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Abstract

We analyze the volatility surface vs. moneyness and time to expiration implied by MIBO options

written on the MIB30, the most important Italian stock index. We specify and Þt a number of models

of the implied volatility surface and Þnd that it has a rich and interesting structure that strongly

departs from a constant volatility, Black-Scholes benchmark. This result is robust to alternative

econometric approaches, including generalized least squares approaches that take into account both

the panel structure of the data and the likely presence of heteroskedasticity and serial correlation in

the random disturbances. Finally we show that the degree of pricing efficiency of this options market

can strongly condition the results of the econometric analysis and therefore our understanding of

the pricing mechanism underlying observed MIBO option prices. Applications to value-at-risk and

portfolio choice calculations illustrate the importance of using arbitrage-free data only.
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1. Introduction

In recent years, we have witnessed many attempts at investigating the mechanism by which markets

price stock options by modeling the structure and dynamics of the implied volatility surface (IVS).1 This

paper focuses on two novel aspects of statistical models of the IVS: the existence of complicated patterns

of correlation and heteroskedasticity across heterogeneous strikes and maturities (see Rénault, 1997) for

a theoretical treatment); careful Þltering of the data to eliminate records that reßect mispricings and

that are incompatible with the absence of arbitrage opportunities (hence equilibrium).

Since Rubinstein (1985), it is well known that option markets are characterized by systematic devi-

ations from the constant volatility benchmark of Black and Scholes (1973), a fact that has become even

more evident after the world market crash of October 1987. These anomalies have been described either

in terms of a volatility smile (or smirk, see Rubinstein, 1994 and Dumas et al., 1998) vs. moneyness or

as the presence of a term structure in implied volatilities (Campa and Chang, 1995). Furthermore, the

IVS is now understood to dynamically evolve over time, in response to news affecting investors� beliefs.

Although much literature has focused on the IVS of CBOE index options (written on the S&P 100 and

S&P 500 indices), these results are not speciÞc to North American markets only. Similar patterns have

been documented for European markets (see Gemmill, 1996, Pe�na et al., 1999, Tompkins, 1999, and

Cavallo and Mammola, 2000).

Departures from the traditional Black-Scholes benchmark have spurred interest in the econometric

modeling of the IVS. Despite recent advances in the theory of option pricing under stochastic volatility

and/or jumps, on the empirical side very few studies have tried to exploit the full panel nature of options

data sets, i.e. the fact that researchers have available both long time series of prices and rich cross-

sections along the strike price and the maturity date dimensions. For instance, Dumas et al. (1998)

propose a model in which implied volatilities are a quadratic function of the strike price and also depend

on time to maturity. However they simply estimate it on a sequence of weekly cross-sections of S&P 500

option prices and observe that there is strong time-variation in the estimated coefficients. Therefore the

time series structure of the data is completely lost and the cross-sectional estimation repeated at each

point in time. To our knowledge, the only exception is Ncube (1996). In his application to daily FTSE

100 index options, he Þts and compares to standard OLS both Þxed and random effects panel models.

1In Black and Scholes� (1973) model the price cBSt of a European call at time t is a function of a number of observable

parameters and one unknown parameter, the volatility σ. Given the market price ct of the option, the implied volatility

σIV is the solution to the equation ct = cBSt (σ). Similar deÞnition applies to put implied volatilities. It is easy to show

that the relationship between the option price and the level of volatility is strictly increasing, so that one may interpret

implied volatility as a transformation of the original price independently of the actual applicability (correct speciÞcation)

of the Black-Scholes model.
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Although these strategies are likely to accommodate some of the features of option pricing errors, like

non-zero serial and cross-correlations, the assumptions on the random disturbances underlying the IVS

are the classical ones, i.e. homoskedastic, serially uncorrelated errors with zero (simultaneous) cross

correlations. On methodological grounds, our paper tries to overcome the shortcomings of Ncube�s

work by applying techniques now quite common in empirical economics and fully consistent with the

presence of both heteroskedasticity and of non zero correlations, i.e. Parks� (1967) two stages feasible

GLS method.

A second issue that naturally arises when modeling the IVS is the impact of market inefficiency.

Indeed, contracts deep-in (and sometimes out-of) the-money tend to be less liquid and are therefore often

mispriced. Similarly, very-short term and long-term option contracts sometimes command low trading

volumes and are thus prone to mispricings. These issues are all the more important when using data from

stock index option markets with an overall degree of efficiency and depth substantially inferior to their

U.S. counterparts. The most common solutions to this problem � such as discarding the observations

violating a limited number of no-arbitrage conditions (typically the lower bound condition only) or

restricting the sample to narrow ranges of moneyness and time to expiration � do not appear to be

entirely satisfactory. Our paper also documents the impact of pricing inefficiencies on the econometrics

of the IVS for a non-CBOE index options market.

We pursue these objectives by modeling and estimating the IVS characterizing the market for options

on the Italian MIB30 index, the so-called MIBO market � one of the most important segments of the

Italian Derivatives Market (IDEM). In particular, we use 9 months of transaction data, sampled at a half-

an-hour frequency during each of the business days in the sample.2 Such a relatively young derivatives

market offers in fact the best chances to study the potential links between mispricings/inefficiencies and

the perception of the IVS dynamics an econometrician would derive from the estimation of a statistical

model. Capelle-Blancard and Chaudury (2001), Mittnik and Rieken (2000), Nikkinen (2003), Pe�na et

al. (1999), and Puttonen (1993) have recently stressed the importance of studying the efficiency and

pricing mechanisms of such relatively less developed stock index option markets. A related paper is

Cassese and Guidolin (2004) who study MIB30 index options, but does not consider the importance of

market efficiency for both the econometrics of the MIBO IVS and for practical Þnancial decisions.

Our results for the Italian options market are only partially consistent with previous Þndings con-

cerning North American or other European markets. In fact, no arbitrage restrictions fail to hold rather

often and (ruling out sheer irrationality) this suggests that on the MIBO market frictions play a role

2Apart from the seminal paper by Barone and Cuoco (1989), Cavallo and Mammola (2000) contains only a brief

treatment of one of the dimensions of the MIBO IVS, the relationship between implied volatilities and moneyness. No

speciÞc effort is directed at investigating the stochastic process of the overall IVS.
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that is much more relevant than on benchmark CBOE markets. Assuming the presence of frictions in

the form of bid/ask spreads, we proceed to Þlter out all the observations violating the most elementary

no-arbitrage restrictions. Using alternative data sets in terms of quality of the prices included we then

estimate the MIBO IVS: we document that the structure of the IVS perceived by an econometrician

does considerably depend on the �pricing quality� of the underlying data. Arbitrage-ridden data offer

a picture of the surface quite different from (relatively) arbitrage-free data. This is worrisome, as the

presence of niches of pricing inefficiency seems to be so important to radically change our ability to

quantify the risk/return trade-off perceived by market participants.

We then offer two examples of how frictions and inefficiencies can substantially affect Þnancial

decisions based on parameters (related to the risk/return trade-off) commonly implied out of option

prices. In the Þrst application, we show that standard Value-at-Risk measures implied by our IVS

models crucially depend on the quality of the options data. In the second example, a simple multi-

period portfolio choice problem is solved under the assumption that index options provide informative

and efficient forecasts of future volatility. We show once more that the preliminary treatment of the data

impacts the resulting estimates in ways that have dramatic consequences for a simple asset allocation

problem.

The paper is organized as follows. In Section 2 we brießy describe the data and some of the

institutional characteristics of the MIBO market. In Section 3 we document a number stylized facts

concerning the MIBO IVS, thus motivating the sections to follow. In section 4 we systematically apply

no-arbitrage tests showing that a striking percentage of the data does reßect signiÞcant mispricings.

We then introduce a simple structure for transaction costs and eliminate all the observations that still

violate at least one of the no-arbitrage restrictions. By purging the original data set of mispricings

under alternative levels of frictions we obtain several data sets of varying quality. Section 5 takes up

the task of formally modeling the IVS. We document the importance of arbitrage violations in the

estimation. Section 6 describes the results of two applications to Þnancial decisions that depend on

estimated, dynamic models of the MIBO IVS. Section 7 concludes.

2. The Data

We analyze a high-frequency data set of European options written on the MIB30, the most important

Italian stock index.3 The MIB30 index is a capital-weighted average of the price of 30 Italian blue chips,

3The MIBO, established in November 1995, is a fully automated quote-driven market. Market makers have the obligation

to quote prices for a speciÞed set of contracts, expressly indicated in the market rules. Contracts are settled in cash. During

1999 the volume of exchanges (in milions of Euros) has been equal to 399, 031 and the number of traded contracts 2, 236, 241.
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which represent approximately 80% of the whole Italian stock market. Data are sampled at a frequency

of 30 minutes from 9 a.m. to 6 p.m. each day starting on April 6, 1999 and ending on January 31, 2000,

for a total of 300 calendar days and approximately 15 observations a day.4 Each observation record

reports the contemporaneous (as �stamped� by the exchange) value of the index, the risk-free interest

rate, the cross-section of transaction option prices (over alternative strikes and maturities) and the bid

and ask volumes.5 The interest rate is computed as an average of the bid and ask three month LIBOR

rates. Summary statistics are reported in Table 1.

Table 1 about here

According to IDEM market rules enforced during our sample period, prices are quoted for the strike

nearest to the index, two strikes above and two below it. Strike prices differ by 500 index points. Prices

are quoted for contracts with the three shortest monthly maturities and the three shortest quarterly

maturities. Since the longest monthly maturity coincides with the shortest quarterly maturity, we have

a total of Þve different maturities for each strike. Therefore at each point in time (day/time of the

day), we have a vector of approximately 25 prices for call and put contracts. After Þltering the data for

obvious misrecordings (e.g. negative prices or missing data), we proceed to drop prices with no trade

volume: we are then left with a total of 75, 900 prices (37, 920 calls and 37, 980 puts).

By distinguishing contracts on the basis of moneyness and the length of their residual life we obtain

a detailed description of the composition of the sample. In the following we will consider an option as

being at the money (ATM) if the strike price is within 2% of the index; if it is within 5% (but apart

for more than 2%) the option will be considered in the money (ITM) or out of the money (OTM),

respectively (depending on its intrinsic value); an option will be considered to be deep in-the-money

(DITM) or deep out-of-the-money (DOTM) if its strike price differs from the value of the underlying

by more than 5%. We also deÞne the following maturity classes: a contract has very short time to

expiration, τ (measured in calendar days), if τ ∈ (0, 7], short if τ ∈ (7, 25], medium if τ ∈ (25, 50], and
long if τ ∈ (50,∞). The most important class in the sample is that of ATM options with short residual

life (16%). More generally, ATM options represent more than one third of the data set, while short-

and medium-term contract account for almost 80%.

4All prices in our data set are the last available transaction prices in the preceding half-an-hour interval. When no

transactions took place for a given contract, the price is reported as missing. Missing observations are dropped from the

anlysis. Option prices are expressed in �index points�, with a value of 2.5 euro each.
5Because of standing IDEM rules, bid/ask quotes are not released and therefore unavailable; only bid/ask volumes are

released to the public. Unfortunately, this is not uncommon with derivatives markets in continental Europe. For instance,

Mittnik and Rieken (2000) face a similar constraint on German-DAX data.
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3. The MIBO Implied Volatility Surface: Stylized Facts

Starting with the moneyness dimension of the IVS, Figure 1 plots full-sample as well as sub-period

averages and medians of implied volatility when classiÞed in 21 moneyness intervals of 1% size, starting

at 0.89 and up to 1.10. Overall, the IVS describes an asymmetric smile when plotted against moneyness.

Medians and means are not very different, conÞrming that DITM options command an implied volatility

which is 5-8% higher than ATM options; while OTM options have roughly the same mean implied

volatility as ATM contracts, DOTM options imply again volatilities which are above the ATM levels.

