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Abstract

In early 2004, the U.S. Government initiated the Medicare Discount Drug Card Program
(MDDCP), which created a market for drug cards that allowed elderly and handicapped
subscribers to obtain discounts on their prescription drug purchases. Pharmacy-level prices
for many drugs were posted on the program website weekly from May 29, 2004 to December
31, 2005, as the largest undertaking in the history of government-sponsored information
release began with the hope of promoting competition by facilitating access to prices. A
large panel of pharmacy-level drug price data collected from the Medicare website indicates
that there was signi�cant and persistent dispersion in prices across cards throughout the
program. Moreover, the time-path of prices was non-monotonic; the prices declined initially
when consumers were choosing cards but rose later when subscribers were unable to switch
from one card to another. In contrast, contemporaneous control prices from on-line drug
retailers, which were unrelated to the program, rose steadily over time, indicating that
MDDCP prices evolved in a way di¤erent from the general evolution of prices outside the
program. In view of the fact that the program rules prevented consumers from changing
their cards at will, the evolution of MDDCP prices is consistent with certain models of
dynamic price competition with consumer switching costs, such as Klemperer�s (1987a,b).
Estimates of potential savings from purchasing at program prices are also provided.
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1 Introduction

On May 29, 2004, in conjunction with the Medicare Discount Drug Card Program (MDDCP),

the U.S. Government activated a website to publicize prices for over 800 prescription drugs posted by

a large number of retail and mail-order pharmacies across all zip code areas in the United States. The

MDDCP was initiated as a transition to the broader Medicare Part D prescription drug assistance

program that went into e¤ect in January 2006, aiming to lower the cost of drugs and therapy for

elderly and handicapped individuals covered by Medicare. The website for the MDDCP contained

price information from individual pharmacies across the nation for prescription drugs used mostly by

Medicare eligible individuals, and it was updated continuously on a weekly basis. This mandatory

release of prices on the Internet continues under the Medicare Part D program and it is unmatched in

scale in the history of government policy on information transparency.

The MDDCP and its successor program, Medicare Part D, were supposed to induce competition

among drug companies, largely through the extensive price information that intermediary drug card

sponsors were required to post on the Medicare website. As a source of pressure to lower prices, intense

competition among drug cards was to replace the bargaining power that Medicare had previously used

directly with the drug companies. Under terms of the MDDCP and its Part D successor, Medicare is no

longer allowed to exercise its bargaining power in this way. But at the same time the MDDCP generated

price information to support competition among drug cards, the program design also required that

subscribers commit to a single drug card once they subscribed, rather than switch cards at will.

This institutional constraint on consumer switching could in principle act to inhibit competition by

introducing prohibitively high switching costs. Thus, a major question is whether MDDCP competition

among the drug-card sponsors was indeed e¤ective in lowering drug prices as intended.

Using a large sample of prices collected from the MDDCP website during several weeks of the

program, this paper studies the e¤ects of the release of price information on the functioning of the

prescription drug market that was created under the program. In particular, we focus on the e¤ect of

the release of on-line information about physical market prices on the evolution of prices in physical

markets. Our approach is to analyze the change in level and dispersion of prices after the MDDCP

price information became available to consumers on the Medicare website, and to compare price levels

with non-MDDCP drug prices for identi�cation of program e¤ects. We use the data to understand

the extent and determinants of price dispersion within the program and to investigate the dynamics

of prices over the course of the program.

The empirical analysis indicates that the program did not bring convergent prices for drugs, but

instead resulted in signi�cant dispersion in prices across drug cards. There was no obvious trend of

convergence in prices across drug cards. More importantly, the evidence also points to a non-monotonic

time-path for prices. The prices tended to decline initially in the early phases of the program when

card subscription was still di¤using across consumers, and they rose later when card subscription was

mostly complete and consumers could no longer switch cards, although the magnitudes of these trends

in prices were not exceptionally large relative to the average of prices at the beginning of the program.

Control prices unrelated to the program were collected contemporaneously from on-line drug retailers,
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and these control prices exhibited a steady upward trend throughout the MDDCP. In particular, when

MDDCP prices declined, on-line prices rose, and when both sets of prices rose, the rise in MDDCP

prices was actually greater than the rise in on-line prices. Thus, MDDCP prices evolved di¤erently

from the general evolution of prices outside the MDDCP. The time-path of prices within the MDDCP

cannot be simply explained away by general trends in drug prices. Program-speci�c e¤ects were

important.

We also use non-program nationwide average prices that were typically used to reimburse patients

to provide estimates of savings card users could obtain, excluding the enrollment fee. The estimates

suggest that there were some savings to naïve consumers, i.e. those consumers who do not engage in

vigorous search and simply buy randomly from a seller both under the regular prices and under the

program. The savings were almost twice as large for searching consumers who can locate the card with

the minimum price using the program�s search engine, but otherwise buy randomly from a seller in

the regular market. Naïve consumers, however, could actually save more by purchasing from on-line

retailers at non-program prices instead of purchasing using cards in the MDDCP.

Certain models of consumer search and access to price information, such as that of Stahl (1994),

predict that prices decline monotonically as the fraction of consumers informed about prices increases.

Such a monotonic decline does not emerge in our sample. While prices declined early in the program,

they tended to rise later on. The observed time-path of prices appears to be consistent with an

environment where the switching costs are high. Some dynamic models of price competition with

consumer switching costs, such as that of Klemperer (1987a,b), can account for the type of price

dynamics observed here. Anticipation of the fact that consumers would be stuck with their choices

escalates competition earlier on to attract and lock-in consumers, leading to lower prices initially but

higher prices later on. We elaborate further on the relevance of dynamic price competition models

with consumer switching costs below.

It is important to emphasize that the analysis in this paper is not a �before-and-after�comparison of

the evolution of prices, simply because no �before�is available; the cards did not exist before prices were

released on the Medicare website. Therefore, the analysis here cannot be classi�ed under the general

class of studies comparing the behavior of data with and without treatment, where identi�cation comes

from the presence of the treatment. Rather, the strategy followed here is to monitor the changes in

prices over time starting with the initial on-line release of prices and to compare the evolution with

that of a contemporaneous control group. Several reasons, discussed below, suggest that prices were

likely to change gradually over time, and the important question is how any change in prices can be

attributed to the program�s environment. As mentioned earlier, we rely on non-program drug prices

posted by on-line drug retailers as controls for general movements in drug prices, to identify and isolate

changes in program prices due to program-speci�c e¤ects. On-line prices are unlikely to be a¤ected by

the price choices made by cards within the MDDCP, because the program is applicable to a relatively

small fraction of the overall population of prescription drug users.1

This paper is related to a growing literature that analyzes the role of better consumer price in-

1The estimated target population by this program was about 7.5 million people under Medicare.
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formation on the functioning of markets (see, e.g., Milyo and Waldfogel (1999), Brown and Goolsbee

(2000), Brynjolfsson and Smith (2000), and Baye, Morgan, and Scholten (2005)). The paper, however,

di¤ers from the rest of this literature in a number of important ways. First, the availability of a large

amount of high-frequency (weekly) price data both across geography and over time allows us to make

a more comprehensive analysis than previous studies. Second, most studies �with the exception of

Brown and Goolsbee (2000) �only document the e¤ect of search on the Internet on on-line prices.

Instead, we are able to focus on the response of prices in the traditional market to the release of

price information on the Internet. In addition, under the MDDCP the release of price information

is mandatory, not voluntary, and it is exhaustive and covers all prices, rather than being limited to

a selected subset of all prices as is the case with most price search engines on the Internet.2 Third,

institutional aspects of the program, discussed in detail below, open the way for non-monotonic evo-

lution of prices, which is evident in the data. Such non-monotonicity is not expected when only the

improved price information for consumers is the primary driver of prices. Additional constraints of

the program seem to matter. In particular, the switching costs erected by the program are very likely

to be responsible for the type of dynamics observed, as predicted by models in the spirit of Klemperer

(1987a,b). Finally, this study has a policy relevance with potentially large welfare consequences. The

design of a viable prescription drug program for elderly is still a major policy issue and the success of

Medicare Part D remains to be seen. The analysis here provides evidence about the e¤ectiveness of

a government-sponsored program by analyzing the role of government-initiated release of information

on the functioning of the resulting prescription drug market. The results are therefore valuable for

understanding the e¤ects of public information policy and for assessing the future of Medicare Drug

policy.

The rest of the paper is organized as follows. Section 2 gives some background for the MDDCP.

Section 3 presents our theoretical motivation, based on literature for markets with imperfect informa-

tion and switching costs. Section 4 describes the data. Empirical analysis and results are in Section

5. Section 6 concludes.

2 The MDDCP Background

The design and the institutional environment of the MDDCP are crucial for understanding the

functioning of the retail drug markets that were created by the program. The MDDCP allowed quali�ed

drug-card sponsors to make arrangements with drug manufacturers to obtain discounts and pass the

discounts on to Medicare recipients. Eligible consumers could then strictly voluntarily subscribe to a

card of their choice and obtain their prescriptions at a discount speci�ed by the card sponsor, either

from retail pharmacies or by mail from mail-order pharmacies that have arrangements with the card

sponsor. To subscribe to a card, a consumer had to pay a �xed annual fee (for at most two years),

ranging between $0 and at most $30, and thereafter was entitled to receive that drug-card sponsor�s

discounts on all the drugs that sponsor covered. A consumer�s problem was thus to choose both the

2 Internet search engines have their own practices and some charge �rms to be included in the results of a price search

by consumers. See, e.g., Baye, Morgan and Scholten (2005) for more on the economics of price search engines.
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drug card and the retail (or mail-order) pharmacy that provided the best discount on the bundle of

drugs used by the consumer. The price information released on the Medicare website was designed to

facilitate the process of searching for cards and pharmacies, so consumers could �nd the best deals on

their bundles of drugs.

Institutional aspects of the program were critical in shaping the dynamics of program prices. First,

a card sponsor was not required to commit to a given level of discount on drugs over time, but instead

could change its prices at any time without notice. This �exibility in card prices left the door open

for price �uctuations that could result from competition among cards, above and beyond general

�uctuations in drug prices, such as those due to changes in manufacturers�costs or changes in demand

due to the introduction of a generic version of a drug. Similar �exibility was applicable to individual

pharmacies. For a given card, there was also no prior commitment for the prices to be the same across

all pharmacies that o¤ered discounts under the card. Thus, prices could potentially have evolved

di¤erently in di¤erent pharmacies and locations.

Second, in addition to the usual consumer search and switching costs that contribute to price

dispersion in drug retail markets (see, e.g., Sorensen (2000, 2001), Scott-Morton (1997)), prohibitive

consumer switching costs were erected by the very design of the program.3 Once enrolled in a card

program, a consumer was not allowed to switch to another card, except in certain special cases, such

as when a consumer moves to a new location or if a card sponsor exited from the market. This

restriction on switching introduced additional friction and inertia into the market, which may have

impeded reallocation of consumers to low price card sponsors over time. The MDDCP had a nationally

coordinated switching period between November 15 and December 31, 2004, during which consumers

were allowed to review their card choices and change them if they wished to do so. After this period,

which covered a window before a full year of the program, a consumer who is already enrolled in a card

was not allowed to switch to another card until the program terminated at the end of 2005, subject

to the exceptions mentioned. The prevention of switching after the switching period expired and

the timing of the switching period, could potentially lead to price dynamics driven by card sponsors�

incentives to charge lower prices in the early stages of the program in order to attract subscribers, and

then to increase their prices once consumers were locked in to their card choices.

