����
rFt
���2 � �sF��

3777775 ; t = 1; ::; T

�j =
1peb

ebX
t=1

z�(j�1)b+t; t = 1; :::; h

b	� =
1

h

hX
j=1

�j�
0
j ;

6. We compute the bootstrap estimate of the standard error of b� as

&
�b��� =

s
50f (��) b	� 5 f (��)

T
;

where

5f (��) =

266666664

�
sEHCVOL

��
=
n�
sEHCVOL

�� � ��mEHCVOL
���2o1:5

�
�
sP
��
=
n�
sP
�� � ��mP���2o1:5

�1
2

�
sEHCVOL

��
=
n�
sEHCVOL

�� � ��mEHCVOL
���2o1:5

1
2

�
sP
��
=
n�
sP
�� � ��mP���2o1:5

377777775
:

7. Finally, we compute the centered studentized statistics over the v = 1; ::; V bootstrap repli-

cations

d�;v =

��� b��;v � b����
&
�b��;v� ;
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8. The p-values reported in the Tables are computed as

1

V + 1

VX
v=1

I (d�;v � d) + 1

where I (�) denotes an indicator function that is equal to one if its argument is true and zero

otherwise.

The p-values reported in the main text are computed using a grid of block sizes b =
h
1 3 6 10 15

i
;

in line with Ledoit and Wolf�s (2008) suggestions, and we set the number of bootstrap replications

V = 1; 000.
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B Additional Results

Table B1. Sensitivity Analysis: Rolling Moving Windows

The Table reports summary statistics of the returns and performance fees � from alternative

portfolios constructed using the out-of-sample forecasts from the benchmark of no-predictability

model of bond excess returns with constant volatility and the other competing models. The

values are computed a moving windows for the rolling forecasting scheme of 240 months. The asset

allocations for all models are carried out an annual target of portfolio excess returns ��p = 0:01:

Time-varying variance-covariance matrices of excess returns are estimated using a decay parameter

� = 0:05: GISW and � are computed using a Relative Risk Aversion (RRA) coe¢ cient � = 5.

Values in brackets are p-values of the null hypothesis that the SR of the model is equal to the

one of EHCV OL (Ledoit and Wolf, 2008). The p-values are computed using V = 1; 000 bootstrap

replications. The out-of-sample forecasting exercise runs from January 1974 through December

2010. See also notes to Tables 3 and 4.

EHCV OL FBCV OL CPCV OL EHTV OL FBTV OL CPTV OL

No Parameter Uncertainty

SR 0.291 0.284 0.306 -0.005 0.034 0.110

[0:96] [0:88] [0:27] [0:16] [0:31]

GISW � -0.002 -0.001 -0.011 -0.011 -0.007

� � 0.002 0.003 -0.004 -0.003 -0.002

Parameter Uncertainty

SR 0.291 0.301 0.340 � 0.021 0.099

[0:93] [0:91] � [0:15] [0:28]

GISW � -0.002 -0.004 � -0.012 -0.007

� � 0.003 0.001 � -0.004 -0.002
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Table B2. Sensitivity Analysis: RRA Coe¢ cients

The Table reports the manipulation-proof measure of performance, GISW and performance fees

� from alternative portfolios constructed using the out-of-sample forecasts from the benchmark of

no-predictability model of bond excess returns with constant volatility and the other competing

models. The values are computed using two alternative Relative Risk Aversion (RRA) coe¢ cients,

i.e. � = 2; 3. The asset allocations for all models are carried out an annual target of portfolio excess

returns ��p = 0:01: Time-varying variance-covariance matrices of excess returns are estimated using

a decay parameter � = 0:05: The out-of-sample forecasting exercise runs from January 1970 through

December 2010. See also notes to Tables 3 and 4.