Although the meaning of averaging (or calculating the median of) the implied volatilities of contracts

with different time-to-maturity is uncertain, it is undeniable that the top panel of Figure 1 is striking

evidence that one of the basic assumptions of Black-Scholes (1973) � constant volatility, independent

of the underlying spot price � hardly applies to the Italian stock index options market.6

Figure 1 about here

The bottom panel of Figure 1 plots average volatilities vs. moneyness for three sub-periods of equal

length: 04/06/1999 - 07/15/1999, 07/15/1999 - 10/25/1999, and 10/26/1999 - 01/31/2000. While the

Þrst and last periods produce jagged smiling shapes, the second is an asymmetric smile similar to the

one obtained for the full sample. The variety of shapes obtained through a simple decomposition into

three sub-samples makes us suspect the presence of remarkable instability in the MIBO IVS.

Next, we go beyond simple measures of location and examine the IVS for a few alternative days.

For instance consider April 16, 1999. Figure 2 plots four IV curves as a function of moneyness for

three consecutive trading times for which we have information (11:49 am, 12:19 p.m., and 12:49 p.m.),

besides the closest moment to market closing in our data set, 5:19 p.m. Reading the plots in a clockwise

direction, we have an initial example of stability of the IVS (between 11:49 am and 12:19 p.m., when

it describes an almost perfectly skewed shape, an asymmetric smile) followed by a sudden shift to (an

almost equally perfect) smile. However, by the end of the day (5:19 p.m.) the IVS have once more

changed, taking a shape in which DOTM options have much higher implied volatility than all other

moneyness classes.

Figure 2 about here

Figure 2 suggests that on the MIBO the IVS can take (even in an interval of a few hours) many alternative

shapes and be subject to sudden breaks. Figure 3, Þrst panel gives an idea on the tremendous instability

6Such a pattern is consistent with the preliminary Þndings of Cavallo and Mammola (2000) who, using daily data for

the period Dec. 1996 - Sept. 1997, report an asymmetric smile.
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of the IVS with respect to moneyness by plotting for each of the four data sets volatilities as a function

of moneyness over the entire sample period. The range of variation of implied volatility for each level

of moneyness is striking, going from [5%, 35%] for ATM contracts to roughly [10%, 50%] for DITM

and DOTM options. All this suggests that in the aggregate the MIBO IVS is likely to display non-ßat

shapes vs. moneyness, although a plot including all the daily IV curves is in fact consistent with the

presence of smiles, skews, as well as other shapes. The lower panel does stress this point. Another

implication is that � ruling out the unlikely hypothesis that perfect volatility smiles dominate all the

time � the IV shapes are changing over time in response to the MIB30 index swings.

Figure 3 about here

Figure 4 shows that similar remarks apply to the other dimension of the IVS, the term structure.

Focusing on the afternoon of Sept. 7 1999,7 we can see that not only a variety of shapes of the IVS vs.

time-to-maturity are possible � at Þrst hump-shaped, then upward sloping, then �smiling�, and Þnally

downward sloping � but also that dramatic changes can occur in half-an-hour only. For instance, on

that day the term structure evolved from hump-shaped to upward sloping between 1:05 p.m. and 2:35

p.m., with two further breaks between 2:35 p.m. and 3:35 p.m.. At market close, the IVS was decreasing

vs. time-to-maturity, another possible structure never appeared while the MIBO market had been open

during the day. Also in this case, sudden breaks seem to occur and on the whole the IV shapes are

highly unstable.

Figure 4 about here

We omit a series of plots of IVs vs. time-to-maturity similar in spirit to Figure 3 as they would iterate

the point that for short, medium, and long times-to-maturity the range of observed IVs is rather large,

[10%, 40%]. Once more, such wide ranges of variations are fully consistent with both a number of shapes

for the term structure of MIBO IVs and the presence of strong time heterogeneity.

4. Pricing Efficiency

A crucial issue in options markets is the existence of arbitrage opportunities.8 Since in a companion

paper (Cassese and Guidolin, 2004) we investigate this aspect in detail, for the current purposes we

limit ourselves to a small set of key points.

7This choice is not totally random, as in order to be able to draw term-structure plots we require at least three different

maturities being simultaneously traded.
8This issue has been addressed, among many others, by Ackert and Tian (2001), George and Longstaff (1993), Kamara

and Miller (1995), Nisbet (1992), Ronn and Ronn (1989).
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For frictionless options markets the absence of arbitrage is equivalent to the following pricing rules:

ct (K, τ) = EQ,t
£
e−rτ max (ST −K, 0)

¤
(1)

pt (K, τ) = EQ,t
£
e−rτ max (K − ST , 0)

¤
, (2)

where ct and pt indicate the time t price of a call and a put with strikeK and time to maturity τ ≡ T−t.9

Frictions and other market imperfections are responsible for frequent failure of (1)-(2) to hold in the

data, although a tractable model of option prices in the presence of frictions is not yet available. In the

absence of a satisfactory model, our choice is to treat frictions as affecting the difference between selling

and buying net prices (in analogy with the bid/ask spread). Discarding Þxed costs � the effective

burden of which depends on the volume of the transaction and is therefore hard to assess � we model

frictions as a Þxed proportion of the asset price, i.e. as an additional component to the bid/ask spread.

This choice allows us to restrict attention to bid/ask spread for options, the bid/ask spread for the

underlying and the cost of taking a short position in the underlying.10

Let the superscript a denote ask prices and b the bid prices (inclusive of frictions). Let TSt represent

the cost of taking a short position in the stock index.11 In particular, deÞning α as the spread on the

option, β as the spread on the MIB30, γ as the proportional transaction cost on sales of the underlying,

we write

cbt = (1− α) ct, cat = (1 + α) ct, Sbt = (1− β)St, Sat = (1 + β)St (3)

(for a call), and TSt = γSt. Then the bid/ask spread is 2α and 2β for options and the MIB30, respectively.

Under these assumptions, Cassese and Guidolin (2004) derive a number of no arbitrage conditions to

be tested. These conditions are listed below:12

9For the sake of simplicity, we will assume throughout that the interest rate r is constant.
10Cassese and Guidolin (2003) also discuss the potential role of other types of frictions � microstructural features of the

IDEM, cash dividends, and taxation � as possible determinants of arbitrage violations. They conclude that either these

additional frictions are difficult to quantify and use for empirical purposes (e.g. the special inventory position of market

makers, the individual tax position of arbitrageurs, etc.) or that they are hardly relevant (cash dividends).
11An approximate replication of an index sale can only be obtained via the corresponding futures market, the FIBO30,

i.e. by selling the future on the MIB30. This is an ordinary sale transaction so that no particular costs apply apart from

the corresponding bid/ask spread. Unfortunately, this strategy is not always available in the Italian stock market since

the expiration dates of futures and options market match only imperfectly. Potential alternatives to a short position in

the matched futures have the disadvantage to display highly imperfect correlation with the underlying and therefore imply

costs.
12See Cassese and Guidolin (2003) for further details on how these condions are checked. For most of them, textbook

treatments are available, see e.g. Epps (2000). Box spread conditions have been recently introduced by Ronn and Ronn

(1989). Spread maturity conditions appear to be novel and are derived in Cassese and Guidolin (2003); in practice they

boil down to the following pair of strict inequalities:

(short) [pt (τ2) + ct (τ1)] (1− α)− [pt (τ1) + ct (τ2)] (1 + α) +K
£
e−rτ1 − e−rτ2¤ < 0

(long) [pt (τ1) + ct (τ2)] (1− α)− [pt (τ2) + ct (τ1)] (1 + α) +K
£
e−rτ2 − e−rτ1¤ < 0.
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(a). Lower Bound;

(b). Strike Monotonicity;

(c). Maturity Monotonicity;

(d). Butterßy;

(e). Put/Call Parity;

(f ). Reverse Strike Monotonicity;

(g). Box Spreads;

(h). Maturity Spreads.

For instance, in the presence of frictions the standard lower bound condition is represented by the

following inequalities

(put) K exp(−rτ)−
h
St
1−β (1 + β) + pt (K) (1 + α)

i
< 0

(call) −K exp(−rτ) +
h
St
1+β (1− β) (1− γ)− ct (1 + α)

i
< 0

When either of the conditions are violated, their left-hand side represents the arbitrage proÞt that could

be made on the MIBO. For empirical purposes, we set α = β and γ = 0.13 One can easily check that all

the proÞts derived from violation of conditions (a)-(h) are decreasing functions of the parameter α = β.

In particular, when α = 0, inequalities like the ones listed above represent potential arbitrage proÞts

violating the pricing rules (1)-(2). For positive values of α, violations of the no arbitrage conditions are

far less attractive, thus explaining how proÞt opportunities that exist in theory may not be available in

practice. One can easily check that all the computed proÞts are decreasing functions of the parameter

α. In particular, when α = 0 conditions similar to the put-call parity bounds also give expressions for

the potential arbitrage proÞts violating the pricing rules (1)-(2). For positive values of α, the proÞts

deriving from violations of the no-arbitrage conditions are far less attractive, thus explaining how proÞt

opportunities that exist in theory may not available in practice.

For the case α = 0, the Þnding is striking: the number of arbitrage violations is outstanding �

approximately 50% of the sample. The distribution of this total number across moneyness, time to

maturity and type of condition violated is also interesting, see Table 2.

Table 2 about here

It is clear that the number of arbitrage opportunities detected increases the shorter the time to maturity

and the higher the moneyness. Short-term, ITM and DITM options are normally considered not very

13Results in Cassese and Guidolin (2003) show that γ has little impact on the number and size of the existing arbitrage

opportunities.
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liquid: Those investors who own them have good prospects of receiving a positive Þnal payoff if they hold

their contracts rather than trade them in the attempt of reaping immediate arbitrage proÞts. We thus

Þnd some correlation between mispricings and liquidity. Nevertheless, even the more liquid segments

of the market tend to display ratios above 30%, i.e. inefficiency is maximum when coupled with low

liquidity, but it characterizes in general the MIBO market. As regards the different conditions tested,

it clearly emerges that the most often violated ones are the Box spreads, the put/call parity and the

Butterßy spreads. The two Box conditions are violated equally often, but the parity condition is highly

asymmetrical and it is the short hedge the one that the MIBO has the hardest time to satisfy. This

makes intuitive sense as the trading strategy that would allow arbitrageurs to exploit the corresponding

mispricing requires to take a short position in the index, which is difficult and costly.14

Figure 5 about here

Figure 5 plots the percentage number of violations of at least one of the above conditions as a function

of α. In panel A we plot the ratio of arbitrage violations over the sample size for conditions implying a

low number of violations. Percentage ratios in this case rapidly converge to zero as α increases. Panel

B refers to the two sides of the put-call parity: although it is still clear that violations of the short end

occur more frequently than those of the long side, it is remarkable that the high ratios of these violations

quickly drop to zero as soon as α reaches about 2%. Panel C stresses the existence of other conditions

that are both frequently violated in the absence of frictions (box and maturity spreads imply about

20% violations for α = 0) and that remain important throughout the range of all the values for α we

consider. For instance, at α = 4% the two box spread conditions still originate a 5% each of violations,

while the maturity spread condition is still at a very persistent 15%. The plot documents that some

kinds of pricing inefficiencies are very persistent and that in particular, the maturity spread restriction

is scarcely inßuenced by the value of the transaction costs. Obviously, as α increases the overall number

of violations declines to zero.

We conclude that the MIBO market is characterized by remarkable niches of inefficiency even after

considering the role of transaction costs and other frictions. Therefore any econometric analysis of

the structure and dynamics of the IVS should consider the possibility that the results depend on the

presence of observations that violate some of the rational pricing bounds established by (a)-(h). To this

end we discard from our sample those prices involving at least one type of arbitrage opportunity for

different values of α so to obtain four distinct data sets:

1. The original data set (73,529 observations). This amounts to a sample free of arbitrage only for

14Mittnik and Rieken (2000) make a similar remark with reference to options on the German DAX stock index.
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α = +∞.15

2. A medium-frictions data set (67,962 observations) corresponding to α = 5%.

3. A low-friction data set (57,379 observations) for α = 2%. Since this value of α is the most plausible

in the light of market regulations, this data set is probably the most realistic one.

4. A frictionless data set (36,623 observations) derived by setting α = 0%. Obviously, this corre-

sponds to dropping about 51% of the original observations and makes this fourth data set the

highest quality one. We will often refer to this fourth data set as the arbitrage-free one.