Third, the di¤usion of card enrollment among eligible consumers was expected to be gradual over

time, not instantaneously. Related is the rate of the di¤usion of price search by consumers on the

program�s website. The enrollment was strictly voluntary and consumers had to evaluate card choices

before making a decision. One of the main criticisms of the MDDCP was the complexity of the

card-choice process, due to an abundance of alternative plans whose bene�ts were hard to assess.

This criticism applies equally to Medicare Part D, which began in January, 2006. Adding to this

complexity concern is the fact that most consumers eligible for cards were 65 years or older, not a

group of particularly Internet-savvy consumers, although their general Internet usage rate has been

rising over time.

3Usual switching costs in the context of prescription drugs include consumer learning costs about the side e¤ects of a

new drug that can substitute for the consumer�s existing drug and physicians�inertia in changing a prescription due to

rewards and loyalty programs o¤ered by the manufacturer or the wholesaler of that drug.
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Before the program went into e¤ect, Fox (2004) estimated that 22 percent of adults aged 65 and

older had access to the Internet. Of this group, an estimated 66 percent used the Internet to locate

health information, implying that about 14% of the relevant population used the Internet for health

information search. While these rates are not very high, they cannot be taken as de�nitive �gures for

predicting the di¤usion of price search under the MDDCP, because the program clearly gave incentives

for price comparison by promising discounts, making it di¤erent from casual health information search

or ordinary drug price search on the Internet. Therefore, the rate of di¤usion could actually have

been higher within the group of individuals eligible for the program. Some elderly, especially if

cognitively handicapped, also relied on agents such as relatives or care-givers to guide them through the

subscription process. Furthermore, some cards actually had subscription assistance programs, which

helped elderly citizens choose the best options for them. From a theoretical standpoint, the critical

mass of searching consumers needed to induce escalated competition among �rms may correspond to

very low actual fractions of consumers who search. While we do not have total enrollment data for the

MDDCP, recent evidence on the di¤usion of Medicare Part D suggests that about 90 percent coverage

of the people 65 and older was achieved within the �rst 6 months from the start of the program in

January 2006.4

Further evidence on consumers�enrollment and experience with the program comes from an Oc-

tober 2005 report on the progress of the MDDCP program prepared by Abt Associates, Inc. upon

request from the Centers for Medicare and Medicaid Services.5 Based on an extensive survey of card

enrollees and non-enrollees, the report found that wide-spread awareness of the MDDCP was obtained

within a few months of the program, mostly in the spring of 2004. Therefore, non-enrollment due to

lack of information about the program can be ruled out. A majority of the respondents reported that

they had more than enough information to make a choice among the cards, but about one quarter to

half of them did not consider more than just one drug card. Some of these consumers were simply

ignorant about card choice and took the �rst card that came their way, while others were auto-enrolled

by their State Pharmacy Assistance Programs or had their enrollment facilitated by the Center for

Medicaid Studies. Pharmacists played a key role in helping consumers choose a card in their best

interests.

Of more importance are estimates of the intensity of search for program price information on the

program website. The report reveals that about 13 percent of survey participants obtained information

from the Medicare website, either directly or with the help of a family member, friend or counselor

who accessed the website for them. Not too surprisingly, website usage rate was highest among

people eligible for Medicare due to disability and those who were younger and may therefore be more

comfortable with computer and Internet use. Many of those who accessed the website were enthusiastic

about it and found the information they were looking for, while some found the website confusing due

to the large number of card options listed. A major reason survey respondents gave for choosing a

card was that the card could be used at their pharmacy of choice. Cost of card ownership was also an

important consideration. About a third of the respondents said they paid less with the card they chose

4See Heiss, McFadden, and Winter (2006).
5See Hassol, Jureidini, Doksum, and Hadden (2005).
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compared with other cards, and that the annual enrollment fee for their chosen card was acceptable

to them. Some consumers simply opted for a free card, i.e. one with no annual fee, reasoning that

they had nothing to lose.

Overall, the available evidence suggests that the Medicare website and the price information posted

on the website were indeed utilized to some extent in making decisions, either directly by consumers or

indirectly through the assistance of others. However, given that the search rates were not impressively

large, whether the di¤usion of enrollment and access to price information was enough to make any

changes in prices is an empirical issue. We also note that card sponsors had to set their prices without

perfect information on the extent of consumer search for lower prices. Therefore, even though the

consumer search rates were not too high, card sponsors might have lowered their prices to attract

consumers in the absence of perfect information on the extent of price search. Next, we consider the

theoretical arguments that can shed light on what to expect in terms of the evolution of prices.

3 Theoretical considerations

Consumer search is an important source of price dispersion in retail drug markets (e.g. Sorensen

(2000, 2001)). Our focus is on the implications of models of consumer search and better access to

price information on �rms�pricing behavior, subject to the institutional aspects of the program. While

essentially static models of search are abundant in the literature (see, e.g., Salop and Stiglitz (1977),

Reinganum (1979), Burdett and Judd (1983), Stahl (1989)), a dynamic approach is most relevant for

our purposes, because we are not only interested in the static price dispersion in the market created

by the discount drug card program, but also in how prices evolve over time as switching costs change.

The central question is what happens as card subscription di¤uses over time and as subscribers

use price information on the program website to search for lower prices for their prescriptions, subject

to the institutional constraints of the program. In a static model of oligopolistic competition, where

a consumer is either completely uninformed of prices or fully informed, Stahl (1989) shows that as

the fraction of consumers who are informed increases, average price falls monotonically. However,

price dispersion exhibits non-monotonic behavior with respect to that fraction, initially increasing

for low values of the informed fraction, but decreasing for higher values. While comparative statics

from this static model can be used, as in Brown and Goolsbee (2000), to draw some conclusions

for an essentially dynamic framework, the MDDCP�s institutional environment introduces further

considerations for �rms�and consumer�s dynamic behavior.

As discussed in the previous section, a major constraint of the program is that it prevents consumers

from using more than one card, or from changing their card choices after they subscribe, with few

exceptions. After the initial enrollment period, there was a period of no switching and then the

November-December 2004 switching period, which fell roughly into the middle of the MDDCP and

allowed consumers to change their cards if they wished to do so. After the switching period, consumers

could not change their card choices till the termination of the program. As long as consumer search for

lower prices was e¤ective, the prohibitive switching cost could have induced card sponsors to compete

intensely in the early stages of the program to attract consumers who had not yet chosen a card.
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Such competition could bring lower prices. But as more and more consumers got locked in to their

choices, card sponsors would have incentive to raise prices. So after the switching period, prices may be

expected to rise as sponsors take advantage of consumers�inability to change cards. Overall, then, the

environment of the program could result in prices falling �rst during the early stages where enrollment

continued, possibly rising later until the switching period, falling again during the switching period,

and once again rising thereafter.

The conjectured time-path of prices can indeed arise in certain models of dynamic price competition

with consumer switching costs, such as those of Klemperer (1987a,b) and Farrell and Shapiro (1989)

in a two-period framework and that of Beggs and Klemperer (1992) in a multi-period framework.6

Because the MDDCP had a life-time of less than two years, �nite-horizon versions of these models

are more appropriate. Furthermore, cards are di¤erentiated in many dimensions, so a di¤erentiated-

products approach is reasonable. Klemperer (1987a) o¤ers exactly this type of framework, which

features a two-period di¤erentiated-products duopoly in which consumers are partially "locked in" by

switching costs that they face in the second period. These switching costs make demand more inelastic

in the second period. Perhaps less obviously, they also do so in the �rst period, because consumers

recognize that a �rm with a higher market share in the �rst period charges a higher price in the second

period, and hence they are less inclined to purchase from that �rm in the �rst period. Prices are lower

in the �rst period as �rms compete to build a customer base that is valuable later. However, prices

may be higher in both periods than they would be in a market without switching costs. Klemperer

(1987b) has similar �ndings, but in a homogeneous product case. Theoretically, the MDDCP erected

in�nitely large switching costs, so we expect the price e¤ects outlined above to be pronounced.

There are two main considerations under MDDCP that can make the price dynamics di¤erent

than in Klemperer (1987b). First, Klemperer (1987b) assumes perfect consumer information about

prices, whereas some card enrollees under MDDCP chose their drugs under imperfect information

about prices, according to the available evidence. Lack of perfect information about prices would not

change the competition in the second period of these models, because the constraints on switching

would prevent consumers from abandoning their �rms even if they were informed of a lower price at

some point. However, the intensity of competition in the �rst period could change. Firms could take

advantage of consumers�imperfect information and not lower their prices as much as they would in

the case of perfect information in Klemperer (1987b). Nevertheless, if a critical mass of consumers

searches, even with imperfect information we would still expect to see lower prices in the �rst period.

Second, there is no arti�cially introduced "switching period" in Klemperer (1987b). The MDDCP�s

allowance for a round of card-switching in the middle of the program creates incentives for a price war

by card sponsors. An implication is that, in addition to lower prices at the early phases of the program,

we expect to see lower prices during the switching period, compared to non-switching periods.

Certain considerations, however, may have prevented the predicted non-monotonic path for prices.

Given the continuing nature of the prescription drug program with Part D, card sponsors who use

bait-and-switch strategies could su¤er harm to their reputations. While the MDDCP itself lasted only

6For more references to the literature on dynamic competition with switching costs, see Beggs and Klemperer (1992).
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two years, many of the card sponsors continued on to participate in Medicare Part D when it started in

January 2006, so sponsors had to also consider the possibility of alienating consumers because of bait-

and-switch price strategies. One of the program�s goals, as stated in the Medicare�s program-related

website, was to monitor prices and prevent bait-and-switch behavior. However, the program did not

spell out any strict guidelines as to what exactly constitutes bait-and-switch and there appeared to be

little enforcement to prevent such behavior. In addition, the nationally co-ordinated switching period

gave all card sponsors a clear incentive to reduce their prices and raise them thereafter. If many

sponsors engage in a price reduction during that period and raise their prices later, it is hard to single

out a sponsor�s pricing behavior and label it "deviant".

The discussion so far suggests that the level of program prices may not have declined steadily

over time but instead could fall in switching periods and rise in non-switching periods. What about

the dispersion of prices? As mentioned earlier, we expect a decline in the dispersion of prices under

many models of consumer search with homogenous products. One reason such convergence in prices

might not occur here is the heterogeneity of the drug cards. While all cards promised discounts, their

geographic coverage, drug coverage (formulary), and eligibility criteria di¤ered to some extent. As

a result, it is possible that di¤erent cards ended up serving distinct or at least partially overlapping

consumer segments, e¤ectively resulting in a market with di¤erentiated products. In addition, the

complexity of the card choice process and the abundance of alternatives, coupled with some evidence

that price search was not very intense, may also prevent a strong convergence in prices. Switching

costs can also prevent prices from converging over time. When consumers get locked in to their choices,

each card could charge its own preferred price for a drug, which is not likely to be identical across

cards due to product di¤erentiation.

