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Abstract: One basic problem in business-cycle studies is how to deal with 
nonstationary time series. The market economy is an evolutionary system. 
Economic time series therefore contain stochastic components that are 
necessarily time dependent. Traditional methods of business cycle analysis, 
such as the correlation analysis and the spectral analysis, cannot capture 
such historical information because they do not take the time-varying 
characteristics of the business cycles into consideration. In this paper, we 
introduce and apply a new technique to the studies of the business cycle: the 
wavelet-based time-frequency analysis that has recently been developed in 
the field of signal processing. This new method allows us to characterize 
and understand not only the timing of shocks that trigger the business cycle, 
but also situations where the frequency of the business cycle shifts in time. 
Our empirical analyses show that 1973 marks a new era for the evolution of 
the business cycle.  
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I. Introduction 

The business cycle, one of the most puzzling phenomena in capitalistic, free-market 

economies, has long been the central focus of macroeconomic researches. The biggest 

challenge to researchers in this field is to capture business cycle patterns that vary in 

nature across time. Current studies of business cycles are based almost exclusively on 

the assumption of covariance-stationarity. The market economy is an evolutionary 

dynamic system, however. New methods of financial intermediation are continuously 

introduced and developed; government fiscal policies and monetary targets are 

constantly shifting; input-output relations across industries are subject to frequent 

changes due to improvements in production technologies and market organizations. 

Therefore, economic time series contain stochastic components that are necessarily 

time dependent.  

The analysis of nonstationary time series cannot be accomplished by classical time 

domain representations such as correlation methods, or by frequency domain 

representations based on the Fourier transform (Boashash, 1987). To analyze business 

cycles that evolve over time, we need to develop a concept of time-frequency 

distribution that takes into account jointly and simultaneously the information of time 

and frequency.  

In this paper, we introduce and apply a new technique of time series analysis to 

business cycle studies that is recently developed in the field of signal processing in 

engineering: a joint time-frequency distribution based on the wavelet transform. The 

wavelet transform is a powerful tool for analyzing nonstationary time series. The joint 

time-frequency presentation enables us to capture the evolutionary aspects of the 

spectral distribution of the business cycle across time.  

Although time-frequency analysis has its origin almost 50 years ago (Gabor, 1946; 

Ville, 1948), significant advances occurred only in the last 15 years or so. Recently, 

time-frequency representations have become an extremely powerful tool for analyzing 
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nonstationary time series in many fields, such as engineering, medical sciences, biology, 

geology, and astronomy, to name just a few. A number of articles have also been 

published to deal with applications in economics and finance (Most notably, James B. 

Ramsey, 1996).1

To help understand this new methodology, we compare the wavelet-based time-

frequency analysis to a traditional approach based on the short-time Fourier transform. 

We show that the wavelet transform has many advantages over the traditional approach 

in that the wavelet transform has a beautiful property: its window size adjusts itself 

optimally to longer basis functions at low frequencies and to shorter basis functions at 

high frequencies. Consequently, it has sharp frequency resolution for low frequency 

movements and sharp time resolution for high frequency movements. Thus, the new 

method is capable of capturing simultaneously the time-varying nature of low 

frequency cycles and the frequency distribution of sudden and abrupt shocks in the 

original time series. Applying this new method to post war US data, we are able to 

show that 1973 marks a new era for the evolution of the business cycle since World 

War II. 

The rest of the paper is organized as follows. Section II describes the short-time Fourier 

transform. Section III describes the wavelet transform. Section IV explains the 

implementation of the wavelet transform when applying to actual data. Section V uses 

artificial time series to demonstrate the advantages of wavelet transform over the short-

time Fourier transform. Section VI applies the wavelet based time-frequency analysis to 

economic data. Finally, Section VII concludes the paper.  

II. Short-Time Fourier Transform and Spectrogram 

Fourier analysis is a mathematical tool for studying the cyclical nature of a time series 

in the frequency domain. Under Fourier transform, however, the time information of a 

time series is completely lost. When one looks at the spectral density function of a time 

series, no information regarding the time when a particular cycle emerges or disappears 

                                                           
1 Also see Ramsey and Zhang, 1996, 1997; Ramsey and Thomson, 1998; Ramsey, Usikov and Zaslavsky, 

1995; Ramsey and Lampart, 1998a, 1998b; Chen, 1996; and Hong and Lee, 1998. 
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is revealed. For time series in which the time information is not important but the 

frequency content is of primary interest, this limitation is of little consequence. Fourier 

analysis is thus useful for analyzing periodic and stationary signals whose moments do 

not change over time. However, many interesting and important time series are not 

stationary and need to be analyzed in both time and frequency domain simultaneously.  