In Section 5 we study whether an econometrician�s perception of the stochastic process of the IVS

may be inßuenced by the pricing quality of the data.

5. Structural models of the IVS

Given our Þnding that the MIBO IVS has a rich structure that departs from the Black-Scholes (1973)

benchmark, in this section we try to reÞne our understanding of its determinants by Þtting a host of

alternative �reduced form� models of implied volatility. DeÞning zt as K/ [e
rtτ tSt],

16

1. lnσIV (zt, τ t) = β0 + ²(zt, τ t)

2. lnσIV (zt, τ t) = β0 + β1 ln zt + ²(zt, τ t)

3. lnσIV (zt, τ t) = β0 + β1 ln zt + β2 (ln zt)
2 + ²(zt, τ t)

4. lnσIV (zt, τ t) = β0 + β1OTMt + β2 (ITMt)
2 + ²(zt, τ t)

5. lnσIV (zt, τ t) = β0 + β1OTMt + β2 (ln zt)
2 + ²(zt, τ t)

6. lnσIV (zt, τ t) = β0 + β1OTMt + β2 (ln zt)
2 + β3ITMt + ²(zt, τ t)

7. lnσIV (zt, τ t) = β0 + β1 ln zt + β2 (ln zt)
2 + γ1τ t + γ2 (ln zt) τ t + ²(zt, τ t)

8. lnσIV (zt, τ t) = β0 + β1 ln zt + β2 (ln zt)
2 + γ1τ t + γ2 (ln zt) τ t + γ3τ

2
t + ²(zt, τ t)

9. lnσIV (zt, τ t) = β0 + β1NSt + β2NS
2
t + γ1τ t + γ2NStτ t + ²(zt, τ t)

Models 1-6 follow Pe�na et al. (1999, pp. 1159-1160), apart for the fact that the regressand is speciÞed

as the logarithm of the implied volatility (see Ncube, 1996). By construction (after getting rid of

violations of the lower bound condition) σIV (zt, τ t) > 0, so the left-hand side is always well deÞned.

The advantage of this choice is to make the random regressands consistent with the errors ²(zt, τ t),

commonly interpreted as (possibly normal) random draws from a distribution symmetric around zero.

15In practice, this is true only as a Þrst approximation as we anyway purge the data set of observations violating the

lower bound conditions, i.e. implying a negative implied volatility. Elimination of lower bound violations explains the loss

of 2,371 observation from the original 75,900.
16zt is a notion of moneyness that employs the forward price at the denominator. In what follows, τ t is expressed in

number of calendar days as a fraction of a year.
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Model 1 corresponds to the assumption of constant volatility (eβ0) of Black-Scholes. It is a useful

benchmark as it allows to measure what is the additional percentage of variability in the IVS (over time

and contracts) that the use of additional regressors allows to capture. Models 2 and 3 correspond to

the case of an IVS which is either a linear or a quadratic function of moneyness, although the IVS does

not depend on time-to-expiration. As for models 4-6, deÞne the following piecewise functions:

OTMt =

(
ln zt if zt < 1

0 if zt ≥ 1
, ITMt =

(
0 if zt < 1

ln zt if zt ≥ 1
. (4)

The former indicator measures moneyness when the contract is OTM and is zero otherwise, while the

latter measures moneyness when the contract is ITM. Clearly, OTMt+ ITMt = ln zt ∀zt. Consequently,
model 4 captures an asymmetric smile, linear for zt < 1 and quadratic for zt ≥ 1.Model 5 still represents
an asymmetric smile, since for zt < 1 the IVS is described by a polynomial of second degree, while for

zt ≥ 1 the IVS reduces to the upward sloping branch of a quadratic function. Model 6 is yet another
variation, in which for zt < 1 the IVS is a polynomial of second degree with coefficients β1 and β2, while

for zt ≥ 1 a different polynomial of second degree is Þtted, this time with coefficients β2 and β3. Notice
that since ln zt is employed and the piecewise functions of moneyness in (4) depend on the logarithm

of moneyness only, eβ0 always measures ATM implied volatility. Models 7 and 8 are inspired instead

by Dumas et al.�s (1998, p. 2068) �ad hoc strawman�. Model 7 allows the IVS to change as a function

of time-to-expiration too. τ t also appears in an interaction term, τ tzt. The interaction term might

be crucial in capturing the infra-daily variation in the term structure of implied volatility detected in

Section 2. Model 8 differs from 7 as also a quadratic term in τ t is used as a regressor. Finally, model 9

follows Gross and Waltner (1995) in using an alternative to the variable zt, the normalized strike:

NSt =
ln
¡
Sterτt
K

¢
√
τ t

,

where τ t is expressed as a fraction of a 365 days� year. Model 9 is otherwise identical to model 7.

Unfortunately, it is not possible to simply run OLS regressions of a vector of implied volatilities

corresponding to different days/time of the day, moneyness, and time-to maturity on vectors of regressors

according to each of the models 1 - 9. The problem is that since the observations come from a panel data

set � along several dimensions, time, moneyness, and time-to-expiration � the random disturbances

²(zt, τ t) are unlikely to be spherical, i.e. to have identical variance and to be uncorrelated. For instance,

it is plausible that, because of the lower liquidity, certain regions (DITM and DOTM) of the IVS be

characterized by more volatile random shocks, a source of heteroskedasticity. Similarly, it is likely that

in a high frequency data set certain times of the day (like opening, lunch time, etc.) be characterized by

more volatile random inßuences than others. Finally, depending on the dynamics of the market�s (risk
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neutral) beliefs underlying the pricing of derivative securities, it is plausible that shocks to the IVS be

correlated across moneyness classes (for options with different maturities) and/or across maturities (for

given moneyness).

Therefore our estimation strategy takes into explicitly account the panel nature of the data and con-

sists of an application of Parks� (1967) method after implementing suitable procedures of transformation

of the original data set(s).17 In the following we provide a brief account of the estimation strategy and

report on the resulting perception of the MIBO IVS as a function of the pricing efficiency of the data

used in the analysis.18

5.1. Feasible GLS estimation on panel data

We approach the estimation problem trying to exploit both the cross section and the time series di-

mensions of the data and apply a method that explicitly takes care of the non-spherical nature of the

random disturbances, Parks� (1967) iterative GLS approach. While extremely common in many Þelds

of empirical economics, we are not aware of any other applications to modeling the IVS options data.19

The application of Parks� method requires Þrst that a two transformations be applied to the data. In

particular we take two steps:

a. We subject the data to a reduction process by which, for each recorded trading time, we extract

only 20 observations, corresponding to all the possible combinations (the order does not matter)

of the Þve categories of moneyness � {DOTM, OTM, ATM, ITM, DITM} � and the four

categories of time-to-maturity � {very short, short, medium, long}. The classes of moneyness
and time-to-expiration are deÞned in Section 2. It often happens that a given moneyness class

contains multiple observations. In these cases we extract the observation with the lowest (highest)

moneyness in the case of DOTM (DITM) options, and use the mid-point observation based on a

17We also resort to a second empirical strategy, OLS regressions on pooled time series / cross section data supplemented by

calculation of heteroskedasticity-autocorrelation consistent estimates of the covariance matrix of the estimated regression

coefficients as in Newey and West (1987). Since HAC estimators have now entered the regular toolkit of all empirical

economists, also this approach is quite common in the literature (see for instance Pe�na et al. (1999)). However with our

data, the results obtained were spurious due to the high level of serial correlation in implied volatilities (as shown by the

Durbin-Watson statistics for regression residuals) and are therefore omitted.
18Clearly, the Þrst-best is a strategy that models the factors causing the mispricings (e.g. lack of liquidity, missing

markets like in the case of the FIBO30, etc.) and thus imposes structural restrictions on the resulting estimates. However,

such models as well as the techniques of detection and measurement of the inefficiencies implicit in reported options prices

are still in their infancy. Hence the second-best, �data- Þltering� approach followed by our paper.
19Ncube (1996) estimates reduced form models of the FTSE100 IVS using panel methods, Þtting both a dummy variable

model and a random effects model. Although the speciÞcation of strike-speciÞc intercepts or random terms might help

capturing the heteroskedasticy otherwise present in the data, these techniques still assume perfectly spherical disturbances

and are unlikely to accommodate for the presence of serial correlation.
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moneyness ranking for the remaining three classes. This transformation inevitably induces some

loss of data. For instance, since the unÞltered (α→∞) high frequency data provide us with 3,434
observations over time (at half-an-hour intervals), the resulting sample is in principle composed

of 68,680 observations, implying a minimal loss of information. In practice, it happens that a few

classes of moneyness may not be represented; especially in the case of time-to-maturity, at most

three classes are simultaneously present throughout the sample. It turns out that the �reduced�

unÞltered sample consists of 21,240 observations, between 1/3 and 1/4 of the original number.

Similar selection procedures are applied for lower levels of α. On the other hand, the resulting

data sets have the structure of balanced panels in which the cross-sectional identiÞers are now the

20 moneyness/time-to-maturity classes.

b. We allow the covariance matrix of the random errors affecting the IVS to have arbitrary patterns

of heteroskedasticity, serial, and cross-sectional correlation, as synthesized by a full matrix rank

covariance matrix Ω.

Write the generic model for time t (deÞned by day/hour of the day) as

yit = β0 + x
0
itβ1 + ²it i = 1, ..., 20 or

yt = β0ι20 +Xtβ1 + ²t

where E[²t] = 0 and E[²t²
0
t] = Σt. yit collects the log implied volatility at time t for class i, while the

row vector x0it contains the regressors characterizing models 1 - 9. Let�s now stack the T observations

(for instance 3,434 for the unÞltered data) on the different times and write the model in compact fashion

as:

Y = β0 +Xβ1 + ².

Following Parks (1967), we initially assume Σt is constant over time and that no serial correlation

patterns be present, so that the overall covariance matrix of the IV errors can be effectively described

by Ω = Σ⊗ IT . At this point it is well known that the GLS estimator

�β
GLS
1 = (X 0ΩX)−1X 0ΩY

is consistent and efficient, and also yields consistent estimates of the covariance matrix of the estimated

coefficients, (X 0ΩX)−1. Unfortunately, Ω (more precisely, Σ) is unknown and must be Þrst replaced by

a consistent estimate, such as

bΩOLS = �ΣOLS ⊗ IT =
"
T−1

TX
t=1

(�²OLSt )(�²OLSt )0
#
⊗ IT
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where �²OLSt = �yt − �βOLS0 ι20 −X0t�β
OLS
1 and �β

OLS
1 = (X 0X)−1X 0Y . The resulting estimator

�β
FGLS
1 =

³
X 0bΩOLSX´−1X 0bΩOLSY

is called the feasible GLS.20 Under a variety of conditions (see Parks (1967)) it has been shown to be

consistent and unbiased. Asymptotically, it is also equivalent to MLE and therefore it is fully efficient.

Even in the absence of normality, it can be interpreted as a pseudo-maximum likelihood estimator that

retains all the asymptotic properties of MLE estimators (see Gouriéreux and Monfort, 1984). Notice

however that the assumption of Σt constant over time is easily rejected by most data sets. In our case,

it is likely (at least within a given class of contracts) that pricing errors might be long-lived and hence

serially correlated. Therefore we resort to a further step. We regress (by OLS) the panel residuals on

their lagged values and estimate the matrix R in the multivariate model

�²FGLSt = R�²FGLSt−1 + ut (5)

where ut is spherical. Finally, we apply OLS to the (so called Prais-Winsten) transformed model

yt − �Ryt−1 = β0(I − �R) + (Xt −Xt−1 �R)β1 + ut,

which yields consistent and efficient estimates of �β
Parks
0 and �β

Parks
1 , along with an unbiased estimate

of their covariance matrix.

5.2. Empirical Results

For both the unÞltered and the arbitrage-free samples, Table 3 reports descriptive statistics (mean,

median, and standard deviation) for each of the 20 classes deÞned above. Most of the contract classes

are represented in the sample in a balanced way, although (as it is to be expected) long-term, DITM and

DOTM contracts are underrepresented (less than 1,000 observations each). Given maturity, means and

medians describe smiles for short maturities, and smirks for medium and long term contracts. Given

moneyness, the term structure of implied volatilities is generally downward sloping, which is consistent

with our previous remarks.