In summary, in view of the institutional environment of the program and the predictions arising

from models of dynamic competition with switching costs, we expect to observe a non-monotonic path

for prices. However, the degree of initial decline and subsequent rise in prices, the exact timing and

duration of each episode, and the change in the dispersion of prices all depend on the underlying

fundamentals, and the pattern the program prices will follow is ultimately an empirical issue.

4 Data

In this section we describe the drugs for which data were collected, the geographic areas covered,

the timing of data collection, and the other prices that were obtained for control purposes.

4.1 Drugs

Prices were collected for 28 prescription drugs, which were chosen based on the following three

criteria. First, all the drugs were in the top 100 drugs in claims �led by the elderly in 2001, and in the

top 200 highest selling drugs for the elderly in 2003. This selection of relatively popular drugs ensures

that each drug had su¢ ciently large demand and also was supplied by many cards. In fact, all cards

supplied all 28 drugs in our sample. The relatively high demand for these drugs implies that the price
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dynamics we look for are likely to have been apparent and economically important for these drugs,

compared to obscure drugs that are demanded less. Second, half of the drugs are short-term drugs,

such as antibiotics and pain killers, and the other half are long-term, maintenance drugs, such as those

used for diabetes and cardiovascular diseases. The evolution of short-term drug prices is expected to

be di¤erent from that of maintenance drugs, for which consumers are likely to search more intensely

for a bargain. Finally, drug dosages were selected to re�ect the most frequently prescribed dosages for

the drugs, so that the demand is large relative to what would be in the cases with unusually high or

low dosages.7 Each drug price pertains to a 30-day supply of the drug. The drugs and some of their

attributes are presented in Table 1.

4.2 Geographic areas

The price data from the Medicare website come in clusters of zip codes. Ninety zip codes were

chosen by using a random strati�ed sampling, strati�ed to oversample zip codes that have a greater

fraction of the population made up of elderly residents (individuals who are 65 years of age or older).

To see if there were any demand-side e¤ects on prices, we needed to ensure a su¢ cient variation in

market size and other demand shifters, such as income, for discount drugs. The population of residents

who are 65 or older in a zip code is a proxy for the local market size for cards, and the variation in

this variable will allow us to understand the role of market size in assessing geographic di¤erences in

prices, if such di¤erences are indeed there. The fraction of elderly people in a zip code population

varies in our sample from a low of 3 percent to a high of 92.6 percent, with an average of 28 percent

and a standard deviation of 25 percent. To analyze the e¤ect of possible demand shifters, such as

income and race composition, on price dispersion across zip codes, we have also gathered zip code

level demographic data from the U.S. Census Bureau�s 2000 Zip Code Statistics, as shown in Table 2.

The program�s price search engine listed prices for all pharmacies within a circle of a certain radius

whose center coincides with the center of the selected zip code area. Depending on the radius of

choice, this circle contains the pharmacies not only inside the chosen zip code area, but also ones in

neighboring zip codes. The search engine allowed for a choice of 4 di¤erent radii for any given zip

code, and these radii varied by zip code. For densely populated urban areas, radii tended to be much

smaller, whereas for less densely populated suburban and rural areas, the radii were larger, so that

card holders in these areas could obtain price information for a su¢ cient number of pharmacies within

a broader driving distance. However, the program website did not provide any information on exactly

how these radii were determined for a given zip code. We chose to collect price data for all pharmacies

within the smallest and the second smallest radii around a given zip code. This selection of radii

enables us to assess the sensitivity of our results on the average and the dispersion of prices to the

choice of radius.
7Drug-speci�c information was obtained from Mosby�s Drug Consult (2004, 2005), which features information on the

typical usage and dosages of drugs.
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4.3 Timing of data collection

The price data were updated weekly on the Medicare website between May 29, 2004 and December

31, 2005. As shown in Figure 1, the sample in this paper was collected for several weeks in order to

cover important periods of time during which the MDDCP was in e¤ect.8 Prices were �rst made

available on-line on May 29, 2004 and enrollment actually began even earlier, on May 3, 2004. Data

collection was initiated on June 21, 2004, three weeks after subscribers were �rst allowed to use their

cards under the program.9

The �rst wave of data was collected each week for a period of 7 weeks during the summer of 2004.

We refer to this period as the pre-switching period. The second wave was collected during the last

week of December 2004. This week falls into the period between November 15 and December 31, which

was the nationally coordinated switching period. Price observations from this period enable us to test

whether card sponsors lowered their prices in an e¤ort to induce switches. Finally, the third wave was

collected after the switching period was over, to assess the behavior of prices during the period when

switching cards was not allowed. This period consists of 9 weeks of data. We label this period the

post-switching period.

Each price observation pertains to a drug sold by a pharmacy at a given location under the discount

o¤ered by a given card at a point in time. All retail prices pertain to a one-month (30-day) supply of

a drug. The prices are posted prices, not necessarily transaction prices. Transactions may have taken

place only at a subset of the posted prices, and some cards may have had no sales for some drugs.

Lacking sales data, we are unable to make any statements on these issues. No card sponsor imposed

any explicit restrictions on the geographic variation in prices. The information that many national

card sponsors provided on their web-sites (and in their brochures) allowed for price variation across

pharmacies and over time.10 Geographic variation may have occurred for several reasons, including

the changing demand and cost conditions individual pharmacies face across locations or simply the

changing composition of cards across locations.

4.4 Other price data

Part of our analysis aims to assess the magnitude of savings o¤ered through the cards by con-

trolling for changes in the general level of drug prices unrelated to the MDDCP. Ideal control data for

this purpose would be comparable pharmacy-level non-program retail price data collected at a weekly

frequency to match the sample of MDDCP prices. Unfortunately, such detailed data are di¢ cult to

8The data collection process was automated using a web-crawler software (IOpus Internet Macros) that allowed

periodical recording of the data from the Medicare website.
9The price data during the initial weeks of the program contained certain glitches, as noted by others (see, e.g., Antos

and Pinell (2004)). Some prices reported by pharmacies were found to be inaccurate and incorrect. However, these

problems were �xed to a large extent within the �rst couple of weeks of the program. To ensure reliable data, we started

collection in the 4th week of the program.
10A brochure o¤ered by a Walgreens store in Houston, Texas speci�cally stated that prices are subject to change from

one store to the other and over time.
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�nd, and data available are very expensive.11 Instead, we collected nation-wide wholesale prices for

the drugs in our sample. These prices come from Mosby�s Drug Consult (2004, 2005), which lists prices

for major drug wholesalers by dosage and duration. They are a representative sample of the wholesale

prices typically used to reimburse patients on their prescriptions.12 Unlike the card prices, however,

these prices are not available by geographic units; rather, a single nationwide price is reported by

each supplier (usually a manufacturer). In addition, the price quotes are not available at a weekly

frequency. Instead, they are representative of the price levels that prevailed for the year the database

was formed. Despite their shortcomings, these prices are the best readily available benchmarks and

can be used as good approximations to compare discount drug card prices to regular prices consumers

pay.

Another important issue is the identi�cation of program e¤ects. To attribute the evolution of

prices to program-speci�cs, one needs to weed out the general trends exhibited by drug prices over

the course of the program. For this purpose, we collected concurrent weekly prices posted by Internet

drug retailers for the same drugs and dosages as in the program data. We used a major Internet

prescription drug search engine provided by Destinationrx.com, which quotes prices from several In-

ternet drug retailers.13 There are eight on-line retailers in our sample. These are on-line stores of

some major discount retailers (Costco.com andWalmart.com), on-line stores of some large drug retail

chains (CVS.com and Walgreens.com), some specialized on-line drug retailers (RxUSA.com, Drug-

store.com, and Homemed.com), and the pharmacy branch of a major health care service provider

(AARPharmacy.com).

Unlike program prices, on-line prices exhibit no geographic variation. Because they are subject to

general nationwide trends in drug prices, they can serve as a good comparison group for the prices

posted by card sponsors. The purpose of this comparison is two-fold: First, it allows us to assess

whether consumers would be able to obtain lower prices simply by purchasing on-line, rather than

going through the process of choosing a card and hunting for lower prices. Shopping from on-line

retailers is arguably a much simpler and more �exible way of obtaining drugs compared to the whole

process of choosing a drug card that provides the best deal. Second, and more importantly, on-line

prices can be used to control for general changes in drug prices unrelated to the program. Drug prices

can change over time due to changes in manufacturers� costs, general in�ation, or other common

factors. All such general trends would apply equally to MDDCP prices and on-line prices. Therefore,

if di¤erent time patterns are observed for program versus other on-line prices, it is likely that program

11For the entire set of zip codes, we were quoted a price of about $50,000 by IMS, Inc., a �rm that gathers zip-code-level

price data from pharmacies. The �rm was unwilling to release any partial data at a lower cost for the smaller set of zip

codes we use.
12The nature of these prices are described in Mosby�s as follows: �Prices are AWP (average wholesale price), a

benchmark price used for reimbursement. AWP represents what a retail pharmacist or a dispensing physician might pay

for a product, without any special discounts. There are, however, many discounts already in place, so the AWP can

often approximate the price that a consumer might pay. The prices listed here are not intended to serve as an up-to-date

substitute for supplier price lists. The price listings give the reader a good idea of the range between the high and low

prices.�For further information on the nature of these prices, visit http://www.mosbydrugs.com.
13Once again, the data collection process was automated using IOpus Internet Macros that allowed periodical recording

of the data from the website DestinationRX.com.
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e¤ects are an important cause.

5 Analysis

We begin with an analysis of di¤erences in price levels in Section 5.1. These di¤erences result

primarily from price di¤erences across cards, but a host of card characteristics and geographic area

characteristics help to explain the di¤erences. Section 5.2 estimates the extent of savings that may

be possible through the MDDCP. Section 5.3 focuses on dynamics, to see whether prices fell initially

when consumers �rst chose their cards and during the switching period, and then rose in periods when

consumers were unable to switch cards. The entire analysis of this section uses the second smallest

radius for each zip code. The results turned out to be very similar when the smallest radius was used

instead.

5.1 Analysis of price di¤erences

The starting point is to understand whether there was signi�cant price dispersion in the market

for discount drug cards and, if so, what drove that dispersion. Figure 2 illustrates the dispersion of

prices for one of the drugs, Lipitor, for the week of June 28-July 3, 2004. The upper left panel is the

histogram of the entire set of Lipitor prices observed across cards, zip codes and pharmacies. The

upper right panel is the distribution of average price of a drug within a card. The average for a card

is calculated using all price observations pertaining to the card. The average price varies between

about $65 and $74. However, as shown in the lower two panels, the dispersion of price within a card is

usually very small, amounting to an economically negligible variation within a card across pharmacies.

This �nding points to almost uniform pricing by cards across pharmacies and locations even though

such uniformity was not explicitly guaranteed by any card.

To see whether the pattern in Figure 2 is typical of all drugs, we consider a general expression for

the price pdrcz of drug d o¤ered by card c at pharmacy r in zipcode z at time t

pdrczt = �+ fd + fr + fc + fz + ft + edrczt; (1)

where � is a constant, fi is a �xed e¤ect for i 2 fd; r; c; z; tg and edrczt is a zero mean error term that

accounts for remaining unobserved factors. The contribution of each of the three main factors to the

overall variation in price can be analyzed by using analysis of variance (ANOVA) to understand the

components of variation in prices. Since pharmacies are �nested�within zipcodes, a nested ANOVA

was performed to decompose the total variation in prices for each drug.

