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Idiosyncratic Volatility, Stock Market Volatility, and Expected 

Stock Returns 

Abstract 

 We find that the value-weighted idiosyncratic stock volatility and aggregate stock market 

volatility jointly exhibit strong predictive power for excess stock market returns. The stock 

market risk-return relation is found to be positive, as stipulated by the CAPM; however, 

idiosyncratic volatility is negatively related to future stock market returns. Also, idiosyncratic 

volatility appears to be a pervasive macrovariable, and its forecasting abilities are very similar to 

those of the consumption-wealth ratio proposed by Lettau and Ludvigson (2001). 

Keywords: Stock return predictability, Stock market risk-return relation, Out-of-sample forecast, 

ICAPM, Dispersion of opinion, Consumption-wealth ratio. 

JEL number: G1. 
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1. INTRODUCTION 

 Early authors, e.g., Campbell (1987), Glosten et al. (1993), and Whitelaw (1994), fail to 

uncover a positive risk-return relation in the stock market across time, as dictated by the CAPM. 

In this paper, we investigate whether their results reflect an omitted variables problem: In 

addition to stock market volatility, aggregate idiosyncratic volatility may also be an important 

determinant of the equity premium for at least three reasons. First, it is priced because many 

investors hold poorly diversified portfolios (e.g., Levy 1978 and Malkiel and Xu 2001). Second, 

it is a proxy for the divergence of opinion, which could lead a stock to be overvalued initially 

and to suffer capital losses subsequently if short-sales constraints are binding (e.g., Miller 1977). 

Third, it tracks conditional stock market returns because, by construction, it measures the 

conditional variance of the risk factor(s) of a multi-factor or ICAPM model omitted from the 

CAPM (e.g., Lehmann 1990). 

 We follow the early literature to construct the proxies for idiosyncratic volatility and 

stock market volatility. Similar to Campbell et al. (2001) and Goyal and Santa-Clara (2003), we 

define realized value-weighted idiosyncratic volatility (IV) as 
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where Nt  is the number of stocks in quarter t, D  is the number of trading days for stock i in 

quarter t, 

it

vit−1  is the market capitalization of stock i at the end of quarter t-1, and idη  is the 

idiosyncratic shock to the excess return on stock i in day d of quarter t. Following Merton (1980) 

and Andersen et al. (2003), for example, we define realized stock market volatility (MV) as: 
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where e  is the excess stock market return in day d of quarter t and md emd  is its quarterly average. 

Note that the volatility measure in equation (2) is potentially downward biased for two reasons. 

First, the quarterly average of the daily return is a noisy measure of the expected daily return. 

Second, it does not account for the (positive) serial correlation in the daily stock market return. 

However, we find essentially the same results by (1) assuming that the expected daily return is 

equal to zero and (2) adjusting for the serial correlation, as in French et al. (1987). 

Over the period 1963:Q4 to 2002:Q4—the longest quarterly sample available to us when 

the paper was written—we find that, although IV and MV individually have negligible 

forecasting power in the in-sample regression, they jointly are significant predictors of excess 

stock market returns, with an adjusted R-squared of over 10 percent. We find very similar results 

using subsamples and alternative measures of IV. Moreover, their predictive abilities are also 

statistically significant in the out-of-sample tests. Therefore, as expected, early authors fail to 

uncover a positive risk-return relation in the stock market possibly because of an omitted 

variables problem: IV is negatively and MV is positively related to future stock returns, while 

they are positively related to each other. 

IV appears to be a pervasive macrovariable that captures systematic movements of stock 

returns. For example, we form decile portfolios on past idiosyncratic volatility and find that 

aggregate IV is always significantly negative in the forecasting equation of portfolio returns and 

always drives out portfolio-specific IV. Similarly, aggregate IV also forecasts the value premium 

and returns on international stock market indices constructed by Morgan Stanley Capital 

International (MSCI). We also compare IV with the consumption-wealth ratio (CAY) proposed 

by Lettau and Ludvigson (2001) because, similar to IV, CAY is also found to help uncover a 

positive stock market risk-return relation (e.g., Guo 2006). We find that IV is strongly (and 
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negatively) correlated with CAY and that its forecasting abilities attenuate substantially and 

vanish in some specifications if we control for CAY. Similarly, the predictive power of CAY 

becomes noticeably weaker when combined with IV, although it remains significant in our 

sample. Therefore, IV and CAY capture similar predictable variations of stock market returns. 

Lastly, we compare IV with aggregate liquidity measures, which have systematic 

movements (e.g., Chordia et al. 2000, Hasbrouck and Seppi 2001, and Huberman and Halka 

2001), are priced in the cross-section of stock returns (e.g., Pastor and Stambaugh 2003 and 

Acharya and Pedersen 2005), and forecast stock market returns (e.g., Amihud 2002 and Jones 

2002). Interestingly, we find that IV and CAY both are highly correlated with, and have similar 

predictive abilities to, many commonly used liquidity measures such as the trading volume, the 

turnover, and the bid-ask spread. 