Table 3 about here

Decreasing α has mainly the effect of expelling extreme IVs from the sample, and this is reßected in the

smaller values of panel B, especially for short term contracts. Since all these impressions coincide with

20In practice we iterate over the two steps of Þnding a consistent estimator for Ω based on the residuals obtained in

step i− 1, estimating �βFGLS(i) (�Ω(i−1)) and then calculating the corresponding residuals for step i until convergence of the

estimates of β is obtained. Although our data set is relatively large, convergence is fast.
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our comments in Section 3, we surmise that the reduced sample is highly representative of the original

data. Therefore we apply the estimation procedure outlined above.

For the unÞltered data, Panel A of Table 4 reports on the output of the Þrst step of the estimation

procedure, i.e. �β
FGLS

and the p-values obtained from the covariance matrix
³
X 0bΩX´−1.

Table 4 about here

If we were really convinced that IVS errors are serially uncorrelated, these would be our panel estimates.

All the parameter estimates are statistically signiÞcant at p-values indistinguishable from zero, and the

resulting R̄2 are of the same order of magnitude. Model 8 returns the highest R̄2 (0.11) while model

9 provides a poor Þt. However serial correlation of the IV disturbances is troublesome, as stressed by

very low and highly signiÞcant Durbin-Watson statistics in the last column of the Table. Therefore we

apply the second stage of Parks�s method. We estimate by OLS the model:

�²FGLSt = ρI20�²
FGLS
t−1 + ut,

a simpliÞcation of (5) to the case in which serial correlation is common in intensity to all classes of

option contracts. Since we do not have any theoretical reason to assume that IV shocks have a differ-

ent persistence as a function of moneyness and/or time-to maturity, and this assumption remarkably

simpliÞes the task, we proceed to derive our Þnal (Parks) estimates from the Pras-Winsten modiÞed

regression:21

yt − bρyt−1 = α(1− bρ) + (Xt − bρXt−1)β + ut.
Panel B of Table 4 reports the results. As suspected from panel A, serial correlation is the principal

problem plaguing the unÞltered data. Adopting Parks� GLS correction changes some of the estimates

and in general increases the standard errors by several orders of magnitudes. In particular, the vari-

able capturing the interaction effects between moneyness and time-to-maturity is always insigniÞcant.

However, the correction is quite successful, in the sense that now all the D-W statistics (not reported)

fall in the range [2, 2.5]. Comparing models 3 and 7, and models 7 and 8, it appears that in order to

obtain a good Þt incorporating time-to-maturity is crucial, while also squared time-to-maturity helps.22

Figure 6 (right graph) plots the IVS implied by the Parks� coefficient estimates under model 8, the one

21The estimates of ρ are reported in the last column of panel B of table IV. In general they are in the range 0.89-0.90

and all of them are highly signiÞcant. Davidson and MacKinnon (1993, pp. 371-372) give also technical reasons for why it

might be wise to specify R as a scalar matrix.
22Notice that the R̄2 in panel B of Table IV cannot have the same interpretation as the ones in panel B. Another

disadvantage of this procedure that should be pointed out is that � because of the use of lagged variables in the regressions

� many less observations are actually available for estimation purposes.
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guaranteeing the highest R̄2 in panel A of Table 4. Notice how the model captures the transition from

perfectly symmetric smiles for short-term options to ßatter and more asymmetric smiles (smirks) for

medium- and long-term contracts. The Þtted term structure of implied volatility is instead downward

sloping for ATM and ITM contracts and describes another smile for DOTM options.

Figure 6 about here

Table 5 applies Parks� estimation procedure to the arbitrage-free data set. Table 6 inspects what

lies between the two extremes of α→∞ and α = 0. In the case of the arbitrage-free sample, the same

process under (a) above, gives a data set of 20,356 observations, more than 50% of the original sample

size.

Table 5 about here

Panel A of Table 5 reports the output of the Þrst step of the Parks� estimation procedure. There is

only one remarkable difference with respect to Table 4: on arbitrage-free data, model 9 outperforms

model 8, displaying signiÞcant estimates only and (in panel A) a striking R̄2 = 0.31. Apparently, data

sets plagued by violations of basic no-arbitrage conditions display a law of motion for the IVS which is

sensibly different from the one characterizing arbitrage-free option prices.

Table 6 about here

Comparing Tables 4 and 5 it is also apparent that a few estimated coefficients in the best Þtting models

do switch signs. A last interesting Þnding is that while an econometrician using the unÞltered data

would be probably led to infer that the interactions effects between maturity and moneyness are hardly

important and certainly insigniÞcant under a statistical viewpoint, the estimated coefficients associated

with interactions become on the contrary quite signiÞcant when data of better quality are used. This is

comforting, offering an explanation for the term structure shifts uncovered in Section 3.

Table 6 further stresses these points by comparing the rankings of the best four models in terms of Þt

(as measured by their R̄2). Apart from the drastic change of status of model 9, we also observe that model

3 � implying a very simple smiling structure of the IVS without any term structure or interaction effects

� looses importance and Þnally disappears from the rankings as the pricing efficiency underlying the

data is increased throughout our experiments. Although the differences are not alarming, as α declines

many coefficients become smaller albeit estimated with higher precision. Figure 6 completes the picture

by plotting the estimated MIBO IVS under the best Þtting model when α = 0. Obviously the left-hand

panel strongly differs from the right-hand one. Not only the MIBO IVS is rich and therefore worthy
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of empirical analysis, but what can we learn about it seems to be related in quite a precise way to the

degree of efficiency we impute to the Italian options market.23

5.3. Analysis on Þrst-differenced data

There is at least one unresolved issue left open by the analysis so far: how restrictive is the assumption

that R = ρI20, i.e. that the serial correlation coefficient of the random shocks must be identical across

moneyness and maturity classes? Instead of generalizing Parks� method to the case of R full matrix,

we take a shortcut that maintains the ßavor of Parks� procedure but that appears to more closely

correspond to a number of papers that have formally modeled implied volatilities (e.g. Christensen and

Prabhala, 1998): we apply FGLS on a panel in which the regressands are deÞned as the Þrst difference

of log-implied volatility. For instance, in the case of model 8:

800. ∆ lnσIV (z, τ) = β0+β1∆ ln zt + β2 (∆ ln zt)
2+γ1∆τ t + γ2 (∆ ln zt)∆τ t +

+γ3 (∆τ t)
2 + ²(z, τ),

where∆ lnσIV is deÞned as the change in log-implied volatility within the same moneyness and maturity

class over two consecutive trading days. Similar transformations apply to all variables and models

investigated in the paper. Clearly the transformed model has a different meaning relative to the original

one, as now changes in log-moneyness and time-to-maturity explain not the log-level of the IV, but its

change over time. It is similarly obvious that all problems of excessive serial correlation in ²t caused by

the persistence in log-implied volatilities, ought to disappear once the transformed model is embraced.

However, such type of models are on equal footing as 1.-9. if the objective is not only to explain how the

IVS looks like, but instead whether our ability to empirically pin down its properties do in fact depend

on the quality of the underlying data.

Panels C of Tables 4 and 5 show results for the models in Þrst differences. Results are qualitatively

similar at least in two ways. First, once more the ranking across models provided by the R̄2 statistic

23We have also applied a shortcut approach that has proven rather popular in the literature (e.g. Ncube (1996), Dumas

et al. (1998), and Pe�na et al. (1999)): OLS regressions on a sequence of cross sections, one at each point in time. This

strategy completely disregards the panel nature of the data and implies a remarkable loss of efficiency in the estimates.

Moreover, its output consists of a time series of estimated coefficients, a different vector for each point in time covered by

the sample. Although reporting means or medians of the estimates over time is common practice, the logical background

for this operation is unclear. It turns out that model 8 is consistently the best, with median R̄2s ranging from 0.67 to 0.87,

followed by model 9. Although the ranking over models is not affected by the efficiency of the data used in the estimation,

we have other indications that the presence of misspriced options does matter for an econometrician�s perception of the

IVS. First, average and median R̄2s systematically increase as α declines; second, for large αs, it is common to Þnd large

differences between average and median estimates, a sign of instability over the sequence of cross sections. Detailed results

are available upon request.
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strongly depends on the quality of the data employed in the estimation.24 Therefore while the unÞltered

data (α→∞) reveal that the best Þt is unequivocally provided by model 6, the arbitrage-free data set
(α = 0) shows that once more the superior model is 8. Also in this case, as the quality of the data

set improves, the R̄2s increase from 1-2% to almost 3%. Second while Table 4, panel C shows some

discontinuity vs. the Parks� estimates in panel B, this does not occur in Table 5: for instance, out of

23 estimated slope coefficients, 20 keep their signs unchanged going from panel B to C, and in at least

half of the cases the magnitude of the estimates are practically identical; in particular, there are clear

indications that implied volatilities decrease in time to maturity and increase in moneyness, although

signiÞcant interactions between maturity and moneyness emerge in models 7 and 8. The only structural

change that can be observed involves the squared moneyness regressor, that fails to be signiÞcant when

Þrst-differenced models are entertained.

5.4. MisspeciÞcation tests

In Section 5.2 we have established provisional rankings across models that fail to lie on Þrm grounds by

relying on FGLS R̄2, i.e. referred to estimates that do not correct for serial correlation in the residuals.

It is therefore important to develop ways to formally assess if any of the models might be considered

correctly speciÞed in the light of the information carried by opponent models. In this Þnal subsection,

we take care of this point.

With reference to the formal ranking of the models under analysis, some of the tests are easily

implemented because of their nested nature: given a pair of models that differ only by the fact that

one model employs additional regressors relative to the opponent, it is well known (e.g. Davidson

and MacKinnon, 1992, pp. 193-194) that a speciÞcation check consists simply of testing (using F or

likelihood ratio statistics) whether the additional regressors signiÞcantly improve the model�s Þt. In

this respect, a number of nesting relationships are clear from the models� list initially provided: 1. is

nested within 2.; 2. within 3.; 3. within 7., and 7. within 8.; 5. is nested within 6. Exploiting these

relationships and the fact that when two models differ only by one regressor the F-statistic is just the

squared t-statistic, some of the nested misspeciÞcation tests can simply be �eye-balled� from Tables 4

and 5. For instance, looking at panel C (when data are Þrst-differenced) of Table 5, it turns out that

while the null of correct speciÞcation of 1. (no explanatory variable) is clearly rejected, there is no

evidence in favor of 3. when 2. is the null model; also, 5. appears to be misspeciÞed in the light of

24Notice that FGLS for Þrst-differenced data allow us to interpret the R̄2 in standard fashion. One additional advantage

is that the number of useful observations for estimation purposes is close to the original sample size, roughly 20,000

observations.
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6., and 7. in the light of 8. Therefore the residual nested test involves models 2. and 8., and clearly

supports model 8.25 Similar sequences of nested tests reveal that the correct speciÞcation of 2. and 7.

cannot be rejected when working with unÞltered data (i.e. panel C of Table 4), with 7. supported over

2. by a LR test.26

However, some interesting comparisons cannot be simply performed using t- or LR-tests as the

corresponding models are non-nested. In particular, with high quality data, it remains to be tested

whether 6. is misspeciÞed in the light of 8., and whether 8. is supported given the Þt provided by 9.;

with unÞltered data, non-nested tests ought to involve 6. and 7., and 7. and 9. We brießy recall the

tools required by non-nested model testing and then proceed to comment on the results (see Davidson

and MacKinnon, 1992 and 1993)). For concreteness let�s examine the case of models 6. and 8., although

the principle easily generalizes. Consider the two models

H1 : ∆ lnσ
IV
t = β0 + β1∆OTMt + β2 (∆ ln zt)

2 + β3∆ITMt + ²t = x
0
tθ1 + ²t

H2 : ∆ lnσ
IV
t = β0 + β1∆ ln zt + β2 (∆ ln zt)

2 + γ1∆τ t + γ2 (∆ ln zt) τ t +

+γ3 (∆τ t)
2 + ²t = z

0
tθ2 + ²t

where xt ≡ [1 ∆OTMt (∆ ln zt)
2 ∆ITMt]

0, zt ≡ [1 ∆ ln zt (∆ ln zt)
2 ∆τ t (∆ ln zt) τ t (∆τ t)

2]0 which

clearly contains 4 columns that cannot be written as linear combinations of columns of xt. Two tests

can be now performed: First, a t- test of ζ = 0 in the artiÞcial (compound) regression

Hc : ∆ lnσ
IV
t = (1− ζ)x0tθ1 + ςz0t�θ2 + ut = x0tθ1 + ζ

³
z0t�θ2 − x0tθ1

´
+ ut,

where �θ2 is the FGLS estimate of model H2. Clearly, the null of ζ = 0 implies that no signiÞcant

additional Þt is provided by model H2 and hence that there is no evidence of misspeciÞcation of H1.