Results of ANOVA for the �rst week of data (June 21 to June 26, 2004) are shown in Table 3.

The variation in price of any drug across cards is the major component of the total variation in drug

prices. On average, about 87 percent of the total variation in price is explained by cards, and there

is little variation in price within cards. The variations across zipcodes and pharmacies are usually

dwarfed by the substantial variation across cards. The hypothesis that the average price of a drug is

equal across cards is rejected strongly for all drugs. We repeated ANOVA for other weeks and the

�ndings supported the same conclusions.
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We also performed ANOVA for mail order prices for cards that o¤er a mail-order option. We

expected to see zero variation in mail-order prices across zipcodes, as these prices, by de�nition, should

be independent of geographic location, excluding any shipping costs. Indeed, the results suggested

that the entire variation in the case of mail-order prices excluding shipping charges is attributable to

the cards.

5.2 Geographic variation in prices

The �nding in the previous section that there is little variation in retail prices across zip codes

opens the question of how much geography matters for pharmacies�pricing behavior, if it matters at

all. By the e¤ect of geography, we mean the location-speci�c factors that may a¤ect prices, such as

income level of residents, population, age composition in a location, which are particularly relevant as

demand shifters.

It is important to be able to control for all other factors in investigating geographic variation

in prices. The ideal experiment would look at the geographic variation in prices for a given drug-

card combination, holding constant the pharmacy composition across zip codes. Such an experiment

is impossible, however, because pharmacy composition changes across zip codes. Nevertheless, one

comes close to this ideal experiment by looking at the prices charged by the stores of a given pharmacy

chain across zip codes. The individual stores of a chain, such as Walgreens or CVS, tend to have very

similar structures and practices, so a good �rst-order approximation can be obtained by assuming

that the store-level features are roughly constant across zip codes for a given chain. Of course, in

the context of the MDDCP there may have been other restrictions supporting uniform prices across

stores of a chain. Certain cards may have required chain stores to have uniform prices across all zip

codes as part of their arrangements with a pharmacy chain. However, such arrangements were rarely

explicit and cannot be taken for granted. For instance, as mentioned earlier, the brochure describing

the details of Walgreen�s discount drug card stated that prices may vary by store location.

To obtain more insight, we documented the distribution of prices for major chains in our data.

Each panel in Figure 3 contains the histogram of the coe¢ cient of variation of prices across the stores

of a chain for all drug-card combinations �approximately 1400 combinations �for the week of June 28-

July 3, 2004. For each drug-card combination, we calculated the coe¢ cient of variation of prices across

all stores of a pharmacy chain and then arranged these coe¢ cients in a histogram. The histograms and

the related summary statistics indicate that for most, but not all, cases the coe¢ cient of variation was

exactly zero: there was little or no variation in prices across stores of a given chain. This means that

the price variation across zip codes arose mainly because the composition of cards and pharmacies

changed across zip codes. Di¤erent compositions by zip codes might have motivated consumers to

search beyond their immediate neighborhoods for cards and pharmacies that o¤er good deals.

5.3 Sources of price variation

While the analysis of variance in prices clearly indicates that much of the cross-sectional variation

was attributable to the variation across cards, it does not provide information about speci�c factors
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responsible for this variation. Identifying key demand and supply factors that a¤ect prices is important

for understanding why prices di¤ered across drugs, cards, pharmacies, or zip codes.

Consider the following version of (1) that includes explanatory variables explicitly for a given a

time period t

pdrcz = �+ �
0
dXd + �

0
rXr + �

0
cXc + �

0
zXz + "drcz; (2)

where �i is a Ki � 1 vector of coe¢ cients and Xi is a Ki �N matrix of observables, for i = d; r; c; z:

Each Xi has the form h
x1 x2 : : : xKi

i0
;

where xj is a N � 1 vector that contains variables speci�c to cluster j = 1; :::;Ki within group

i = d; r; c; z:

The structure of the error term in (2) is assumed to be

"drcz = "d + "r + "c + "z + edrcz; (3)

where edrcz is the error term in (2). The terms "i (i 2 fr; d; c; zg) represent the remaining unobserved
part of the �xed e¤ect fi after the observable Xi is added to the speci�cation in (1) to obtain (2).

Note that (3) implies that error terms are correlated within drugs, cards, pharmacies and zipcodes,

due to the presence of cluster-speci�c errors "i (i 2 fr; d; c; zg). Since the unobserved components "i
are �xed over time, we can include dummy variables for drugs, cards, pharmacies, and zipcodes to

account for these unobserved e¤ects. Because these dummies absorb all the remaining �xed e¤ects,

the error term (3) reduces to edrcz as in (1), and we can implement the regression in (2) without using

any cluster e¤ects.14

The results of the regression are shown in Table 4 for two speci�cations for the week of June 21

to 27, 2004. We used the same speci�cation for other time periods and the results were robust. In

evaluating the results, it should be kept in mind that the drugs in our sample form only a small

subset of all drugs (28 drugs out of more than 800) covered by the MDDCP. Therefore, some of the

characteristics that would in general apply to the drugs in the entire list of the MDDCP may not be

fully represented in this relatively small sample.

The explanatory variables, including the dummies, account for 98 percent of the variation in prices.

Given the large number of observations, all coe¢ cients are precisely estimated. Some of the coe¢ cient

estimates are worth highlighting. Long-term, maintenance drugs in our sample are on average cheaper

than the short-term drugs, based on the prices for 30-day supplies. This should not be taken as evidence

of the cost-of-therapy being lower for long-term drugs in general, because long-term prescriptions are

typically renewed for several months and some short-term prescriptions are prescribed for periods

shorter than a month, such as some antibiotics (e.g., Zithromax) that are used for intense treatment

for a week in certain cases. If the drug is used only 7 days, the cost of a therapy will be low.

14Because there is a very large number of dummy variables in this regression, in particular more than 1000 pharmacy

dummies, we use the �de-meaned� regression approach (see, e.g. Greene (1993), pp. 468-469). By de-meaning the

observations by pharmacy, we get rid of the pharmacy dummies and still obtain the usual OLS estimates for the coe¢ cients

of interest.
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Generic drugs and brand name drugs for which generic alternatives are available are cheaper, as

might be expected. The prices are also lower for drugs that are prescribed more often. The drugs with

expired patents appear to have higher prices, and those with an unexpired exclusive patent command

even higher prices. In addition, newer drugs have higher prices, as indicated by the positive coe¢ cient

on the year of approval by the FDA.

The coe¢ cients on selected pharmacy chains suggest that Wal-mart had slightly higher prices, by

about 14 cents, than the omitted category of all remaining pharmacies, while CVS prices were lower

by about a dollar. Eckerd, which merged with CVS in the spring of 2004 shortly before the MDDCP

went into e¤ect, had prices that were higher by about 70 cents.

Turning to the card characteristics, cards with national coverage, with higher subscription fees,

with a mail-order service and with a broader formulary tended to have higher prices. Cards that

had arrangements to provide discounts with a larger number of drug manufacturers and cards that

provided enrollment assistance had lower prices. It appears that certain quality dimensions, such as

formulary breadth, extensive geographic coverage, and cost-reducing features such as association with

a larger number of manufacturers, were important for the variation of price across card sponsors.

Characteristics of geographical, or zip-code, areas also in�uenced prices to some extent. Zip codes

with a higher fraction of elderly in the population had lower prices. Zip codes with a higher median

household income also had lower prices, while zip codes with higher housing rents were associated with

higher drug prices. However, the magnitudes of the estimated coe¢ cients for these variables are very

small. As discussed earlier, much of the e¤ects of geographic control variables come from the changing

composition of cards and pharmacies across locations. For instance, the observation that the zip codes

with a higher fraction of elderly had lower prices implies that these high-elderly-fraction zipcodes

attracted cards and pharmacies with lower prices, not because certain cards speci�cally charged lower

prices in these zip codes compared to other zip codes they operate in.

5.4 Estimates of savings

The di¤erences in prices across cards found in the previous section raises the following questions:

Were the price di¤erences large enough to reward searching for lower prices across the di¤erent cards?

How big were the discounts o¤ered by the cards compared to non-card prices? Several small-scale

studies tried to assess the extent of the discounts in the early phases of the program with only a

handful of drugs and a few zipcodes.15 Such investigations generally found some savings accruing to

card holders, but the very small scale of these investigations prevented any general conclusions on the

magnitude and extent of savings.

In what follows, we ignore the sunk cost (the enrollment fee) of card ownership and only look at the

savings a card owner could obtain from using his card to purchase at card prices versus purchasing at

regular retail or on-line prices.16 To obtain estimates of savings we used regular drug prices reported

by Mosby�s Drug Consult database. De�ne pdt and p
min
dt as the average and the minimum of the

15See, e.g. Antos and Ximena (2004). Their approach is to �rst identify a few health conditions that are common in

the elderly and then to calculate the total price of a bundle of drugs typically prescribed to remedy these conditions.
16The enrollment fee was zero for many cards and could not exceed $30 under the program.
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average price of a drug across cards in a given week t

pdt =
1

Ct

X
c

pdct =
1

Ct

X
c

 
1

nct

X
z

X
r

prdczt

!
; (4)

pmindt = min
c
pdct:

Similarly, de�ne the average and minimum regular prices obtained from Mosby�s (2004) database as

pRd =
1

nd

X
i

pRdi; (5)

pR;mind = min
i
pdi;

where i indexes the wholesalers listed in the Mosby�s database for a given drug and dosage for a given

year.

In addition to the prices in Mosby�s database, a separate, independent source is the set of prices

we collected from on-line pharmacies, as described earlier. Let pIdit be the price posted by an Internet

retailer i for drug d at week t: Analogous to (5), de�ne the average and minimum prices for on-line

retailers as pIdt and p
I;min
dt :

We now de�ne several alternative measures of potential savings. The �rst measure is the savings a

"naïve" (or non-searching, or uninformed) consumer could obtain. A naïve consumer is de�ned as one

who purchases randomly from one of the �rms with equal probabilities of sampling across available

options in the market. For a single purchase of the drug at a given point in time, if this consumer uses

a card instead of buying at the regular wholesale price, his saving is the percentage di¤erence between

the average regular price and the average card price. We report the average of this saving across all

weeks in the data in percentage form as follows

Snaïved =
100

T

TX
t=1

�
pRd � pdt
pRd

�
: (6)

The second measure is the savings that accrued to a consumer, called a "searcher", who used

the program website to search for the lowest price card for a given drug, but otherwise would have

purchased randomly in the regular market due either to high search costs in the geographic market or

to the absence of any comprehensive price listings for all the pharmacies in the consumer�s geographic

neighborhood. The savings of such a consumer is de�ned as the percentage di¤erence between the

average price in the regular market and the minimum price in the discount card market averaged

across weeks, and is obtained simply by replacing pdt in (6) by p
min
dt :

The third measure we consider is the savings an "expert" consumer could obtain. An expert

consumer is de�ned as one who is fully informed of prices in both markets and thus is always able

to purchase at the minimum price. The average savings across weeks for such a consumer is formally

de�ned as the percentage di¤erence between the minimum price in the regular market and the minimum

price in the discount card market averaged across weeks, and is obtained by replacing pRd in (6) by

pR;mind and pdt by p
min
dt :
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Following Baye, Morgan, and Scholten (2003), we also de�ne the �value of information� in the

discount drug card market. This measure gives the saving of a consumer fully informed of all card

prices with respect to that of a naïve consumer who purchases randomly from one of the cards:

V cardd =
100

T

TX
t=1

�
pd � pmind

pd

�
: (7)

We can de�ne analogous savings measures by using on-line prices as a benchmark, instead of the

Mosby�s prices. The de�nitions of savings for naïves, searchers and experts can be easily modi�ed to

obtain the savings compared to on-line prices by replacing the statistics pertaining to Mosby�s prices

with their on-line counterparts. In addition, we report for each drug the value of information for

regular prices listed in Mosby�s database and for the on-line prices.