 The negative relation between IV and conditional excess stock market returns contradicts 

the non-diversification hypothesis advocated by Levy (1978) and Malkiel and Xu (2001). It is, 

however, consistent with the other two alternative hypotheses. First, IV measures the conditional 

variance of an omitted risk factor, namely, the liquidity risk, which, as argued by Guo (2004), 

could be negatively related to the stock market risk. Second, IV is a measure of the dispersion of 

opinion, which, as argued by Cao et al. (2005), is positively related to stock market volatility but 

negatively related to conditional excess stock market returns. It should be noted that, in both Guo 

and Cao et al., IV reflects a systematic risk factor of a multi-factor or ICAPM model omitted 

from the CAPM. However, given that the dispersion of opinion is likely to be closely related to 

various liquidity measures considered in this paper, the analysis does not allow us to distinguish 

between the two alternative hypotheses. 
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 Our results differ from Goyal and Santa-Clara (2003), who find that conditional excess 

stock market returns are positively correlated with IV but are not correlated with MV. We 

attribute the differences to two factors. First, we focus most of our attention on the value-

weighted IV since we find that the equal-weighted measure (used by Goyal and Santa-Clara) 

forecasts stock returns mainly because of its co-movements with MV. Second, Ghysels et al. 

(2005) uncover a positive stock market risk-return relation after taking into account the effect of 

a long distributed lag of returns on volatility. Therefore, IV and MV are likely to be more 

precisely measured at the quarterly frequency used in this paper than the monthly frequency used 

by Goyal and Santa-Clara. Some recent authors, e.g., Scruggs (1998), Harrison and Zhang 

(1999), and Guo and Whitelaw (2005), have also found that omitting the hedge component of 

Merton’s (1973) ICAPM introduces a downward bias in the stock market risk-return relation. 

Moreover, Diether et al. (2002), Easley et al. (2002), and Ang et al. (2005) have documented a 

cross-sectional negative relation between idiosyncratic volatility and expected returns. 

 The remainder of the paper is organized as follows. We discuss data in Section 2 and 

present the main results of forecasting stock market returns in Section 3. Section 4 investigates 

whether idiosyncratic volatility is a pervasive macrovariable and analyzes its relation with CAY 

and aggregate stock market liquidity. Some concluding remarks are offered in Section 5. 

 

2. DATA 

We use daily CRSP (the Center for Research on Security Prices) stock files, which span 

from July 1962 to December 2002, to construct IV defined in equation (1). There is ongoing 

debate about the CAPM. In particular, Fama and French (1993) argue that we should augment it 

with two additional risk factors, SMB and HML, and show that their three-factor (FF) model is 
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quite successful in explaining the cross-section of stock returns. SMB is the return on a portfolio 

that is long in small stocks and short in big stocks, and HML is the return on a portfolio that is 

long in stocks with high book-to-market value ratios and short in stocks with low book-to-market 

value ratios. In this paper, we use the FF model to control for the systematic risk; however, we 

obtain very similar results using (1) the idiosyncratic shock based on the CAPM and (2) the raw 

return. Campbell et al. (2001) document an upward deterministic trend in IV and find that it is 

more pronounced for small stocks than big stocks. To mitigate the potential impact of this trend 

on our econometric inference, we construct IV using 500 stocks with the biggest market 

capitalization measured at the end of the previous quarter, although we find very similar results 

using all stocks in CRSP stock files. 

The daily risk-free rate and the daily Fama and French three factors, which span from 

July 1963 to December 2002, are obtained from Kenneth French at Dartmouth College. The 

idiosyncratic shock, idη , is thus the residual from the regression of the excess return, —the 

difference between the return on stock i and the risk-free rate—on the Fama and French three 

factors,

ider

df , 

(3) er fid d id= + ⋅ +α β η . 

Given that factor loadings, β , might change over time, we estimate equation (3) using a rolling 

sample. For example, the idiosyncratic shock at time d is equal to er , where we 

obtain the coefficient estimates 
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also drop stocks for which the market capitalization data at the end of the previous quarter are 

missing. 

We use the difference between daily CRSP value-weighted stock market returns and the 

daily risk-free rate to construct MV, as defined in equation (2). It is important to note that the 

October 19, 1987, stock market crash has a confounding effect on our measure of stock market 

volatility: Realized volatility is 6.9 percent in 1987:Q4, compared with the second-largest 

realization of 2.7 percent in our sample. Schwert (1990) finds that the behavior of realized 

volatility around the crash is unusual in many ways. Seyhun (1990) argues that the crash is not 

explained by the fundamentals. Hong and Stein (2003) suggest that the large fluctuations in stock 

prices immediately after the crash represented a working out of microstructural distortions 

created on that chaotic day, e.g., jammed phone lines, overwhelmed market makers, and 

unexecuted orders. To minimize the outlier effect of the 1987 crash, we follow Campbell et al. 

(2001) and many others and replace realized volatility of 1987:Q4 with the second-largest 

observation in the sample. Nevertheless, we find qualitatively the same results using the raw 

measure of MV, especially if we add a dummy variable for the crash or take a log transformation 

to mitigate its impact: Our results are robust to alternative treatments of the crash. 