This test is commonly called a J (joint) test.27 Importantly, the panel nature of our data set that advises

using GLS method poses no problem to the validity of this artiÞcial regression approach, see Davidson

and MacKinnon (1992, p. 127). Second, one can use a t- test of φ = 0 in the artiÞcial (compound)

regression

H 0
c : ∆ lnσ

IV
t = φx0t�θ1 + (1− φ)z0tθ2 + ut = z0tθ2 + φ

³
x0t�θ1 − z0tθ2

´
+ ut,

252. and 8. differ by as many as 4 regressors. The implied LR statistic is 1,439.4, which is obviously highly signiÞcant

under a χ2(4).
262. and 7. differ by 3 regressors. The implied LR statistic is 176.0, which is highly signiÞcant under a χ2(3).
27Alternatively, when the artiÞcial compound regression takes the form

∆ lnσIVt − x0t�θ1 = x0tb+ ς
³
z0t�θ2 − x0t�θ1

´
+ ut,

where �θ1 is the FGLS estimate of the parameters in model H1, the test is called a P -test. We have also tried this variant

of the non-nested methodology obtaining qualititatively identical results. In practice, the J test is known to reject too

much in small samples. This does not seem to be too problematic given our sample size.
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where �θ1 is the FGLS estimate of model H1. Clearly, the null of φ = 0 implies that no signiÞcant

additional Þt is provided by model H1 and hence that there is no evidence of misspeciÞcation of H2.

Interestingly, it is possible that either both models be rejected as misspeciÞed (i.e. ζ 6= 0 and φ 6= 0) or
that both models pass the misspeciÞcation test (ζ = 0 and φ = 0).

We report results in Table 7 for models 6, 7, and 9 when α → ∞, and 6, 8, 9 when α = 0. As

explained, tests must be performed for each pair of models by allowing each of them to play the role

of H1. With reference to the unÞltered data set, there is clear evidence in favor of model 7: while this

model does not appear to be misspeciÞed when it is artiÞcially compounded with models 6 and 9, all

other models are misspeciÞed. Once more, switching to a high quality data set changes the conclusions

on which model is less likely to be misspeciÞed, as model 9 emerges as the only framework that does

not admit �integration� with Þt information provided by either models 6 or 8.

Table 7 about here

Although our analysis just scratches the surface of a systematic investigation of structural models

of the IVS dynamics, two closing considerations are in order. First, the casual observation that the IVS

is very complicated and capable of displaying many heterogenous patterns is conÞrmed by Figure 6,

where it is obvious that the relationship between volatility and moneyness (and hence the MIB30 index)

is also a function of the time to expiration of the contracts considered, and that the term structure

of IVs depends on moneyness. The MIBO IVS is truly a tridimensional concept. Second, we have

indirectly documented a massive impact of the possible presence of observations containing arbitrage

opportunities in a data set and the choice of reduced form model of the IVS. This is likely to be crucial

both for understanding the process of price formation in derivative markets and for forecasting and

operational purposes.

6. Applications

6.1. Value-at-Risk Estimation

The value-at-risk (VaR) of a given portfolio summarizes the expected maximum loss over a target

horizon within a given conÞdence interval.28 In particular, the time t relative VaR at a conÞdence level

η over a horizon T is deÞned as

V aR(η, T ) = Et[Vt+T ]− V ηt,t+T ,
28Jorion (2001) is a readable introduction to the theory and practice of VaR. Batten and Fetherson (2002) collects papers

documenting recent advances and open issues in risk management.
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where V ηt,t+T is such that Prt{Vt+T ≤ V ηt+T} = η (the η-th percentile) and both Et[·] and Prt{·} are
conditional to the information available at time t (see Jorion, 2001, p. 109).

The MIB30 options IVS models estimated in Section 5 offer an opportunity to perform VaR calcula-

tions for many portfolios containing assets whose payoffs/returns depend on the MIB30 index. Consider

for instance the Þtted values produced by model 9 on some data set of quality determined by the

parameter α and using some estimation technique:29

\lnσIV (z, τ) = �β0 + �β1
lnSt + (rt − δt)τ − lnK√

τ
+ �β2

[lnSt + (rt − δt)τ − lnK]2
τ

+

+bγ1τ + bγ2 [lnSt + (rt − δt)τ − lnK]√τ . (6)

Once the Þtted values are available, calculation of �σIV (z, τ) is straightforward. Given the current stock

price St and the interest rate rt, assume that the implied volatility �σ
IV (z, τ) represents an unbiased

and efficient forecast of the future, average volatility realized over the interval [t, t + τ ].30 Therefore

�σIV (z, τ) represents the (annualized) forecast of MIB30 volatility for a period of length τ .Obviously, such

a volatility is also a function of moneyness and therefore changes (for a given contract) as St changes.

This opens interesting possibilities to exploit our (parametric) knowledge of the predictable component

in implied volatility, which is essential for VaR applications.31 Suppose one needs to simulate a path

for the MIB30 index over the interval [t, T ]. Observe that by setting �β
0
1 ≡ �β1 lnSt, �β

00
1 ≡ �β1(rt − δt),

�β
0
2 ≡ �β2 (lnSt)2 , �β

00
2 ≡ �β2(rt−δt)2, �β

000

2 ≡ �β2(lnSt)(rt−δt), �β
iv
2 ≡ �β2(lnSt), �β

v
2 ≡ �β2(rt−δt), bγ02 ≡ bγ2 lnSt,

and bγ002 ≡ bγ2(rt − δt), one can re-write (6) as:
\lnσIV (K, τ) = �β0 + �β

0
1

1√
τ
+ �β

00
1

√
τ − �β1

lnK√
τ
+ �β

0
2

1

τ
+ �β

00
2τ +

�β2
(lnK)2

τ
+ 2�β

000

2 +

−2�βiv2
lnK

τ
− 2�β

v

2 lnK + bγ1τ + bγ02√τ + bγ002τ3/2 − bγ2(lnK)√τ .
This shows that conditional to asset prices at time t, the implied volatility function may be written in

the arguments τ and K only, with St, rt, and δt absorbed in the values of the estimated coefficients. At

this point, assuming the MIB30 changes at points t+ τ , t+ 2τ , ..., t+ T , it is possible to generate the

return rt,τ for the period [t, t+τ ] from a conditional density with volatility �σ
IV (St, τ), the return for the

29Similar remarks hold for all IVS models entartained in this paper.
30For Black-Scholes implied volatilities, this is approximately correct only for ATM contracts (see Poteshman (2000)):

σIV (z, τ) = E
h
τ−1

R t+τ
t

σsds
i
. However, many Authors (e.g. Canina and Fliglewski (1993)) have justiÞed the expectation

that implied volatilities should be unbiased predictors of subsequently realized volatilities using a projection argument for

all levels of moneyness.
31For instance, Jorion (2001, p. 184) argues that �(...) time series models [of predictable variation in volatility] are

inherently inferior to forecasts of risk contained in option prices.�. Options implied volatilities are in fact inherently

forward looking, for instance discounting possible structural breaks that are necessarily reßected by historical data only a

long time after the occurrence of the break.
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period [t+ τ , t+2τ ] from a conditional density with volatility �σIV (St+τ , τ) (where St+τ = St(1+ rt,τ )),

and so on; the Þnal t+ T MIB30 index will be given by

St+T = St+T−τ (1 + rt+T−τ ,τ ) = St × (1 + rt,τ )× (1 + rt+τ ,τ )× ...× (1 + rt+T−τ ,τ ),

where rt+T−τ ,τ has been generated from a density with volatility �σIV (St+T−τ , τ).

In the following, we focus on the simplest possible portfolio, the MIB30 itself, although extensions

to more interesting cases (for instance, to combinations of the MIB30 and protective − i.e. long − puts)
in which multiple risk factors are relevant and the portfolio value is a nonlinear function of these factors

are logically straightforward. We apply two alternative and popular VaR methods: the delta-normal

and a Monte Carlo simulation approach. Table 8 shows results for both methods for two conÞdence

levels (η = 5 and 1 percent) and two alternative horizons (1 and 12 months). Calculations are performed

at the end of our sample period, at the closing of January 31, 2000 when the MIB30 index was 42,130

and the yield curve approximately spanned the interval 3-6% at various maturities.

Table 8 about here

The delta normal is a local valuation method that makes a parametric assumption for the distri-

bution of the risk factors, in our case MIB30 index returns. The most common among the parametric

assumptions, conditional normality, leads to the following closed-form expression for V aR(η, T ):32

V aR(η, T ) = c(η)St�σ
IV (St, T ),

where c(η) is the value of a standard normal Z such that Pr{Z ≤ c(η)} = η (i.e. 1.645 if η = 0.05 and
2.326 if η = 0.01), and �σIV (St, T ) is the ATM forecast of volatility over the period [t, t+T ]. Similarly to

Table 6, Table 8 (panel A) reports VaR estimates for the best IVS model under alternative assumptions

on the amount of frictions (α) characterizing the IDEM, in the range α = 0% to α→∞. Clearly, since
different values for α impose the choice of different IVS models and lead to heterogeneous parameter

estimates (even within the same model), we can assess the effects of using data sets of poor quality by

comparing the resulting VaR measures. The last row in the panel also reports results for the level of α

(2%) we consider most plausible when the presence of serial correlation and heteroskedasticity is ignored

altogether and simple OLS estimation on pooled cross section - time series data is performed. Such a

strategy is hardly correct given the features of the data set, but may represent a tempting short-cut

in practice. The results show a clear dichotomy between the Þrst-order effects due to the selection of

32The assumption of normality over [t, T ] is standard in some VaR literature but does not need to hold in practice. Panel

B of Table VIII is an implicit assessment of the quality of this assumption as predictable, time-varying volatility delivers

an unconditional [t, T ] distribution that is potentially highly non-normal.
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the IVS model, and second-order effects caused by heterogeneous estimates obtained from data sets of

different quality in terms of ruling our arbitrage opportunities. Model 8 − that would be selected on

the basis of the �unÞltered� data set − leads to grossly inßated VaR estimates for all levels of η and the
horizons T. The error is potentially large, easily in the order of a few thousand points of the MIB30

index. When model 9 is selected as the best Þtting one (which happens for all Þnite αs), the precise

estimation techniques and hence parameter values obtained have relevant effects, but in the order of

a few hundreds index points only. Interestingly, using OLS methods that ignore the presence of non-

spherical structure in implied volatility shocks, seems to lead to underestimation of the risk effectively

implied by the MIB30 index, especially over short time intervals.

The Monte Carlo approach is a full valuation method that consists of repeating successive draws of

MIB30 returns from a parametric conditional distribution to create a set of Q independent simulated

paths, {rqt+ζτ}(T−τ)/τζ=0 , q = 1, 2, ..., Q. The VaR is then calculated from the simulated T -periods ahead

distribution of �Þnal� values of the MIB30 index, {Sqt+T}Qq=1.33 In our example, we take Q = 20, 000 and
assume that at each time t+ ζτ the MIB30 index returns density is conditionally N(µ, �σIV (St+ζτ , τ)),

where �σIV (St+ζτ , τ) is predicted from some IVS model. τ is set to match a bi-weekly frequency (i.e.