The savings measures and the values of information de�ned above are reported by drug in Table

5. First, note that the average savings compared to Mosby�s prices were positive and signi�cantly

di¤erent from zero. A naïve consumer could obtain an average savings of 11.2%. The average savings

were even higher for a searcher, about 25%. An expert consumer, on the other hand, had little to

gain from purchasing in the discount card market: an average savings of only 2.3% accrued to such a

consumer. Because most of the drug card users were most likely non-experts in search, the estimates

of savings to naïve consumers, or at best to searchers, is likely to be the most reasonable estimate.

When we consider the savings with respect to on-line prices, a somewhat di¤erent picture emerges.

A searcher still could obtain an average savings of 16.3% by purchasing at the minimum card price

instead of purchasing randomly from one of the on-line pharmacies. However, the bene�t for a naïve

consumer was negative (but statistically insigni�cant), and an expert consumer could obtain positive

(again statistically insigni�cant) savings. Thus, compared with on-line prices, card prices did not

appear to provide substantial savings. Also the average value of information was the highest for

regular prices, indicating the biggest rewards to search, with an average savings for an informed

consumer that amounted to around 20% of the average price. These savings were followed closely by

card prices. Value of information in the on-line market was the lowest.

Overall, the results indicate that cards could in principle provide some savings even to consumers

who were not sophisticated bargain hunters, but such savings were not substantial. The returns to

vigorous search across di¤erent channels of sale appear to be higher. The users of medicare search

tools could expect to obtain some savings especially if they had no other means of search for lower

prices in the regular retail market.

We do not attempt to draw any conclusions regarding the competitiveness of the three markets

solely based on the value of information because markets di¤er, among other dimensions, in terms

of the number of �rms and the degree of competition. The value of information depends on the

number of �rms serving the market under many models of competition.17 In addition, any welfare

consequences based on savings would be misleading because consumer welfare does not depend only

on prices. Finally, drug cards were heterogeneous in many dimensions, so a consumer was not likely

to choose a card based solely on price.

17See Baye, Morgan, and Scholten (2002) for more on the determinants of the value of information.
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5.5 Dynamics of prices

We now turn to the evolution of prices through the MDDCP. Price changes within two balanced

panels of pharmacies from the pre-switching period and the post-switching period are examined in

Section 5.3.1. The behavior of prices around the switching period is investigated in Section 5.3.2. The

evolution of on-line prices is examined for comparison with program prices in Section 5.3.3. Section

5.3.4 considers the evolution of price dispersion within the program.

5.5.1 Results from the balanced panels

Using a slight modi�cation of (1), a price observation can be written as

pdrczt = �+ ft + fct + fdt + fd + fc + fr + fz + �drczt; (8)

where we introduced the interaction terms fct, a card and time speci�c e¤ect, and fdt, a drug and time

speci�c e¤ect. The term fct captures potentially di¤erent behavior of cards over time. Di¤erent cards

may have had di¤erent pricing policies that may have depended on time as the state of the competition

between cards changed. Therefore, we allow for card e¤ects to interact with time. In addition, the time

and drug interaction e¤ect, fdt; captures the possibility of di¤erent drugs experiencing di¤erent price

changes over time, e.g. cards may have competed more intensely in certain popular drug categories.

The �xed e¤ect ft can be interpreted as the general time e¤ect on prices, which is a blend of the

program�s e¤ect on price and general �uctuations in drug prices outside the program, such as overall

in�ation or changes in manufacturers�costs.

The speci�cation in (8) can be estimated using our unbalanced panel of observations. There are two

drawbacks to this approach. First, there is a very large number of e¤ects (both pure and interaction

e¤ects) to be estimated, which demands a large memory in any standard software. Second, and more

importantly, the included e¤ects are not guaranteed to exhaust the set of relevant e¤ects which may

lead to omitted variable bias, and the time-invariant �xed e¤ects can potentially be correlated with

the error term. One approach to alleviate these concerns is to use time-di¤erencing, which gets rid of

the time-invariant �xed e¤ects. Taking the di¤erence of the prices for two consecutive time periods t

and t0 we obtain

�pdrczt = dct + ddt + dt + �drczt; (9)

where

dct = (fct0 � fct); (10)

ddt = (fdt0 � fdt);

dt = (ft0 � ft);

�drczt = (�drczt0 � �drczt):

By �rst-di¤erencing in time, we get rid of all the �xed e¤ects that pertain to pharmacies, cards,

drugs and zipcodes, and we are left with only the time e¤ects that we want to focus on. Note that
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di¤erencing works only if we have the exact same pharmacies across the two time periods. Therefore,

we need to restrict attention to a common set of pharmacies (a balanced panel) across time periods.

Now, consider the following regression based on (8):

�pdrczt = �ctDct + �dtDdt + �tDt + �drczt; (11)

where Dct, Ddt and Dt are dummies for the di¤erenced e¤ects dct, ddt and dt. Starting with t = 1 and

t = 2; we can take the pairwise di¤erences of average prices for consecutive time periods, and then

stack them up on the left hand side to run the regression (11) and obtain the estimated coe¢ cients b�ct;b�dt and b�t which are the OLS estimates of dct; ddt; and dt; respectively. By the structure in (10), the
error term �drczt has serial correlation, which we take into account in estimating the standard errors.

Estimation (11) can be implemented for a balanced panel of observations. One problem with this

approach is that the resulting panel has a low cross-sectional dimension if we restrict attention only

to observations common across all weeks of data in the sample period. Due to DNS (Domain Name

Service) errors that occurred randomly over time during data collection in repeatedly accessing the

website, there was some random attrition in our sample and the balanced panel that can be constructed

across all weeks of observation is limited in its size.18 Because the attrition was entirely random across

observations, there is no concern about a systematic bias in the sample. As a solution, we implement

(11) separately for the 7 weeks in the pre-switching period and then for the 9 weeks in the post-

switching period. This approach allows us to have a large number of cross-sectional observations for

both periods. However, the observation units in the balanced panel for the post-switching period are

not exactly the same as those in the balanced panel for the pre-switching period, once again because

of the random attrition in the sample. We handle the data for the switching period separately as

discussed below.

We �rst consider the evolution of prices using a panel from weeks 4 to 10 of the program, the

pre-switching period. The results of the di¤erence regression for this period are shown in the left

panel of Table 6. The estimated coe¢ cients b�t are all negative and statistically signi�cant, except for
week 5 of the program. Most of the drop in prices in this period took place between the 5th and 8th

weeks, resulting in a decline in general level of prices of about $4.77. By the end of the 10th week,

the prices were lower by about $4.63. However, this reduction represents a small portion (� 5:5%) of
the average ($81:90) of all price observations during the 4th week of the program when data collection

began.

We repeated the analysis for the post-switching period using a balanced panel. The evolution

of the prices in the sample of weeks from the post-switching period shows a very di¤erent pattern

compared to the pre-switching period, as seen in the right panel of Table 6. In fact, the estimated �0ts

are all positive and statistically signi�cant for this period, even though their magnitudes are di¤erent.

Between the starting and ending weeks of the sample in the post-switching period, prices rose by

18DNS errors tended to occur when the website was repeatedly accessed. In general, there may be several reasons

behind a DNS error, one of which is to prevent repeated accesses to the same website from an individual computer

identi�ed by an IP address. Such errors are issued to prevent "suspicious" access to the website. Certain websites can

also "block" access from an IP address temporarily as a security measure.
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about $8; controlling for drug and card e¤ects. Much of this increase took place between the end of

the switching period and the end of June 2005. Thereafter, prices somewhat stabilized and did not

increase by much. Between the end of the switching period and the end of June, prices rose at a pace

of about $2 a month. The total rise in prices represents about 9:5% of the average drug price in the

4th week of the program. While we are unable to make statements at this point on what exactly

happened to prices during the period between the last week of the pre-switching period and the �rst

week of the post-switching period, the initial decline in prices in the early phases of the program and

the subsequent rise in the later phases appears to be consistent with the price dynamics one would

expect when switching costs are important. Below, we also consider the pattern of prices for the single

week of price observations we have from the switching period.

Figure 4 displays the discrepancy in the average evolution of prices for di¤erent cards and drugs.

Speci�cally, the upper two histograms display the frequency distributions of the time-average of the

card-time plus the pure-time e¤ects

b�c = 1

T

TX
t=1

�b�t + b�ct� ;
for the pre- and post-switching periods, on the left and on the right panels, respectively. The bottom

two panels contain the frequency distributions of the time-average of the drug-time plus the pure-time

e¤ects b�d = 1

T

TX
t=1

�b�t + b�dt� ;
for the pre-switching period on the left and the post-switching period on the right. The time-averaging

reveals the average tendency of the interaction e¤ects within a given period. As evident from the

histograms on the left hand sides of the upper and lower panels, most cards and drugs had lower prices

on average during the pre-switching period. However, located in the right tails of these histograms,

there were a few outlier cards and drugs that exhibited an average upward trend in prices even during

this period. In contrast, for the post-switching period, all cards and drugs exhibited an average upward

trend in price, as seen in the histograms on the right hand side of the upper and lower panels. Overall,

these histograms suggest that prices of cards and drugs on average moved in the same direction within

the pre- and post-switching periods with few exceptions.

We also repeated estimation (11) by adding a long-term drug dummy interacted with a time dummy

to explore whether the long-term drugs exhibited any di¤erent behavior compared to the short-term

drugs. In results not reported, we found that during the pre-switching period, the prices for the long

term drugs actually fell less, and the post-switching period they rose less compared to the short term

drugs. Overall, the long-term drug prices fell by an average of about $1 in the pre-switching period

and rose by about $4 in the post-switching period. The fact that prices fell less for long-term drugs

during the pre-switching period does not give support to the hypothesis that consumers searched more

vigorously for bargains on these drugs. If this was the case, we would have expected to see a steeper

decline for these prices compared to the prices of short-term drugs. One possible explanation for the

observed pattern is that consumers with an existing prescription for a given long-term drug who have
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purchased from their preferred pharmacy for a long time may not have found it worthwhile to search

vigorously for a card and pharmacy �which illustrates another form of switching costs.