Performing the mapping of a one-dimensional time series into a two-dimensional space 

of time and frequency is thus needed in order to extract relevant time-frequency 

information. A classical time-frequency representation, called the short-time Fourier 

transform (STFT), has been extensively used in the past for analyzing nonstationary 

time series since its introduction by Gabor (Gabor, 1946). The basic idea of STFT is to 

break a time series x  into many smaller sub-samples and apply Fourier transform to 

each sub-sample. Specifically, the time series is multiplied by a window function h  

centered at a time point , and the spectrum of the windowed time series, , 

is calculated by 
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where ω  is the angular frequency and  denotes the complex conjugation. Because the 

window  effectively suppresses data signals outside the window, the STFT 

produces a sequence of ‘local’ spectrum of the time series . This intuitive approach 

has interesting consequences. For example, there exists a one-to-one correspondence of 

the STFT with the original signal and an exact inverse transform exists. 

*

)( nth −

)(tx

To obtain the energy (spectral density) distribution of the time series, the most familiar 

representation is the spectrogram. The spectrogram of a time series  is defined as 

the squared magnitudes of the STFT: 
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A crucial feature inherent in the STFT method is that the length of the window can be 

selected arbitrarily, but is fixed exogenously once the selection is made. To enhance the 
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time information, therefore, one must choose a short window; and to enhance the 

frequency resolution, one must choose a long window, which means that the time 

information (nonstationarities) occurring within the window interval is suppressed. 

Hence, a longer window implies the loss of information along the time dimension, and 

a shorter window implies the loss of information along the frequency dimension. The 

length of the window is therefore the main issue involved in practice. 

III. Wavelet Transform and Scalogram 

The Fourier transform breaks down a time series into constituent sinusoids of different 

frequencies. Since a sine wave function has a specific frequency but infinite duration in 

time, it is perfectly localized in frequency but not localized in time. The wavelet 

transform, on the other hand, breaks down a time series into shifted and scaled versions 

of a mother wavelet function that has limited spectral band and limited duration in time. 

One major advantage afforded by wavelet transform is thus the ability to perform 

natural local analysis of a time series in the sense that the length of wavelets (windows) 

varies endogenously in an optimal way. It stretches into a long wavelet function to 

measure the low frequency movements; and it compresses into a short wavelet function 

to measure the high frequency movements.  In order to capture abrupt changes, for 

example, one would like to have very short basis functions (narrow windows). At the 

same time, in order to isolate slow and persistent movements, one would like to have 

very long basis functions (wide windows). This is exactly what can be achieved with 

the wavelet transforms. 

The wavelet transform is defined as the convolution of a signal  with a wavelet 

function , called mother wavelet, shifted in time by a location parameter n , and 

dilated by a scale parameter , as shown by the following equation 
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where  is the complex conjugate of the basic wavelet function , the 

parameter  is the scaling factor that controls the length of the wavelet; and n  is the 

time location at where the wavelet is centered. Scaling a wavelet simply means 
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stretching or compressing it. The scale factor a  is hence inversely related to the 

frequency of the wavelet. 

The squared modulus of the wavelet transform, called scalogram, is defined as  
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The scalogram characterizes the distribution of the energy (spectral density) of a time 

series across the two-dimensional time-scale plane. Thus, the wavelet transform of a 

time series depends on two parameters: scale (or frequency) and time. This leads to a 

so-called time-scale representation that provides a tool for the analysis of nonstationary 

signals (Rioul and Vetterli, 1991; Daubechies, 1990). 

There are several types of wavelet functions available, such as Morlet, Mexican hat, 

Haar, Shannon, Daubechies wavelet function, etc. The choice of the wavelet function 

depends on the application. With respect to time and frequency localization, the Haar 

and Shannon wavelets take opposite extremes. Having compact support in time, the 

Haar wavelet has poor decay in frequency, whereas the Shannon wavelet has compact 

support in frequency with poor decay in time. Other wavelets typically fall in the 

middle of these two extremes. In fact, having exponential decay in both the time and 

frequency domain, the Morlet wavelet has optimal joint time-frequency concentration 

(Teolis, 1964). The wavelet that is used for analysis of economics fluctuations in this 

paper is Morlet wavelet, which is a modulated Gaussian function with exponential 

decay property. It is defined as 

),2exp())/(5.0exp()( 2 ftiatt π−=Ψ                                                                                (5) 

where  is the scaling factor that controls the length of the wavelet and  is the 

modulation (frequency) parameter. The scale parameter a  and the frequency parameter 

 are related to each other by the relationship: 

a f

f

,/0 ffa =                                                                                                                       (6) 
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where  is a free parameter controlling the basic shape of the wavelet. As a  decreases, 

the wavelet function is compressed, implying a waveform of higher frequency. 