0.00521) and µ = 0.0059%, the bi-weekly mean return on the index.34 Table 8 (panel B) reports VaR

estimates for the best IVS model under alternative assumptions on the amount of frictions. Once more,

since different values of α imply the choice of different IVS models and parameter estimates, we assess

the effects of using data sets of poor quality by comparing the resulting VaR measures. The last row

shows results for α = 2% when simple OLS estimation on pooled cross section - time series data is

performed. The results show Þrst of all how imprecise the delta-normal method can be for the MIB30

index: for all ηs, the 1-month VaR seems to be overestimated by local methods while the one year VaR

is on the opposite underestimated. In particular, the 12-month VaR characterizing the MIB30 seemed

to be substantial at the end of January 2000, in excess of 50% of the value of the index then prevailing.

The observed difference between Þrst-order effects − related to model selection − and second order

effects − related to parameter estimation − emerge: when the unÞltered data lead to selecting model

8, the VaR is systematically overestimated by several thousand index points. Incorrectly, employing

simple OLS in place of the two-stage Parks� estimation method does not matter much for short horizons,

33Chapter 12 of Jorion (2001) gives further details.
34The frequency to be used in simulations for VaR purposes is discussed in Jorion (2001, p. 293). τ = 1 day (i.e.

τ = 1/365) may appear to be the other natural choice − i.e. MIB30 index returns could be simulated at a daily frequency.
We also use this different parameterization and notice minor differences relative to the results reported in Table VIII.

However, τ = 1 is also an akward choice in terms of our models of predictable variation in implied volatility, as very

few contracts with only 1 calendar day to maturity were actually actively traded in our sample. On the opposite, τ =

half-a-month is much more typical and actually close to the average option residual life of 26 days reported in Table I.
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but is important over the 12-month horizon.

6.2. Portfolio Choice

Another class of crucial Þnancial decisions for which our results on the MIBO IVS dynamics are crucial

is asset allocation. Among the others, Barberis (2000) and Campbell and Viceira (1999) have recently

focused on optimal portfolio choice when excess stock returns follow realistic stochastic processes that

imply the presence of predictability. Ferson and Siegel (2001) examine instead the asset allocation effects

of the presence of stochastic volatility (heteroskedasticity) in excess stock returns. In this sub-section

we propose a similar exercise for the simple case in which the riskless rate is set to be constant (at the

Jan. 31, 2000 short-term, LIBOR level of 3.505 percent) and the process of MIB30 index returns is

described by:

rt+ζτ ∼ N(µ, �σIV (St+ζτ , τ)),

i.e. index returns are conditionally normal with constant mean and time-varying volatility given by

the predicted values of some (best-Þtting) IVS model. Notice that the existence of correlation between

volatility and the MIB30 level St+ζτ creates dependence through the second moment and predictability

that can be exploited for asset allocation purposes.

The remaining details of the asset allocation exercise are standard in the literature. We consider

a Þnite horizon investor, who maximizes expected utility from the consumption of Þnal wealth, and

who chooses between allocating funds to either the MIB30 index or the riskless asset (cash) that pays

a constant rate of return:

max
ω

Et

"
W 1−γ
t+T

1− γ

#

s.t. Wt+1 =Wt

(1− ω) exp³Trf´+ ω exp
(T−τ)/τX

ζ=0

rt+ζτ

 , (7)

where ω is the percentage weight to stocks, and
P(T−τ)/τ
ζ=0 rt+ζτ represents the overall stock return over

the period [t, T ]. For simplicity, we further impose no-short sale restrictions, ω ∈ [0, 1]. Clearly, this
representation of the problem implies that the portfolio strategy is of a simple buy-and-hold type and

that the investor has standard power, time-separable utility function with constant relative risk aversion

γ. Needless to say, extensions to more realistic set-ups are possible (for instance, admitting the presence

of rebalancing as in Lynch, 2001, or more realistic preferences as in Campbell and Viceira, 1999) but

beyond the scope of this paper.
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We solve the above portfolio choice problem employing Monte-Carlo methods as in Barberis (2000):

max
ω
Q−1

QX
q=1


h
(1− ω) exp ¡Trf¢+ ω exp³P(T−τ)/τ

ζ=0 rqt+ζτ

´i1−γ
1− γ

 .
The simulation methods are the same described in Section 6.1. We consider again Q = 20, 000 and set

τ to match a bi-weekly frequency (i.e. 0.00521) and µ = 0.0759×0.00521, the bi-weekly mean return on
the index.35 Optimal portfolio weights to the MIB30 index are shown in Table 9 for three alternative

investment horizons (T = 1, 12, and 60 months), and two different levels of the coefficient γ typical in

the literature (4, 10, and 20). The calculation is also repeated for multiple values of α that imply the

choice of different IVS models and parameter estimates in the �σIV (St+ζτ , τ) functions. Therefore, also

in this case we take interest in the effects of �data quality� on Þnancial decisions. Similarly to Table 8,

the last row shows results for α = 2% for the best IVS model under OLS estimation on pooled cross

section - time series data. Also in this case, all asset allocation choices are calculated as of Jan. 31,

2000.

Table 9 about here

Interestingly, the patterns of dependence of optimal portfolio choices on the quality of the data and

the methods of estimation/values of the parameters are completely consistent with the results obtained

for VaR. This makes intuitive sense as optimal asset allocation is after all a function of the predictive

density of MIB30 returns, while VaR simply takes interest in the extreme percentiles of this density.

Once more, the real difference seems to be between model 8 and model 9, and we have reason to

be suspicious of decisions supported by a model that is selected on the basis of data that contain an

impressive percentage of arbitrage violations. In general, portfolio weights implied by model 8 are biased

against equity holdings. Otherwise, all the parameter estimates obtained by data sets supporting the

selection of model 9 are similar, although some puzzling deviation (for T = 12 months) can be observed

in the case in which model 9 is estimated using (incorrect) OLS methods on pooled cross section/time

series. In general, the stocks vs. cash (domestic) allocation of an Italian investor moves away from stocks

towards the riskless asset as the investment horizon grows, which is consistent with the increasing VaR

uncovered in Table 8: the weight of the tails of the MIB30 returns density grows with T at a speed

possibly higher than the mean, thus tilting the optimal risk/return trade-off away from equities.36

35We also experiment with τ = one day (i.e. τ = 1/365) and notice insigniÞcant differences relative to the results

reported in Table IX. Notice that the mean is set to match the sample mean return on the MIB30 over a longer time

interval, 01/01/1995-01/31/2000, to avoid performing rather unrealistic long-term (5 year) asset allocation with a negative

equity premium. Using µ = 0.141% would have given very modest values for �ω, always below 0.05.
36As expected, the allocation to stocks declines as risk aversion γ increases. The no-short sale constraint binds only for
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7. Conclusion

This paper has analyzed the structure of the implied volatility surface � the trivariate relationship

between stock index return volatilities implied by option prices, moneyness, and time to maturity �

characterizing the Italian stock index options market, the MIBO. A Þrst contribution of the paper is

to perform an exploratory analysis of the determinants of the MIBO IVS. Since in a companion paper

(see Cassese and Guidolin, 2004) we have found that the MIBO is characterized by resilient niches of

pricing inefficiency that can hardly be explained by sensible levels of transaction costs, we try to map

the quality of the data in terms of incidence of violations of a number of no-arbitrage restrictions into

the perception of the MIBO IVS an econometrician would develop by estimating a reduced form model.

A second contribution of the paper is technical, as models of the IVS are estimated using GLS panel

techniques that fully accommodate for the presence of heteroskedasticity and serial correlation in option

pricing errors.

We Þnd that the MIBO IVS possesses a number of features of its own that have not been previously

documented. More importantly, these feature seem to strongly depend on the quality of the data

employed in the estimation. As a rough approximation, smiles seem to better describe low quality data

sets containing high percentages of arbitrage opportunities. The structure of the IVS is on the other

hand better characterized by a combination of implied volatility smirks and downward sloping term

structures as observations causing mispricing are progressively eliminated. Finally, the applications in

Section 6 illustrate that such incorrect perceptions of the IVS may have important (at times devastating)

effects on Þnancial decisions/assessments (such as VaR) that more and more are predicated as optimal

when based on implied, derivative-driven parameters. We are left wondering about the potential impact

that reduced pricing efficiency might have had already on our perception of the pricing mechanisms

at work in many other derivatives market which are younger and probably not as liquid as the North

American benchmarks.
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Table 1 

Summary Statistics. 
Summary statistics of the financial prices (options, the MIB30 index, and the interest rate) used in the paper. 
All the values are expressed in MIB30 index points. MIB30 index returns are continuously compounded and 
annualized. 

 
 

 Minimum Maximum Mean Std Dev. 
Call prices 1 5,260 1,003.99 855.41  
Put prices 1 4,300 882.25 667.97  
All contracts - price 1 5,260 942.55 768.97  
Strike price 31,000 44,000 37,500 3,968.63  
Residual Life 1 109 26.07 16.93  
Black-Scholes implied 
volatility 

0.0393 1.5474 0.2548 0.0775  

ATM � BS implied volatility 0.0515 0.7755 0.2437 0.0477  
MIB30 index 31,518 43,476 35,821 2,923.63  
MIB30 index returns (%) -107.15 68.22 0.141 0.178  
Risk-free Rate (LIBOR) 2.48 3.54 2.99 0.3605  
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Table 2 

Arbitrage opportunities. Sample Composition by Maturity and Moneyness 
The table reports the distribution over maturity and moneyness classes of the arbitrage opportunities detected 
in the sample for each condition. Moneyness and maturity classes are defined in the main text.  
 

 Very Short Short Medium Long Total 
521  1,438 1,339 103DOTM (52.95%)  (36.77%) (32.25%) (19.29%) 3,401 (34.82%)

1,020  527 2,893 578OTM (52.47%) (6.93%) (42.07%) (31.85%) 7,818 (42.86%)

1,785  6,543 5,727 1,453ATM 
(53.70%) (54.45%) (54.63%) (52.80%) 

15,508 (54.27%)

1,286  4,026 1,532 485ITM 
(78.80%) (65.03%) (33.66%) (45.75%) 

8,329 (61.99%)

642  1,984 1,465 130DITM 
(79.46%) (71.88%) (63.42%) (37.04%) 

4,221 (67.84%)

5,254  17,318 13,956 2,749Total 
(60.45%) (53.32%) (48.86%) (42.27%) 

39,277 (51.52%)
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Table 3 

Descriptive Statistics for the Reduced, Balanced Panel Data Set Used  
in FGLS Estimation 

The table reports means, medians, standard deviations (along with the total number of cross-sectional 
observations) of implied volatility for the two balanced panels built by reduction of the original data sets 
(lower-bound violations and arbitrage violations-free, respectively) in Section 5.3. The reduction is applied 
by extracting information on Black-Scholes IVs and contract features for 20 classes defined along the 
mutually exclusive dimensions of moneyness   {DOTM, OTM, ATM, ITM, DITM}  and time-to-
expiration   {very short, short, medium, long}. The relevant definitions of the categories of option contracts 
can be found in Section 2. 
 