5.5.2 The switching period

For the nationally coordinated card switching period that ran between November 15 to December

31, 2004, we were able to collect only one week of price data, due to technical problems we experienced

in accessing the website repeatedly during much of that period.19 We were able to collect data for

only 15 drugs and the generally smaller number of observations for that period precludes us including

the switching period in the balanced panel analysis of the previous section. Instead, we compared the

average price level for each drug using two paired t-tests. For each drug, we perform two paired t-tests

across common cards and pharmacies: one for the di¤erence between the week from the switching

period and the last week of the pre-switching period, and the other for the di¤erence between the �rst

week of the post-switching period and the week from the switching period. The paired t-test approach

gets rid of the �xed e¤ects that are common across the two time periods and isolates the time e¤ects,

just like the balanced panel used earlier.

As shown in Table 7, both of these tests indicated a statistically signi�cant decline in prices for

most drugs (12 out of 15) between the last week of the pre-switching period and the week of the

switching period, and a subsequent statistically signi�cant rise for most drugs (11 out of 15) between

the week of the switching period and the �rst week of the post-switching period. The magnitude

of price drops and raises varied across drugs. Some drugs, such as Glucotrol and Lanoxin, did not

experience a decline in price at all between the last week of the pre-switching period sample and

our one week sample from the switching period. A few drugs, such as Cipro, Biaxin, and Levaquin,

exhibited relatively large drops in their prices and a subsequent relatively large increase. In other

drugs, prices declined little and rose little. Overall, prices declined on average by about $1.80 between

the week of August 2, 2004 and the week of December 20, 2004, and rose on average by about $1.50

between the week of December 20, 2004 and March 7, 2005.

Given the nature of the timing of data collection, we cannot say precisely whether the decline in

prices between the week of August 2, 2004 and the week of December 20, 2004 was con�ned to the

switching period only. Because card enrollment continued during this period, card sponsors could

have continued to reduce their prices to some extent to attract further consumers, as they did in the

initial phases of the program. From a theoretical standpoint, during this period the card sponsors were

presumably facing the tension between attracting further consumers versus charging higher prices to

their already committed consumers. Some card sponsors, in anticipation of the switching period, may

have also lowered prices in an e¤ort to deter consumers from switching. Thus, some of the observed

19When the Medicare website was accessed repeatedly within a short period of time, a DNS (Domain Name Server)

error prevented us from reaching the website. These errors were especially severe during the switching period because

the format and the design of the website was changed, along with the location of the price data on the website (Overall,

the website was redesigned 3 times after the initial release of the prices and we had to make the necessary adjustments

to our web crawler software to accommodate these design changes). These changes made data collection more di¢ cult,

resulting in a need to access the website more frequently over a longer period of time within a week.
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price decline in this period could have occurred even before the switching period. We are more

comfortable attributing the rise in prices after the switching period to the existence of switching costs,

because during that period card enrollment probably di¤used to a large extent and enrolled consumers

were committed until the end of the program. Even though we are unable to present evidence on the

dynamics of prices either within or in the immediate time-neighborhood of the switching period, the

pattern we observe for the periods at either end of the switching period suggests that prices generally

fell during the switching portion of the program, especially in the initial phases, and rose later once

the switching period was over.

In summary, the evidence from the balanced panel estimation and the paired t-tests point to

initially declining but later rising prices, even though the magnitudes of change in price levels were

not exceptionally large compared to the average price level across drugs. The pattern exhibited

by prices lends more support to a model where prices move in a non-monotonic path, falling when

consumers could switch cards and rising in periods when they are no longer able to switch cards.

Models suggesting a monotonic decline in prices due to enhanced consumer price information receive

no support. Even though prices declined initially, they tended to rise later during the post-switching

period. The observed patterns are broadly consistent with what one might expect in the case of

dynamic price competition in the presence consumer switching costs, which are a crucial feature in

the design of the MDDCP.

5.5.3 Evolution of non-program on-line prices

We now consider the evolution of on-line drug prices as a benchmark for the evolution of program

prices. The basic idea for this comparison is simple. If the time e¤ects found in the evolution of

program prices are speci�c to the program rather than being driven entirely by general trends in drug

prices, the same time e¤ects should not emerge in the evolution of on-line prices unrelated to the

program. To explore this, we consider a regression of the form

pdit = �+ �tDt + �iDi + �dDd + �dit; (12)

where Dt is a time dummy, Di is a dummy for on-line retailer i; and Dd is a dummy for drug d: The

focus is once again on the estimates b�t of the coe¢ cients of time dummies.
For on-line prices, we had few problems in data collection over time, so there is a larger number

of weeks and the price changes can be observed with a higher frequency over a longer period of time,

sometimes even more frequent than once a week. Table 8 presents the results of the estimation in

(12). The time dummies have almost uniformly positive and signi�cant coe¢ cients and the coe¢ cients

are almost monotonically increasing over time. By the last week of data, prices were higher by about

$3:39, controlling for vendor and drug �xed e¤ects.

We repeated the estimation in (12) using the total price (base price plus shipping fee) as the

dependent variable and the results were very similar. The total price increased over time by about

$3:53 and the estimated coe¢ cients were uniformly positive and statistically signi�cant in almost all

cases.
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Finally, we also used a balanced panel approach as in (11) to estimate the time e¤ects for on-line

prices. The size of this panel was much smaller than that of the unbalanced panel used in (12),

because we did not have prices for all sellers and for all drugs every week. The average growth rate

of price between the �rst and the last periods of observation was %3:31 with a standard deviation of

0:11%: Only 4 drugs exhibited a decline in price. Cephalexin experienced the largest increase (%23)

and Atenolol had the largest drop (39%): Overall, the results from the balanced panel were similar

qualitatively to the estimates of time dummy coe¢ cients in Table 8.

The observed pattern for on-line drug prices thus indicates that the evolution of program prices

was indeed di¤erent from the evolution of prices outside the program. On-line prices tended to rise

over time, as opposed to the program prices, which �rst declined and then increased. Since on-line

prices are subject to general trends in drug prices, but not to the e¤ects of the program, the patterns

found suggest that the evolution of programs prices are indeed driven by program e¤ects, rather than

by general trends. Two trends were especially important. First, on-line prices rose during the pre-

switching period during which the program prices exhibited a clear decline. The decline in program

prices is consistent with the predictions of dynamic price competition models suggesting an escalated

competition in the early stages of a market where sellers lower their prices to lure consumers. Second,

the overall rise in on-line prices fell short of the rise in program prices during the post-switching

period. Indeed, the program prices actually increased about $4 more than on-line prices by the end

of this period. Therefore, the upward trend in program prices after the switching period cannot be

explained simply by a general rise in drug prices due to non-program e¤ects. This "extra" upward

trend is also consistent with the dynamic price competition models with switching costs, which predict

higher prices when consumers are already locked in to their earlier choices and can thus be exploited

by sellers.

5.5.4 Evolution of price dispersion

The analysis of the dynamics of price dispersion is equally important from a theoretical point of

view. Did the prices converge when the general level of prices was falling during the pre-switching

period, or when it was rising during the post-switching period? We measure the dispersion of prices as

follows. At any point in time, we �rst calculate the average of a drug�s price within a card. Then, we

compute the dispersion of that average around its mean across cards. In other words, for each drug d

and time t the dispersion measure is

�2dt =
X
c

V ar(pdct) + 2
X
i6=j

Cov(pdit; pdjt);

where pdct is the average price within a card as also used earlier in (4). An estimate of �
2
dt can be

readily obtained as

b�dt =
"

1

Ct � 1

CtX
c=1

(pdct � pdt)2
#1=2

;
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where

pdt =
1

Ct

CtX
c=1

pdct:

The stability of the variance over time for a given drug can then be tested using the hypotheses

Ho : �2d1 = �
2
d2 = ::: = �

2
dT ; (13)

Ha : �2dt 6= �2d� ; for at least one pair (t; �); � 6= t:

Under the assumption of the independence of observations across time periods, the set of hypotheses

in (13) can be tested using either a Levene�s test or a Bartlett�s test. Below we discuss the results for

both tests, as Levene�s Test is robust to deviations from normality, while Bartlett�s Test is not.

We used the balanced panel of observations for the �rst seven weeks to test the hypotheses in (13).

Bartlett�s Test resulted in a rejection (at 5% or lower levels) of the equality of variances over time in

9 of the 28 drugs. Levene�s Test, on the other hand, rejected the null hypothesis only for 5 drugs.

Thus, there appears to be no overwhelming evidence that the dispersion of average price across cards

changed substantially during the pre-switching period.

We repeated the dispersion analysis for the post-switching period. Bartlett�s test rejected the

equality of variances over the 9 weeks for only 3 drugs. Levene�s test rejected the null hypothesis for

only 1 drug. Therefore, we found no strong evidence that the dispersion of prices was changing over

the course of the program in a statistically signi�cant way. Thus, competition did not force prices to

converge thereby reducing price dispersion.

There may be several reasons why prices did not converge. First, di¤erences across cards in their

attributes certainly created some amount of product di¤erentiation. Product di¤erentiation may have

led consumers to care not only about prices but other attributes of cards as well, allowing cards

to charge prices di¤erent from each other. Because di¤erent card sponsors have arrangements with

di¤erent drug manufacturers, cards� cost structures were also di¤erent � another source that can

contribute to non-convergence of prices to a given level. Second, e¤ective consumer search is needed

for convergence to take place, especially during the early phases of the program when card sponsors

were lowering their prices and consumers were making their card choices. While there is evidence

of search by card enrollees, the fraction of searchers does not seem to be overwhelming according to

the available estimates mentioned in Section 2. Third, switching costs, by preventing allocation of

consumers to low-price cards especially later in the program, could also have prevented convergence.

We also note that the initial decline in prices and the increase later on are not necessarily inconsistent

with non-convergence of prices. Cards may have lowered their prices to attract consumers, but in

the presence of product di¤erentiation and di¤erences in cost structure, cards�prices may have still

di¤ered from each other, leading to persistence in dispersion. Similarly, when prices rose, cards�prices

need not have converged to the same level, because high prices targeted by cards need not be similar,

given the di¤erences across cards.
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6 Conclusion and implications for Medicare Part D

This paper used a large panel of drug prices to assess the competitive e¤ects of government spon-

sored release of price information over the Internet under the Medicare Discount Drug Card Program

(MDDCP). The designers of the program claimed that access to price information by consumers would

lower prices over time and reduce the dispersion of prices across drug card sponsors. In contrast, we

found signi�cant and persistent price dispersion across drug card sponsors for the set of drugs we

analyzed. The overwhelming fraction of variation in drug prices is attributable to the variation of

prices across card sponsors, the primary price-setters within the MDDCP. We also found that prices

were essentially uniform across individual stores of most retail pharmacy chains for a given card. Most

of the geographic variation in prices was attributable to the change in the composition of cards and

pharmacies from one location to another.

Cards o¤ered some savings to subscribers. During our sample period, a naïve consumer, who buys

with equal probability from one of the sellers in a market, could in principle obtain an estimated

average savings of 11.2 percent by using a card instead of buying at a regular price for our sample

of drugs. However, naïve consumers were actually better o¤ purchasing from on-line retailers at non-

program prices instead of purchasing using cards. The average savings were even higher (about 25

percent) for a searcher, who was assumed to be able to locate the minimum price seller for a drug

across cards, but otherwise bought randomly like a naïve consumer in the regular market.