0f

 

IV. Implementations 

In STFT, a window function h  is chosen. This window function is first placed at the 

beginning of the time series and the Fourier transform is performed. Then the window 

is shifted to a new location and another Fourier transform is computed. This procedure 

continues until the end of the time series is reached. The spectrogram is computed 

accordingly as the squared modulus of the short-time Fourier transform.   

The wavelet transform is implemented in a similar manner. The time series is 

multiplied by a wavelet function, similar to the window function in the STFT, and the 

wavelet transform is computed according to equation (3) for different values of the 

scale parameter  at different time location ( . Suppose  is the time series to be 

analyzed. The mother wavelet is chosen to serve as a prototype for all wavelets in the 

process. All the wavelets (window functions) that are used subsequently are the 

stretched (or compressed) and shifted versions of the mother wavelet. The computation 

starts with a value of the scaling factor a

)(a )n )(tx

1a= , and the wavelet is placed at the 

beginning of the time series. Since the wavelet function has only finite time duration (it 

takes zero values outside the wavelet), it serves just like a window in the STFT. The 

constant 1/ a1  is for normalization purpose so that the transformed signal will have 

the same energy at every scale. Next, with the same scale 1aa = , the wavelet function 

is shifted to the next sample point, and the wavelet transform is computed again. This 

procedure is repeated until the wavelet reaches the end of the time series. The result is a 

sequence of numbers corresponding to the scale 1aa = . 

Next, the scale factor is changed to 2aa = , and the whole procedure described above is 

repeated. When the process is completed for all desired values of a , the result is an 

energy (density) distribution of the original time series along the two-dimensional time-

frequency space. 

V. Applications to Test Signals 
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To show the effects and the advantages of wavelet-based time-frequency analysis over 

the traditional STFT based time-frequency analysis, we present spectrograms and 

scalograms of two test signals. The signals are of length 512 points each. The STFT 

uses a Hanning window, and the scalogram is obtained with the Morlet wavelet. The 

horizontal axis is time and the vertical axis is frequency in both spectrograms and 

scalograms respectively. 

The first test signal showing in Figure 1.a (top window) is composed of sine waves 

whose frequency shifts periodically across time in the low frequency region. In the 

middle of the sample, however, there is a sharp transitory white noise impulse. The 

power spectrum of the test signal is shown in the left window of Figure 1.a (the 

frequency axis is normalized by 2π). It is seen there that the power spectrum is 

completely silent about the time-varying nature of the cycle and about the white noise 

impulse.  Instead, it shows that there are simultaneously several major cycles contained 

in the low frequency region.  

The central window in Figure 1.a, however, shows how remarkably the scalogram 

captures not only the time-varying nature of the low frequency cycle, but also the exact 

timing of the white noise impulse at time location 256.  Notice that the frequency of the 

shifting cycle is highly localized along the frequency dimension on one hand, and the 

timing of the frequency shift is also highly localized along the time dimension on the 

other hand. 

As a comparison, the spectrogram based on STFT is shown in Figure 1.b and Figure 1.c.  

We see there that the spectrogram either gives an imprecise frequency localization of 

the time-varying low frequency cycle when the window size is small enough to 

adequately capture the timing of the high frequency impulse (Figure 1.b), or misses the 

white noise impulse entirely when the window size is large enough to capture 

adequately the frequency location of the time-varying low frequency cycle in the 

original time series (Figure 1.c). 

The second test signal used is composed of two parts: the 1st part is a time-varying low 

frequency sinusoidal cycle, and the 2nd part is a constant high frequency cycle with 6 
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sample points gap in the middle of the series. The time series is shown in the top 

window in Figure 2.a, and the power spectrum is shown in the left window in Figure 

2.a.   

The central window in Picture 2.a shows that the scalogram is able to capture not only 

the frequency location of the time-varying low frequency cycle, but also the exact 

timing of the missing signals presented in the constant high frequency cycle. There is 

no energy (spectral density) distribution in the middle of the scalogram due to the 6 

missing data points in the high frequency cycle (notice the sharp breaking edges in the 

middle of the scalogram). 

STFT, on the other hand, is unable to simultaneously capture all the information 

adequately. With a short window (Figure 2.b), the time information with respect to the 

exact timing of the missing data points is captured, but the frequency location of the 

low frequency cycle is not localized at all along the frequency axis. With a large 

window (picture c), on the other hand, the frequency locations of the cycles are well 

localized along the frequency axis, but the exact location and timing of the 6 missing 

data points are not very well captured or localized along the time axis. This is so 

because both the time and the frequency resolutions of STFT are fixed once the 

window length is fixed. In contrast, scalogram allows good frequency resolution at low 

frequencies and good time resolution at high frequencies.  