Panel A   panel derived from lower unfiltered data (21,240 obs.) 
 Very short Short Medium Long 

DOTM 

0.4204 
0.3683 
0.2051 
(222) 

0.2363 
0.2263 
0.0502 
(1,020) 

0.2257 
0.2172 
0.0438 
(822) 

0.2125 
0.2068 
0.0244 
(163) 

OTM 

0.3020 
0.2751 
0.1291 
(615) 

0.2380 
0.2195 
0.0846 
(1,890) 

0.2283 
0.2187 
0.0480 
(1,993) 

0.2156 
0.2086 
0.0286 
(536) 

ATM 

0.2507 
0.2503 
0.0554 
(805) 

0.2390 
0.2332 
0.0420 
(2,102) 

0.2421 
0.2378 
0.0420 
(2,373) 

0.2285 
0.2205 
0.0332 
(698) 

ITM 

0.2968 
0.2887 
0.0753 
(675) 

0.2660 
0.2459 
0.1070 
(1,802) 

0.2542 
0.2556 
0.0499 
(1,999) 

0.2469 
0.2396 
0.0343 
(600) 

DITM 

0.4046 
0.3768 
0.1372 
(489) 

0.3096 
0.2620 
0.2126 
(935) 

0.2648 
0.2566 
0.0839 
(1,274) 

0.2528 
0.2437 
0.0464 
(288) 

Panel B   panel derived from arbitrage-free data (20,356 obs.) 
 Very short Short Medium Long 

DOTM 

0.3340 
0.3171 
0.0978 
(213) 

0.2277 
0.2252 
0.0359 
(1,020) 

0.2177 
0.2107 
0.0372 
(814) 

0.2084 
0.2018 
0.0185 
(163) 

OTM 

0.2596 
0.2561 
0.0492 
(613) 

0.2269 
0.2217 
0.0379 
(1,842) 

0.2229 
0.2161 
0.0372 
(1,987) 

0.2201 
0.2069 
0.0309 
(533) 

ATM 

0.2545 
0.2532 
0.0524 
(804) 

0.2425 
0.2381 
0.0396 
(2,064) 

0.2376 
0.2331 
0.0414 
(2,312) 

0.2342 
0.2269 
0.0332 
(696) 

ITM 

0.3174 
0.2884 
0.1377 
(407) 

0.2517 
0.2494 
0.0455 
(1,615) 

0.2515 
0.2510 
0.0476 
(1,881) 

0.2471 
0.2407 
0.0348 
(600) 

DITM 

0.4882 
0.4300 
0.2209 
(382) 

0.2865 
0.2717 
0.0708 
(864) 

0.2627 
0.2636 
0.0495 
(1,260) 

0.2617 
0.2545 
0.0500 
(286) 
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Table 4 

Feasible GLS / Parks Estimation of Implied Volatility Regressions in Pooled Cross-
Section Time Series Data � Unfiltered Data. 

 
 Panel A � FGLS robust to heteroskedasticity and contemporaneous correlation 
 Regressors Model stats 

 const lnzt (lnzt)2 OTMt ITMt
2 100τ t lnzt τ t 

1000×
τ t

2 NSt NSt
2 

100× 
NStτ t 

2R  Obs. D-W 

Model 1 -1.44 
(0.00) 

          -0.020 21,301 0.20 

Model 2 -1.43 
(0.00) 

1.63 
(0.00) 

         0.032 21,301 0.21 

Model 3 -1.44 
(0.00) 

1.82 
(0.00) 

9.92 
(0.00) 

        0.051 21,301 0.21 

Model 4 -1.44 
(0.00) 

  1.34 
(0.00) 

39.10 
(0.00) 

      0.043 21,301 0.21 

Model 5 -1.42 
(0.00) 

 27.47 
(0.00) 

3.36 
(0.00) 

       0.040 21,301 0.21 

Model 6 -1.43 
(0.00) 

 18.00 
(0.00) 

2.63 
(0.00) 

17.81 
(0.00) 

      0.045 21,301 0.21 

Model 7 -1.41 
(0.00) 

1.92 
(0.00) 

10.62 
(0.00) 

  -0.08 
(0.00) 

-0.00 
(0.17) 

    0.078 21,301 0.22 

Model 8 -1.38 
(0.00) 

1.96 
(0.00) 

11.18 
(0.00) 

  -0.30 
(0.00) 

-0.00 
(0.03) 

0.02 
(0.00) 

   0.105 21,301 0.22 

Model 9 -1.42 
(0.00) 

    -0.06 
(0.00) 

  -0.07 
(0.00) 

0.10 
(0.00) 

0.40 
(0.00) 

0.021 21,301 0.21 

 Panel B � FGLS (Parks) robust to heteroskedasticity, contemporaneous and serial correlation 
 const lnzt (lnzt)2 OTMt ITMt

2 100τ t lnzt τ t 
1000×

τ t
2 NSt NSt

2 
100× 
NStτ t 

2R  Obs. ρ 

Model 1 -1.40 
(0.00) 

          0.000 3,504 0.902 

Model 2 -1.40 
(0.00) 

1.69 
(0.00) 

         0.009 3,504 0.898 

Model 3 -1.43 
(0.00) 

1.71 
(0.00) 

16.46 
(0.00) 

        0.014 3,504 0.897 

Model 4 -1.41 
(0.00) 

  0.68 
(0.00) 

34.71 
(0.00) 

      0.012 3,504 0.897 

Model 5 -1.40 
(0.00) 

 29.43 
(0.00) 

2.84 
(0.00) 

       0.012 3,504 0.898 

Model 6 -1.41 
(0.00) 

 15.15 
(0.00) 

1.77 
(0.00) 

19.24 
(0.00) 

      0.013 3,504 0.897 

Model 7 -1.33 
(0.00) 

1.88 
(0.00) 

16.47 
(0.00) 

  -0.33 
(0.00) 

-0.01 
(0.39) 

    0.018 3,504 0.894 

Model 8 -1.25 
(0.00) 

1.90 
(0.06) 

16.73 
(0.00) 

  -1.01 
(0.00) 

-0.01 
(0.26) 

0.10 
(0.00) 

   0.022 3,504 0.890 

Model 9 -1.31 
(0.00) 

    -0.33 
(0.00) 

  -0.00 
(0.40) 

-0.00 
(0.44) 

0.48 
(0.05) 

0.004 3,504 0.894 

 Panel C � FGLS on first differences of implied volatility and regressors 
 const lnzt (lnzt)2 OTMt ITMt

2 100τ t lnzt τ t 1000×
τ t

2 
NSt NSt

2 
100× 
NStτ t 

2R  Obs. D-W 

Model 1 -0.00 
(0.62) 

          0.000 20,480 2.749 

Model 2 -0.00 
(0.71) 

0.43 
(0.00) 

         0.009 20,480 2.745 

Model 3 -0.00 
(0.95) 

0.43 
(0.00) 

-1.55 
(0.25) 

        0.010 20,480 2.744 

Model 4 -0.00 
(0.83) 

  0.33 
(0.00) 

-2.99 
(0.07) 

      0.000 20,480 2.747 

Model 5 -0.00 
(0.96) 

 0.33 
(0.00) 

-1.94 
(0.16) 

       0.000 20,480 2.748 

Model 6 -0.00 
(0.91) 

 -1.22 
(0.37) 

0.26 
(0.00) 

0.65 
(0.00) 

      0.016 20,480 2.743 

Model 7 -0.00 
(0.41) 

0.41 
(0.00) 

-2.38 
(0.08) 

  -0.21 
(0.00) 

-0.10 
(0.00) 

    0.011 20,480 2.746 

Model 8 -0.00 
(0.44) 

0.40 
(0.00) 

-2.43 
(0.07) 

  -0.20 
(0.00) 

-0.12 
(0.01) 

0.03 
(0.60) 

   0.011 20,480 2.746 

Model 9 -0.00 
(0.18) 

    -0.16 
(0.00) 

  0.07 
(0.00) 

0.06 
(0.14) 

-0.04 
(0.00) 

0.010 20,480 2.739 
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Table 5 

Feasible GLS / Parks Estimation of Implied Volatility Regressions in Pooled Cross-
Section Time Series Data � Arbitrage-Free Data Set. 

 
 Panel A � FGLS robust to heteroskedasticity and contemporaneous correlation 
 Regressors Model stats 

 const lnzt (lnzt)2 OTMt ITMt
2 100τ t lnzt τ t 1000×τ t

2 NSt NSt
2 

100× 
NStτ t 

2R  Obs. D-W 

Model 1 -1.45 
(0.00) 

          -0.002 20,356 0.16 

Model 2 -1.45 
(0.00) 

1.77 
(0.00) 

         0.096 20,356 0.18 

Model 3 -1.46 
(0.00) 

1.72 
(0.00) 

5.05 
(0.00) 

        0.107 20,356 0.18 

Model 4 -1.44 
(0.00) 

  2.04 
(0.00) 

24.14 
(0.00) 

      0.100 20,356 0.18 

Model 5 -1.44 
(0.00) 

 23.86 
(0.00) 

3.14 
(0.00) 

       0.107 20,356 0.18 

Model 6 -1.44 
(0.00) 

 26.14 
(0.00) 

3.24 
(0.00) 

-2.29 
(0.30) 

      0.108 20,356 0.18 

Model 7 -1.44 
(0.00) 

1.85 
(0.00) 

5.22 
(0.00) 

  -0.05 
(0.00) 

-0.00 
(0.00) 

    0.124 20,356 0.18 

Model 8 -1.40 
(0.00) 

1.85 
(0.00) 

5.78 
(0.00) 

  -0.33 
(0.00) 

-0.00 
(0.01) 

0.03 
(0.00) 

   0.160 20,356 0.19 

Model 9 -1.46 
(0.00) 

    -0.02 
(0.00) 

  0.11 
(0.00) 

0.64 
(0.00) 

1.09 
(0.00) 

0.310 20,356 0.23 

 Panel B � FGLS (Parks) robust to heteroskedasticity, contemporaneous and serial correlation 
 const lnzt (lnzt)2 OTMt ITMt

2 100τ t lnzt τ t 1000×τ t
2 NSt NSt

2 
100× 
NStτ t 

2R  Obs. ρ 

Model 1 -1.43 
(0.00) 

          0.000 3,449 0.926 

Model 2 -1.44 
(0.00) 

1.70 
(0.00) 

         0.019 3,449 0.918 

Model 3 -1.45 
(0.00) 

1.58 
(0.00) 

6.58 
(0.00) 

        0.021 3,449 0.918 

Model 4 -1.43 
(0.00) 

  0.98 
(0.00) 

17.18 
(0.00) 

      0.011 3,449 0.917 

Model 5 -1.43 
(0.00) 

 17.86 
(0.00) 

2.11 
(0.00) 

       0.013 3,449 0.917 

Model 6 -1.42 
(0.00) 

 29.54 
(0.00) 

2.86 
(0.00) 

-12.83 
(0.01) 

      0.013 3,449 0.917 

Model 7 -1.35 
(0.00) 

1.98 
(0.00) 

6.51 
(0.00) 

  -0.34 
(0.00) 

-0.01 
(0.01) 

    0.025 3,449 0.916 

Model 8 -1.38 
(0.00) 

1.28 
(0.06) 

4.13 
(0.00) 

  -0.48 
(0.00) 

0.01 
(0.01) 

0.04 
(0.00) 

   0.025 3,449 0.912 

Model 9 -1.40 
(0.00) 

    -0.21 
(0.00) 

  0.12 
(0.00) 

041 
(0.00) 

9.23 
(0.00) 

0.056 3,449 0.900 

 Panel C � FGLS on first differences of log-implied volatility and regressors 
 const lnzt (lnzt)2 OTMt ITMt

2 100τ t lnzt τ t 1000×τ t
2 NSt NSt

2 
100× 
NStτ t 

2R  Obs. D-W 

Model 1 -0.00 
(0.22) 

          0.000 19,371 2.313 

Model 2 -0.00 
(0.14) 

1.46 
(0.00) 

         0.016 19,371 2.312 

Model 3 -0.00 
(0.09) 

1.46 
(0.00) 

3.55 
(0.28) 

        0.016 19,371 2.312 

Model 4 -0.00 
(0.06) 

  1.36 
(0.00) 

21.22 
(0.00) 

      0.002 19,371 2.310 

Model 5 -0.00 
(0.09) 

 4.26 
(0.19) 

1.35 
(0.00) 

       0.001 19,371 2.311 

Model 6 -0.00 
(0.09) 

 3.75 
(0.25) 

1.21 
(0.00) 

1.91 
(0.00) 

      0.018 19,371 2.313 

Model 7 -0.00 
(0.00) 

1.42 
(0.00) 

1.61 
(0.62) 

  -1.87 
(0.00) 

-0.51 
(0.00) 

    0.027 19,371 2.316 

Model 8 -0.00 
(0.00) 

1.52 
(0.00) 

-0.71 
(0.83) 

  -2.39 
(0.00) 

0.33 
(0.01) 

-1.06 
(0.00) 

   0.028 19,371 2.317 

Model 9 -0.00 
(0.00) 

    -1.48 
(0.00) 

  0.28 
(0.00) 

0.23 
(0.04) 

-0.57 
(0.84) 

0.021 19,371 2.321 
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Table 6 

Feasible GLS / Parks Estimation of Implied Volatility Regressions in Pooled Cross-
Section Time Series Data. 