The card prices did not steadily decline over time, as models of improved access to price information

would suggest. Instead, prices declined during the initial phases of the program but then increase

later when consumers were unable to switch cards. Control prices were used to see if the evolution

of program prices exhibited any signi�cant deviation from the general evolution of prices outside the

program. On-line prices from Internet drug retailers unrelated to the program manifested an upward

trend throughout the sample period, a pattern distinct from that exhibited by the downward and then

upward movement of MDDCP prices.

The dynamics of program prices can be reconciled with the predictions of certain models of dynamic

price competition with consumer switching costs, such as those of Klemperer (1987a,b). Such models

appear to be relevant in the MDDCP context, because the program erected substantial switching costs

by requiring consumers to stick with their card choices during most of the program�s duration. The

very design of the program left consumers vulnerable to price changes by card sponsors. The card

sponsors appear to have reduced their prices initially to lure customers to subscribe, but then raised

their prices in the later stages of the program to take advantage of consumers when they were locked in

to their choices. It appears that the design of the program was more of an impediment to competition

than a catalyst.

To what extent these results will carry over to the Medicare�s Part D prescription drug assistance

program currently in e¤ect remains to be seen. While Part D has a much more complicated structure

compared to the simple environment of the transitory MDDCP, main elements of the drivers of price

dynamics under MDDCP are still applicable under Part D. For instance, as in the MDDCP, consumers
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can switch plans only from November 15 through December 31 of every year, except for special cases.20

Therefore, the substantial switching costs continue to be in place. There are certain di¤erences between

the two programs that may lead to di¤erences in price dynamics. Consumer non-enrollment in Part D

carries a �nancial penalty that becomes gradually more severe, unlike in the case of MDDCP, where

enrollment was entirely voluntary. As a result, consumer participation is higher under Part D and the

available market size for card sponsors is larger. Indeed, the enrollment in Part D has been strong:

about 90 percent coverage of the people 65 and older was achieved within the �rst 6 months from the

start of the program in January 2006, as mentioned earlier. Another di¤erence is that the prescription

drug bene�t providers engage in a multi-period competition under Part D, instead of the two-period

interaction under the MDDCP. This broader time horizon also introduces considerations of market

growth, as the size of the population under Medicare increases over time. Prescription drug bene�t

providers will thus set prices for a broader horizon considering the trade-o¤s of charging lower prices

to attract newcomers and higher prices to already committed consumers. Models of multi-period

interaction between �rms, such as Beggs and Klemperer (1992), suggest that such market growth puts

downward pressure on prices, but prices are still higher than they would be without switching costs.

Such considerations were not present in the MDDCP, which lasted only for two years during which

market growth was not substantial. These di¤erences between the two programs notwithstanding,

in the light of the evidence from the MDDCP we certainly do not expect prices to decline secularly

and the dispersion in prices to diminish over time. Rather we expect the Part D prices will follow a

non-monotonic pattern, for similar reasons that MDDCP prices did.
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Typical usage Total sales Rank in claims Typical Generic Typical In top 50 drugs Wholesale
Drug name duration  rank (2003) by elderly (2001) indications  available? dosage for elderly (2001)? cost (2001)
Lipitor Long term 1 5 Cholesterol N 10mg Y $742
Zocor Long term 2 12 Cholesterol N 20mg Y $1,520
Norvasc Long term 13 2 Cardio N 5mg Y $514
Zoloft Long term 7 27 Depression N 50mg Y $882
Lanoxin Long term NA 4 Cardio Y 0.125mg Y $78
Plavix Long term 12 10 Cardio N 75mg Y $1,232
Isosorbide Mono. Long term NA 20 Cardio Y 60mg Y $429
Pravachol Long term 18 38 Cholesterol N 20mg Y $931
Atenolol Long term 175 45 Cardio Y 25mg Y $256
Metoprolol Long term NA 28 Cardio Y 50mg Y $337
Glucophage Long term 99 9 Diabetes Y 500mg Y $817
Detrol Long term 86 32 Urinary N 1mg Y $1,021
Glucotrol XL Long term 127 40 Diabetes N 10mg Y $265
Zestril Long term NA 33 Cardio Y 10mg Y $352

Amoxicillin Short term NA > 100 Antibiotics Y 500mg N NA
Augmentin Short term 177 > 100 Antibiotics Y 500mg N NA
Zithromax Short term NA > 100 Antibiotics N 500mg N NA
Minocycline Short term NA > 100 Antibiotics Y 100mg N NA
Levaquin Short term 25 > 100 Antibiotics N 500mg N NA
Carisoprodol Short term NA > 100 Pain Y 350mg N NA
Cephalexin Short term 171 > 100 Antibiotics Y 250mg N NA
Ambien Short term 31 > 100  Insomnia N 10mg N NA
Cipro Short term 48 > 100 Antibiotics N 500mg N NA
Biaxin Short term 138 > 100 Antibiotics N 500mg N NA
Skelaxin Short term 132 > 100 Pain N 400mg N NA
Flexeril Short term NA > 100 Pain Y 10mg N NA
Cefzil Short term 152 > 100 Antibiotics N 500mg N NA
Doxycycline Hyc. Short term NA > 100 Antibiotics Y 50mg N NA

Table 1. Drugs used in the empirical analysis



Variable Description

LONG_TERM
GENERIC
PRES_2003
PAT_EXPIRE
PAT_EXCLUSIVE
FDA_YEAR
WALGREENS
CVS
ECKERD
GEO
FEE
MFG
ASSIST
MAIL
FORMULARY
FRAC65+
MEDHINC
RENT
FRACWHITE65+
FRACFEM65+
POP65+
POPWHITE65+
POPFEM65+

Population in a zipcode who are 65 years and older and white
Population in a zipcode who are 65 years and older and female

Median rent for renter occupied housing units in a zipcode
Fraction of people 65 years or older in a zipcode who are white
Fraction of people 65 years or older in a zipcode who are female
Population in a zipcode who are 65 years and older

Dummy variable, 1 if the card has a mail-order option for drugs, 0 otherwise
Dummy variable, 1 if the drug offers the entire formulary of Medicare-approved drugs, 0 otherwise
Fraction of people in a zipcode who are 65 years or older 
Median household income in a zipcode

Dummy variable, 1 if the card offers national coverage, 0 otherwise
The fixed one-time enrollment fee to a given card in dollars
The number of manufacturers a card has a contract for discount prices
Dummy variable, 1 if the card offers enrollment assistance, 0 otherwise

Table 2. Variables used in the empirical analysis

Dummy variable, 1 if the drug is a maintenance drug, 0 if the drug is primarily for short term use
Dummy variable, 1 if the drug has a generic equivalent or is itself generic, 0 if the drug is brand-name
The total number of prescriptions for a drug in 2003
Dummy variable, 1 if the drug's patent has expired by 2004, 0 otherwise
Dummy variable, 1 if the drug has an exclusive patent for a specific condition, 0 otherwise
The year a drug was approved by the FDA
Dummy variable, 1 if the pharmacy is a store of Walgreens, 0 otherwise
Dummy variable, 1 if the pharmacy is a store of CVS, 0 otherwise
Dummy variable, 1 if the pharmacy is a store of Eckerd, 0 otherwise



Drug Cards Zipcodes Pharmacies
Ambien 96.2 0.003 0.008
Amoxicillin 89.3 0.044 0.430
Atenolol 86.1 0.025 0.319
Augmentin 96.9 0.002 0.017
Biaxin 75.2 0.200 2.805
Carisoprodol 97.5 0.001 0.003
Cefzil 56.8 0.750 9.028
Cephalexin 94.7 0.027 0.296
Cipro 96.4 0.001 0.015
Detrol 84.2 0.002 2.510
Doxycycline Hyclate 91.0 0.041 0.456
Flexeril 96.7 0.015 0.175
Glucophage 94.4 0.053 0.558
Glucotrol XL 74.8 0.338 3.371
Isosorbide Mononitrate 95.9 0.003 0.019
Lanoxin 82.1 0.199 2.234
Levaquin 95.1 0.035 0.418
Lipitor 86.0 0.175 1.932
Metoprolol 23.5 11.308 1.458
Minocycline 93.4 0.053 0.313
Norvasc 82.2 0.212 2.256
Plavix 92.2 0.054 0.617
Pravachol 94.7 0.039 0.411
Skelaxin 94.1 0.034 0.358
Zestril 85.1 0.202 2.164
Zithromax 83.3 0.160 2.127
Zocor 97.0 0.002 0.022
Zoloft 86.8 0.161 2.137
AVERAGE 86.5 0.505 1.302
SD 15.3 2.123 1.838
MEDIAN 91.6 0.043 0.443
INTERQ. RANGE 11.3 0.169 1.879
Notes:

Table 3. The components of variation in drug prices (Week of June 21-26, 2004)

% of total variation in prices attributable to1

1A nested analysis of variance (ANOVA) was performed for each drug, where pharmacies were nested in zipcodes. The reported 
percentages are the percentages of total sum of squares. The remaining percentage for each drug is accounted by the error terms.



Independent Variables I II

LONG_TERM -51.10 -51.10
(0.04) (0.04)

GENERIC -11.58 -11.58
(0.07) (0.07)

PRES_2003 -0.0000027 -0.0000027
0.0000001 0.0000001

PAT_EXPIRE 48.09 48.09
(0.06) (0.06)

PAT_EXCLUSIVE 192.93 192.93
(0.09) (0.09)

FDA_YEAR 1.89 1.89
(0.02) (0.02)

WALMART 0.14 0.16
(0.05) (0.06)

CVS -0.94 -0.94
(0.06) (0.06)

ECKERD 0.69 0.68
(0.03) (0.04)

GEO 4.94 5.14
(0.61) (0.61)

FEE 0.07 0.08
(0.01) (0.01)

MFG -0.44 -0.47
(0.06) (0.06)

ASSIST -4.15 -4.17
(0.70) (0.70)

MAIL 2.04 2.13
(0.48) (0.48)

FORMULARY 1.82 1.73
(0.15) (0.17)

FRAC65+ -0.33 --
(0.09)

MEDHINC -0.00037 -0.00022
(0.000013) (0.000097)

RENT 0.0064 0.0066
(0.00037) (0.00039)

FRACWHITE65+ -0.29 --
(0.03)

FRACFEM65+ -0.24 --
(0.02)

POP65+ -- -0.03
(0.002)

POPWHITE65+ -- 0.029
(0.0017)

POPFEM65+ -- 0.0024
(0.0003)

Card dummies Y Y
Drug dummies Y Y
Zipcode dummies Y Y
Pharmacy dummies Y Y
N 1,230,215 1,230,215
R2 0.98 0.98