Panel A) Recursive Estimation, No Parameter Uncertainty

FBCV OL CPCV OL EHTV OL FBTV OL CPTV OL

� = 2

GISW -0.016 -0.011 -0.025 -0.018 -0.016

� -0.016 -0.011 -0.024 -0.018 -0.016

� = 3

GISW -0.015 -0.011 -0.024 -0.018 -0.015

� -0.014 -0.010 -0.022 -0.017 -0.014

5



Panel B) Recursive Estimation, Parameter Uncertainty

FBCV OL CPCV OL EHTV OL FBTV OL CPTV OL

� = 2

GISW -0.016 -0.015 � -0.021 -0.013

� -0.016 -0.014 � -0.020 -0.013

� = 3

GISW -0.015 -0.014 � -0.020 -0.013

� -0.014 -0.012 � -0.018 -0.012

Panel C) Rolling Estimation, No Parameter Uncertainty

FBCV OL CPCV OL EHTV OL FBTV OL CPTV OL

� = 2

GISW -0.003 -0.001 -0.006 -0.007 -0.005

� -0.003 -0.001 -0.006 -0.007 -0.005

� = 3

GISW -0.003 -0.001 -0.006 -0.007 -0.005

� -0.003 -0.001 -0.006 -0.006 -0.005
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Panel D) Rolling Estimation, Parameter Uncertainty

FBCV OL CPCV OL EHTV OL FBTV OL CPTV OL

� = 2

GISW -0.002 -0.007 � -0.007 -0.010

� -0.002 -0.007 � -0.006 -0.010

� = 3

GISW -0.002 -0.006 � -0.007 -0.010

� -0.002 -0.006 � -0.006 -0.009
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Table B3. Sensitivity Analysis: Decay Parameter, �

The Table reports summary statistics of the returns and performance fees � from alternative

portfolios constructed using the out-of-sample forecasts from the benchmark of no-predictability

model of bond excess returns with constant volatility and the other competing models. The asset

allocations for all models are carried out using an annual target of portfolio excess returns ��p = 0:01:

Time-varying variance-covariance matrices of excess returns are estimated using two alternative

decay parameters � = 0:01; 0:10: GISW and � are computed using a Relative Risk Aversion (RRA)

coe¢ cient � = 5. Values in brackets are p-values of the null hypothesis that the SR of the model is

equal to the one of EHCV OL (Ledoit and Wolf, 2008). The p-values are computed using V = 1; 000

bootstrap replications. The out-of-sample forecasting exercise runs from January 1970 through

December 2010. See also notes to Tables 3 and 4.

Panel A) Recursive Estimation, No Parameter Uncertainty

EHCV OL EHTV OL FBTV OL CPTV OL

� = 0:01

SR 0.464 -0.082 0.100 0.187

[< 0:01] [0:13] [0:17]

GISW � -0.022 -0.016 -0.014

� � -0.018 -0.012 -0.010

� = 0:10

SR 0.464 -0.082 0.100 0.187

[< 0:01] [0:13] [0:17]

GISW � -0.022 -0.016 -0.014

� � -0.018 -0.012 -0.010
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Panel B) Recursive Estimation, Parameter Uncertainty

EHCV OL EHTV OL FBTV OL CPTV OL

� = 0:01

SR 0.464 � 0.035 0.169

� [0:26] [0:09]

GISW � � -0.018 -0.014

� � � -0.013 -0.011

� = 0:10

SR 0.464 � 0.035 0.169

� [0:29] [0:10]

GISW � � -0.018 -0.014

� � � -0.013 -0.011

Panel C) Rolling Estimation, No Parameter Uncertainty

EHCV OL EHTV OL FBTV OL CPTV OL

� = 0:01

SR 0.304 0.144 0.095 0.189

[0:39] [0:23] [0:48]

GISW � -0.005 -0.008 -0.004

� � -0.005 -0.005 -0.003

� = 0:10

SR 0.304 0.144 0.095 0.189

[0:38] [0:24] [0:51]

GISW � -0.005 -0.008 -0.004

� � -0.005 -0.005 -0.003
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Panel D) Rolling Estimation, Parameter Uncertainty

EHCV OL EHTV OL FBTV OL CPTV OL

� = 0:01

SR 0.304 � 0.105 0.139

� [0:25] [0:32]

GISW � � -0.007 -0.005

� � � -0.005 -0.004

� = 0:10

SR 0.304 � 0.105 0.139

� [0:25] [0:31]

GISW � � -0.007 -0.005

� � � -0.005 -0.004
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