The table reports the output from the FGLS estimation of four best fitting models among models 1. �9.across 
the four available data sets. The second step of Parks (1967) method is applied by specifying a scalar 
correlation matrix, R = ρ I20, that assumes that serial correlation effects are common across contract 
categories.  
 

  Regressors Model stats 
  const lnzt (lnzt)2 OTMt ITMt

2 100τ t lnzt τ t 1000×τ t
2 NSt NSt

2 
100× 
NStτ t 

2R  F-stat ρ 

Model 8 -1.25 
(0.00) 

1.90 
(0.06) 

16.73 
(0.00) 

  -1.01 
(0.00) 

-0.01 
(0.26) 

0.10 
(0.00) 

   0.022 3,504 0.890 

Model 7 -1.33 
(0.00) 

1.88 
(0.00) 

16.47 
(0.00) 

  -0.33 
(0.00) 

-0.01 
(0.39) 

    0.018 3,504 0.894 

Model 3 -1.43 
(0.00) 

1.71 
(0.00) 

16.46 
(0.00) 

        0.014 3,504 0.897 

R
aw

 d
at

a 
(a
lp
ha

 !
 in

f.)
 

Model 6 -1.41 
(0.00) 

 15.15 
(0.00) 

1.77 
(0.00) 

19.24 
(0.00) 

      0.013 3,504 0.897 

Model 9 -1.38 
(0.00) 

    -0.18 
(0.00) 

  -0.00 
(0.82) 

0.35 
(0.00) 

1.54 
(0.00) 

0.060 3,461 0.809 

Model 8 -1.29 
(0.00) 

1.98 
(0.06) 

22.64 
(0.00) 

  -0.88 
(0.00) 

-0.01 
(0.19) 

0.08 
(0.00) 

   0.037 3,461 0.857 

Model 7 -1.36 
(0.00) 

1.96 
(0.00) 

22.51 
(0.00) 

  -0.29 
(0.00) 

-0.01 
(0.32) 

    0.033 3,461 0.862 

al
ph
a 

= 
5%

 

Model 3 -1.44 
(0.00) 

1.78 
(0.00) 

22.68 
(0.00) 

        0.029 3,461 0.865 

Model 9 -1.41 
(0.00) 

    -0.13 
(0.00) 

  0.14 
(0.00) 

048 
(0.00) 

0.80 
(0.00) 

0.058 3,454 0.844 

Model 8 -1.29 
(0.00) 

2.82 
(0.00) 

9.42 
(0.00) 

  -0.85 
(0.00) 

-0.04 
(0.00) 

0.08 
(0.00) 

   0.036 3,454 0.868 

Model 7 -1.28 
(0.00) 

1.74 
(0.00) 

9.91 
(0.00) 

  -0.87 
(0.00) 

0.08 
(0.00) 

    0.034 3,454 0.868 

al
ph
a 

= 
 2

%
 

Model 3 -1.43 
(0.00) 

1.71 
(0.00) 

9.87 
(0.00) 

        0.025 3,454 0.875 

Model 9 -1.40 
(0.00) 

    -0.21 
(0.00) 

  0.12 
(0.00) 

041 
(0.00) 

9.23 
(0.00) 

0.056 3,449 0.900 

Model 8 -1.38 
(0.00) 

1.28 
(0.06) 

4.13 
(0.00) 

  -0.48 
(0.00) 

0.01 
(0.01) 

0.04 
(0.00) 

   0.025 3,449 0.912 

Model 7 -1.35 
(0.00) 

1.98 
(0.00) 

6.51 
(0.00) 

  -0.34 
(0.00) 

-0.01 
(0.01) 

    0.025 3,449 0.916 

A
rb

itr
ag

e.-
fre

e 
(a
lp
ha

 =
 0

%
)  

Model 6 -1.42 
(0.00) 

 29.54 
(0.00) 

2.86 
(0.00) 

-12.83 
(0.01) 

      0.013 3,449 0.917 
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Table 7 

Non-Nested Misspecification Tests on FGLS Estimates of First-Differenced Models 
The table reports the output from J-type tests applied to panel models in first differences. Each cell shows the 
FGLS estimate of the compound parameters ζ and φ, along with their p-values. Rejection of the null of a zero 
coefficient implies evidence of misspecification of model H1. 
 

  Unfiltered Data (α → ∞) Arbitrage-Free Data (α = 0) 
  H2 Model H2 Model 
  Model 6 Model 7 Model 9 Model 6 Model 8 Model 9 

Model 6  5.0832 
(0.0000) 

3.6918 
(0.0000) 

 0.1997 
(0.0000) 

0.1284 
(0.0000) 

Model 7 0.1399 
(0.1031) 

 0.5013 
(0.8619) 

   

Model 8    -0.2648 
(0.0000) 

 -0.1407 
(0.0029) H

1 m
od

el
 

Model 9 2.6808 
(0.0000) 

0.3606 
(0.0000) 

 -0.0107 
(0.1927) 

0.0182 
(0.0740) 
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Table 8 

Value-at-Risk Measures as a Function of Data Quality (α) and Estimation Methods. 
The table reports VaR measures as of Jan. 31, 2000 calculated both under the delta-normal and the Monte 
Carlo methods for the best fitting model from FGLS estimation across the four available data sets. The 
second step of Parks (1967) method is applied by specifying a scalar correlation matrix, R = ρ I20. The last 
row in both panels presents VaR measures for the α= 2% data and using the best fitting model obtained from 
OLS, pooled cross section / time series estimation that ignores both heteroskedasticity and cross-/serial-
correlation patterns.  
 

Horizon (T): 1 month Horizon (T): 12 months Data Set Model 
η = 5% η = 1% η = 5% η = 1% 

  Panel A: Delta-Normal (Local) Method 
Raw data (α = ∞) Model 8 19,021.6 26,896.6 18,848.2 26,651.0 
α = 5% Model 9 17,176.4 24,287.2 14,574.8 20,608.5 
α = 2% Model 9 16,759.1 23,697.1 14,931.3 21,112.6 
Arbitrage-free (α = 0%) Model 9 16,813.1 23,773.4 13,948.3 19,722.6 
α = 2% & OLS pooled 
cross section/time series Model 9 16,470.7 23,289.3 15,199.4 21,491.7 

  Panel B: Monte Carlo (Full Valuation) Method 
Raw data (α = ∞) Model 8 6,167.8 8,475.1 29,970.3 37,041.7 
α = 5% Model 9 5,687.4 7,744.6 24,102.2 34,888.4 
α = 2% Model 9 5,637.4 7,785.1 27,421.6 36,257.2 
Arbitrage-free (α = 0%) Model 9 5,651.6 7,790.7 26,507.9 35,994.4 
α = 2% & OLS pooled 
cross section/time series Model 9 5,527.9 7,646.8 27,982.5 36,395.5 
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Table 9 

Optimal Asset Allocation as a Function of Data Quality (α) and Estimation Methods. 
The table reports the optimal portfolio weight in the MIB30 index calculated as a solution to the asset 
allocation problem of an investor with power utility function who applies a buy-and-hold strategy. The 
conditional density of MIB30 index returns is assumed to be normal with constant mean and volatility 
coinciding with the value predicted from the best fitting model from FGLS estimation across the four 
available data sets. The second step of Parks (1967) method is applied by specifying a scalar correlation 
matrix, R = ρ I20, that assumes that serial correlation effects are common across contract categories. The last 
row in both panels presents the optimal portfolio choice for the α= 2% data and using the best fitting model 
obtained from OLS, pooled cross section / time series estimation that ignores both heteroskedasticity and 
cross-/serial-correlation patterns. 
 

Horizon T: 1 month Horizon T: 12 month Horizon T: 60 months Data Set Model γ=4 γ=10 γ=20 γ=4 γ=10 γ=20 γ=4 γ=10 γ=20
Raw data (α = ∞) Model 8 0.84 0.34 0.17 0.24 0.09 0.05 0.09 0.03 0.02 
α = 5% Model 9 1.00 0.42 0.21 0.52 0.22 0.11 0.21 0.08 0.04 
α = 2% Model 9 1.00 0.44 0.22 0.46 0.19 0.10 0.18 0.07 0.03 
Arbitrage-free (α = 0%) Model 9 1.00 0.44 0.22 0.50 0.21 0.11 0.21 0.08 0.04 
α = 2% & OLS pooled 
cross section/time series Model 9 1.00 0.45 0.23 0.39 0.15 0.08 0.14 0.05 0.03 
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Figure 1 

Implied Volatility as a Function of Moneyness � Raw Data and Sub-Samples 
The graphs plot medians and averages of IVs of MIBO30 options for 21 mutually exclusive intervals of 
moneyness (from 0.89 to 1.1). The reference period is the full sample 04/06/1999 � 01/31/2000 in the top 
panel and three alternative sub-periods (04/06/1999 - 07/15/1999, 07/15/1999 - 10/25/1999, and 10/26/1999 - 
01/31/2000) in the bottom panel (in this case only average IVs are reported). 
 

Implied Volatility vs. Moneyness - Averages 
and Medians for the Full-Sample Size

0.15

0.17

0.19

0.21

0.23

0.25

0.27

0.29

0.31

0.33

0.35

0.85 0.88 0.91 0.94 0.97 1 1.03 1.06 1.09 1.12 1.15

Moneyness (spot/strike)

Im
p

lie
d

 v
ol

at
ili

ty

Average IV Median IV

 

Implied Volatility vs. Moneyness - Averages 
for three sub-periods

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.85 0.88 0.91 0.94 0.97 1 1.03 1.06 1.09 1.12 1.15
Moneyness (spot/strike)

Im
p

lie
d

 v
ol

at
ili

ty

Average IV:04/06/1999 - 07/15/1999
Average IV: 07/15/1999 - 10/25/1999
Average IV: 10/26/1999 - 01/31/2000

 

 

 



41 

Figure 2 
Implied Volatility as a Function of Moneyness on April 16, 1999 

The graphs plot implied volatilities as a function of moneyness when sampled at four different times on April 
16, 1999. All the contracts considered expired in May 1999 (short-term options). The plots should be read 
clockwise, illustrating a sudden change of the IV surface (stable between 11:49 am and 12:19 pm) between 
12:19 pm and 12:49 pm. The right panel at the bottom shows the IV curve at the end of the day, at market 
close. 
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Figure 3 
Instability of the MIBO IVS in the Moneyness Dimension 

For each data set derived in Section 4, the graphs plot implied volatilities as a function of (call) moneyness 
for the full sample period April 1999- January 2000. Only implied volatilities less than or equal to 80% a 
year a plotted. This implies that roughly 10% of the available implied volatilities are not reported. 
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Figure 4 
Implied Volatility as a Function of Maturity on September 7, 1999 

The graphs plot implied volatilities as a function of time to maturity when sampled at six different times on 
September 7, 1999. The contracts considered are the closest-at-the-money traded at the particular time of the 
day indicated in the graphs. The plots should be read clockwise, illustrating a sudden change of the IV 
surface (stable during the morning of the same day) between 1:05 pm and 1:35 pm and again between 2:35 
pm and 3:35 pm. The last panel at the right- bottom shows the IV curve at the end of the day, at market close. 
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Figure 5 
Percentage Incidence of Arbitrage Violations As a Function of Alternative Levels of  

the Bid/Ask Spread. 
The graphs plot the changes in the percentage of the data displaying violations of the basic no-arbitrage 
conditions derived in Section 4 as a function of the (half-) size of the bid/ask spreads α and β characterizing 
the MIBO30 (options) and the MIB30 index (the underlying) markets, respectively. These scenario 
simulations set γ=0 and also impose the restriction α = β. Different plots report on different no-arbitrage 
conditions. 
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Figure 6 

MIB30 Implied Volatility Surface Estimated from Two Different Data Sets �  
Parks/FGLS Estimates 

The graphs plot implied volatilities as a function of moneyness and time-to-maturity generated by two 
alternative structural models estimated in Section 5.3. The left plot refers to the best fitting model (9) for the 
arbitrage-free sample obtained by setting α=0. The right plot refers to the best fitting model (8) for the original, 
unfiltered data set (corresponding to α→∞).  

 
 
 