Dependent variable: Price

Notes: Robust standard errors in parantheses

Table 4. Static price regression



Drug Naïve1 Searcher2 Expert4 Naïve1 Searcher3 Expert On-line Card Regular
Ambien 5.2 17.5 14.2 12.0 (10.8) 13.6 (12.6) 0.7 (-0.4) 1.8 (2.0) 13.0 3.8
Amoxicillin 50.1 63.6 10.8 -42.0 (-66.3) -16.9 (-27.0) -54.4 (-70.5) 18.2 (22.4) 24.1 59.3
Atenolol 54.4 75.6 67.4 22.8 (9.7) 45.7 (45.7) -1.7 (-1.7) 29.0 (39.0) 46.2 25.5
Augmentin -1.6 8.3 -29.3 3.2 (2.6) 5.0 (3.8) -5.1 (-6.5) 1.8 (1.2) 9.6 29.0
Biaxin 5.7 9.0 -22.0 -4.0 (-5.1) 3.4 (1.9) -0.08 (-1.6) 7.2 (6.7) 3.5 25.4
Carisoprodol 38.7 89.4 43.5 48.6 (43.7) 57.3 (57.3) -147.6 (-147.6) 16.8 (24.1) 82.6 81.2
Cefzil 14.3 16.5 -12.7 -19.1 (-19.4) -17.3 (-17.8) -20.2 (-20.7) 1.9 (1.6) 2.5 25.9
Cephalexin NA NA NA 69.2 (66.2) 77.6 (73.2) 47.1 (36.7) 27.5 (20.8) 57.6 NA
Cipro 5.0 9.8 -12.2 5.2 (4.4) 8.8 (8.0) 4.0 (3.1) 3.8 (3.8) 5.0 19.6
Detrol 5.9 11.1 1.9 -1.39 (-3.2) 3.4 (-0.4) -2.3 (-6.4) 4.7 (2.7) 5.6 9.4
Doxycycline Hyclate 63.4 79.2 79.3 NA NA NA NA 43.1 0.0
Flexeril 6.8 21.9 3.7 -4.2 (-7.8) 5.9 (2.6) -31.7 (-37.3) 9.8 (9.5) 16.3 19.0
Glucophage -25.1 -11.0 -137.6 NA NA NA 7.6 (11.5) 11.3 39.5
Glucotrol XL -12.2 -3.6 -71.4 -31.2 (-39.9) -29.8 (-37.3) -41.6 (-49.8) 1.3 (2.4) 7.9 53.3
Isosorbide Mononitrate 59.6 81.8 74.8 -19.2 (-27.2) -19.2 (-27.2) -222.3 (-244.2) 0 (0) 54.4 27.8
Lanoxin -2.8 11.5 -38.9 4.0 (-9.4) 16.1 (16.1) 2.4 (2.4) 12.6 (23.2) 13.9 36.3
Levaquin 10.1 14.2 14.2 -1.4 (-1.8) 3.9 (3.2) -0.8 (-1.5) 12.6 (23.2) 4.6 0.0
Lipitor 5.7 11.3 6.5 4.2 (2.1) 8.7 (7.1) 2.9 (1.2) 4.6 (5.0) 6.0 5.1
Metoprolol NA NA NA -23.6 (-48.8) 24.8 (24.8) -23.9 (-23.9) 39.1 (49.5) 39.3 NA
Minocycline -46.3 24.7 24.7 47.9 (46.6) 61.6 (61.6) 25.4 (25.4) 25.4 (27.2) 48.5 0.0
Norvasc 6.8 12.0 2.0 1.2 (-2.0) 6.5 (5.4) 1.1 (-0.09) 25.4 (27.2) 5.5 10.2
Plavix -2.0 3.1 -17.0 2.1 (0.8) 5.5 (4.9) 0.5 (-0.02) 3.4 (4.2) 5.0 17.2
Pravachol -9.5 -1.9 -1.9 -4.8 (-6.5) 1.2 (0.4) -6.1 (-7.0) 5.6 (6.5) 6.9 0.0
Skelaxin -16.4 -8.6 -30.9 -9.1 (-10.8) -1.5 (-4.7) -8.1 (-11.7) 8.3 (6.3) 6.6 17.1
Zestril 28.5 36.1 31.7 -31.6 (-35.8) -25.5 (-29.2) -44.4 (-48.7) 4.1 (4.3) 11.3 6.5
Zithromax 14.2 20.3 20.3 -2.6 (-2.9) -2.6 (-2.9) -10.4 (-10.8) 4.1 (4.3) 7.0 0.0
Zocor 24.4 42.9 34.1 -20.2 (-21.5) -15.9 (-15.9) -53.4 (-53.4) 0 (0) 24.4 13.4
Zoloft 8.0 14.0 5.3 3.0 (1.2) 6.9 (5.1) 0.5 (-1.6) 4.0 (3.9) 6.5 9.2
AVERAGE 11.2* 24.9* 2.3 0.4 (-4.6*) 8.7* (-19.0*) -22.6* (-26.0*) 9.1* (10.6*) 20.3* 20.5*
SD 25.9 29.1 44.9 25.1 (28.1) 26.3 (20.6) 53.8 (57.0) 10.0 (12.4) 21.1 20.3
MEDIAN 6.3 14.1 4.5 -1.4 (-3.0) 5.2 (-10.3) -3.7 (-6.4) 5.0 (4.9) 10.5 17.1
INTERQ. RANGE 23.7 24.1 39.5 20.8 (19.7) 14.7 (23.1) 32.4 (37.2) 7.7 (13.6) 22.2 22.7

Table 5. Estimates of savings from discount drug cards

4 "Expert" is defined as a consumer who is fully informed in both markets.
5 The figures inside the  parantheses include shipping fees. The figures outside the parantheses are based on the on-line base prices.
A (*) indicates difference from zero at 5% or lower levels.

Savings (in %)

Notes: 

2 "Searcher" is defined as a consumer who is informed of the minimum card price but otherwise purchases randomly in the regular market.
3 "Searcher" is defined as a consumer who is informed of the minimum on-line price but otherwise purchases randomly in the discount card market.

1"Naïve" is defined a consumer who is uninformed and purchases randomly in both markets.

Regular versus card prices Online versus card prices (with shipping)5 Value of Information



Independent variables: Independent variables:
Dummy for the week of Estimates for Pre-switching period Dummy for the week of Estimates for Post-switching period

6/28/2004 0.21 4/4/2005 2.85
[0.27] [0.11]

7/5/2004 -2.25 5/16/2005 4.53
[0.38] [0.16]

7/11/2004 -3.73 6/6/2005 6.54
[0.47] [0.20]

7/18/2004 -4.77 6/20/2005 7.74
[0.54] [0.23]

7/25/2004 -4.64 7/11/2005 7.74
[0.61] [0.26]

8/2/2004 -4.63 7/18/2005 7.70
[0.66] [0.28]

8/1/2005 7.80
[0.31]

8/15/2005 7.83
[0.33]

                                   N 92,700                                     N 18,280
R2 0.53 R2 0.51

period and 3/7/2005  for the post-switching period.
Notes: Robust standard errors in parantheses. Omitted time dummy is the first week for each regression: 6/21/2004  for the pre-switching

Table 6. Estimated coefficients of time dummies from the difference regressions

Dependent variable: First Difference in Price



Drug Average difference ($) Paired t-stat P-value Average difference ($) Paired t-stat P-value
Ambien -1.99 -6.91 0.00 0.31 5.42 0.00
Amoxicillin -2.28 -26.56 0.00 1.33 11.38 0.00
Atenolol -0.77 -9.62 0.00 0.18 0.67 0.49
Augmentin -3.07 -2.46 0.01 0.72 2.88 0.00
Biaxin -2.65 -10.55 0.00 2.80 22.66 0.00
Carisoprodol -0.63 -1.29 0.04 1.50 3.29 0.00
Cefzil -2.93 -17.94 0.00 -0.10 -0.89 0.37
Cipro -4.81 -5.00 0.00 3.69 3.35 0.00
Detrol -2.09 -4.18 0.00 3.27 12.47 0.00
Doxycycline Hyclate 0.58 8.73 0.00 0.21 4.25 0.00
Flexeril -0.70 -3.18 0.00 2.61 16.08 0.00
Glucotrol XL 0.34 7.92 0.00 1.03 14.00 0.00
Isosorbide Mononitrate -3.36 -14.22 0.00 2.30 1.31 0.18
Lanoxin 1.32 22.87 0.00 0.05 0.60 0.54
Levaquin -3.80 -10.78 0.00 2.48 12.42 0.00
Average -1.79 1.49
Standard error 0.45 0.33

sample. 

Table 7. Analysis of price changes around the switching period

(Switching period price) - (Pre-switching period price) (Post-switching period price) - (Switching Peirod Price)

Notes: Bolded t-statistics indicate significance at 5% or lower levels. "Switching period price" is the price during the one week of data available
from the switching period. "Pre-switching period price" is the price during the last week (week of 8/2/2004 ) of price observations in our pre-switching
period sample. "Post-switching period price" is the price during the first week (week of 4/4/2005 ) of price observations in our post-switching period



Independent variables Independent variables
Dummy for the date: Base price Total price Dummy for the date: Base price Total price

6/28/2004 0.00 0.00 1/13/2005 1.95 1.99
[0.58] [0.58] [0.63] [0.63]

7/8/2004 0.00 0.00 5/6/2005 2.62 2.66
[0.58] [0.58] [0.62] [0.62]

7/15/2004 0.00 0.00 5/27/2005 2.81 2.85
[0.58] [0.58] [0.62] [0.62]

7/26/2004 1.73 1.74 6/10/2005 2.81 2.85
[0.60] [0.60] [0.62] [0.62]

8/3/2004 1.73 1.74 6/20/2005 2.81 2.85
[0.60] [0.60] [0.62] [0.62]

8/10/2004 1.73 1.74 7/11/2005 3.25 3.31
[0.60] [0.60] [0.62] [0.62]

8/17/2004 1.73 1.74 7/29/2005 3.25 3.31
[0.60] [0.60] [0.62] [0.62]

8/24/2004 1.73 1.74 8/1/2005 3.30 3.36
[0.60] [0.60] [0.62] [0.62]

9/1/2004 1.81 1.87 8/18/2005 3.33 3.38
[0.61] [0.61] [0.66] [0.66]

9/13/2004 1.82 1.87 9/16/2005 3.39 3.53
[0.62] [0.62] [0.66] [0.66]

9/15/2004 1.83 1.85 9/29/2005 3.39 3.53
[0.61] [0.61] [0.66] [0.66]

9/21/2004 1.86 1.91 10/4/2005 3.39 3.53
[0.60] [0.61] [0.66] [0.66]

9/24/2004 1.86 1.91 10/16/2005 3.39 3.53
[0.60] [0.61] [0.66] [0.66]

9/28/2004 1.86 1.91 10/17/2005 3.39 3.53
[0.60] [0.61] [0.66] [0.66]

10/5/2004 1.81 1.85 10/20/2005 3.39 3.53
[0.63] [0.63] [0.66] [0.66]

10/15/2004 1.88 1.89
[0.63] [0.64]

10/20/2004 1.55 1.56
[0.64] [0.64]

12/10/2004 1.93 1.97
[0.62] [0.62]

12/29/2004 1.89 1.93
[0.62] [0.62]

N 2955
R2 0.98
Notes: Robust standard errors in brackets. Total price includes shipping fee for standard delivery for 
each vendor. Dates in italics refer to the day the price data was collected.

Color legend: 

  Post-switching period

Table 8. Estimated time dummies for on-line price regression

Dependent variable Dependent variable

Pre-switching period
Switching period
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Figure 1. The chronology of important events in MDDCP and the timing of data collection
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