VI. Application to Economic Data 

Since Second World War, the US economy has experienced several important 

institutional changes. These institutional changes have likely had important impact on 

the structure of the US economy. The US economy has also experienced several 

unprecedented shocks that may also have brought deep structural adjustment to the 

economy. The oil price shock during the early 70s, for example, could have resulted in 

a fundamental reorganization of the input-output structure in the economy, especially 

with regard to the energy-intensive industries. 

It is then of great interest to investigate whether these changes have also brought 

fundamental changes to the nature of the US business cycle. In particular, it is of great 
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interest to know whether the old business cycles observed by economists almost half 

century ago are still alive, and whether new business cycles have emerged during those 

years of social changes and economic development. 

Applying the wavelet-based time-frequency transform to the growth rate of real GDP 

(1960:1 - 1996:3), we find that the US business cycle has the following defining 

features: 

1) Business cycles through out the sample period are concentrated mostly in the 

frequency region below 10 quarters per cycle. They are triggered mostly by 

external shocks.  

2)  Business cycles become far more active during the 70s and 80s after the oil price 

shocks in the early 70s. The two most active business cycles occurred around 

1974 and 1983, both are triggered apparently by external impulses. The 

periodicity of the two cycles is about 6 years per cycle. 

3) There exist business cycles that are not triggered by any external shocks to GDP, 

such as the 1991 business cycle. On the other hand, strong external shocks to 

GDP do not necessarily trigger business cycles, such as the shocks during 1977-

1978. 

Figure 3 shows the contour of energy (power spectrum) distribution of the US GDP 

growth across time and frequency. The time series (top window) reveals very little 

about the frequency location of the cycles, while the spectrum (left window) reveals 

nothing about the timing of the different cycles. The scalogram (center), however, 

shows that there have been three major business cycles since 1960. The first occurred 

in 1961, triggered by a sharp external impulse during that year. The 1961 cycle has a 

frequency of 0.1 cycles per quarter (or 10 quarters per cycle) and is short lived (it lasted 

about one year). The second major cycle took place in 1973, apparently triggered by 

two impulses during 1972 and 1973, and was greatly intensified by another impulse 

near 1975. This business cycle lasted about 3-4 years and peaked at the frequency of 

about 0.04 cycles per quarter (or 25 quarters per cycle). The third major cycle occurred 

during 1982-1984, apparently triggered by a shock in 1982. This cycle lasted about 3 
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years and peaked also at a frequency similar to the 1973 cycle. The 1973 cycle and the 

1982 cycle dominated all other business cycles since 1960. Notice that the cycle in 

1991 is very mild compared to the three major cycles mentioned above. It is apparently 

not triggered by any external shocks to GDP. The scalogram also reveals that a major 

shock around 1977-1978 did not trigger any business cycle around that time. In 

addition, there is a short-lived business cycle in 1966 triggered by an external impulse 

that is not obvious or noticeable, however, in the original time series (see top window 

in Figure 3). 

We think that these findings are of great importance to the business cycle theory. They 

not only help us identify the important historical shocks that triggered the business 

cycle, but also provide important information regarding the evolution of the business 

cycle across time. If the business cycle is unstable over time, for example, then there is 

the need for finding a common propagation mechanism to explain that instability. 

Without exception, existing real business cycle models all predict a stable business 

cycle with the same characteristic frequencies. But the scalogram shows otherwise: 

business cycles come and go; they emerge at different frequencies and at different 

times; they are not at all alike. 

 

VII. Conclusions 

A new technique of time series analysis based on joint time-frequency representation 

was proposed. Two popular time-frequency approaches, the short-time Fourier 

transform and the wavelet transform were compared. Our analyses showed that the 

wavelet-based time-frequency analysis is superior to the Fourier transform based time-

frequency analysis. Applying the wavelet-based analysis to economic data, we found 

that business cycles in the US have not been stable over time. In particular, business 

cycles became far more active since the oil price crisis in the early 70s.  
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Figure 1.a: Scalogram contour with signal (top) and spectrum (left). 
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Figure 1.b: Spectrogram contour with signal (top) and spectrum (left) (window = 7). 
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Figure 1.c: Spectrogram contour with signal (top) and spectrum (left) (window = 19). 
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Figure 2.a: Scalogram contour with signal (top) and spectrum (left). 
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Figure 2.b: Spectrogram contour with signal (top) and spectrum (left) (window = 7). 
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Figure 2.c: Spectrogram contour with signal (top) and spectrum (left) (window = 35). 
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Figure 3: Scalogram contour with time series (top) and spectrum (left). 

U.S. GDP growth rate (1960:1 - 1996:3). 
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