The monthly excess stock market returns (ER) is the difference between the monthly 

CRSP value-weighted stock market return and the monthly CRSP risk-free rate, and we 

aggregate the monthly excess return into quarterly data through geometric compounding. We 

obtain CAY from Martin Lettau at New York University. We also find that the stochastically 

detrended risk-free rate, RREL—the difference between the risk-free rate and its average over 

the past 12 months—provides additional information about future stock returns beyond MV and 
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IV. However, our results are not sensitive to whether we include it in the forecasting equation or 

not. 

Figure 1 plots IV (solid line), with the shaded areas indicating business recessions dated 

by the National Bureau of Economic Research (NBER). We note that IV rose dramatically in the 

late 1990s, and we will discuss the effect of this unusual episode on our results below. Consistent 

with Campbell et al. (2001) and many others, it tends to rise during business recessions and 

exhibits an upward trend. We report below the ordinary least-squares (OLS) regression results of 

IV on a constant and a linear time trend, with the heteroskedasticity-corrected t-statistics in 

parentheses. While a formal investigation is beyond the scope of this paper, our preliminary 

results confirm Campbell et al. that the linear time trend accounts for substantial variations of IV. 

(Xu and Malkiel 2003 and Wei and Zhang 2006 for example provide some rationales for the 

upward trend in idiosyncratic volatility.) 

(4) t tIV C t ε= + +  
                       0.007    0.126E-03 
                      (5.792)     (5.609)            Adjusted R-squared: 0.241     
      
Given that the deterministic trend might lead to spurious regressions, for robustness we also 

report the results using the detrended idiosyncratic volatility (D_IV), which is the residual term 

of equation (4). For comparison, we also plot MV (dashed line) in Figure 1, which is 

substantially smaller than IV. The two series move closely with one another but the correlation is 

not perfect. Interestingly, as shown in Figure 2, IV (solid line) also moves closely with CAY 

(dashed line) but in the opposite direction. 

 Table 1 provides summary statistics of the main variables used in this paper. Consistent 

with the visual inspection from Figures 1 and 2, IV is positively correlated with MV and is 

negatively correlated with CAY, with correlation coefficients of 0.77 and -0.52, respectively. 
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The correlation is 0.67 (-0.65) between D_IV and MV (CAY). IV and D_IV are relatively 

persistent, with the autocorrelation coefficients of 0.83 and 0.77, respectively, compared with 

0.56 for MV. 

  

3. FORECASTING EXCESS STOCK MARKET RETURNS 

3.1 In-Sample Forecasting Regressions 

 Table 2 presents the OLS regression results using IV and MV as forecasting variables for 

excess stock market returns. Over the full sample period 1963:Q4 to 2002:Q4 (panel A), we find 

that, individually, MV is positively (row 1) and IV is negatively (row 2) related to future excess 

stock market returns but neither variable is statistically significant at the 5 percent level. 

However, the two variables jointly are highly significant in the forecasting equation, with an 

adjusted R-squared of over 10 percent (row 4). These results may likely be explained by a classic 

omitted variables problem: While IV is negatively and MV is positively related to future stock 

returns, the two variables are positively related to one another, as shown in Table 1. For 

illustration, we recall the omitted variables bias as exposited in, e.g., Greene (1997, p. 402). 

Suppose ER is the dependent variable, IV is the omitted variable with the true parameter, 1γ , and 

MV is the included variable with the true parameter, 2γ . Then the point estimate of the 

coefficient of MV is equal to 2 2
( , )ˆ

( )
COV MV IV

VAR MV 1γ γ= + γ . Given that 1γ  is negative and 

COV MV IV( , )  is positive, the point estimate, 2γ̂ , is thus biased downward towards zero. This 

example indicates that the early authors fail to find a positive risk-return relation possibly 

because of an omitted variables problem. 
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 The results in panel A of Table 2 cannot be explained by the spurious regressions stressed 

by Ferson et al. (2003). First, the autocorrelation is 0.83 and 0.56 for IV and MV, respectively 

(Table 1). Therefore, our forecasting variables are not as persistent as most forecasting variables 

considered by Ferson et al. Second, the absolute values of t-statistics are 4.686 and 5.361 for MV 

and IV, respectively, in row 4 of Table 2. These numbers are substantially higher than the 

empirical critical t-values reported in Table II of Ferson et al. for all cases with only one 

exception: The t-value for MV is slightly lower than 4.9—the case in which the adjusted R-

squared is 0.15 and the autocorrelation of predictors is 0.99. But the autocorrelation of our 

predictors is much smaller than 0.99, as shown in Table 1. Also, Lanne (2002) finds no evidence 

that expected stock market returns follow such a persistent process. Third and more importantly, 

as we show in subsection 3.4, IV and MV also exhibit statistically significant out-of-sample 

predictive abilities for stock market returns.  

 As discussed in the introduction, our forecasting variables are theoretically motivated and 

thus not subject to the criticism of data mining. It is also comforting to note that t-statistics of IV 

and MV are still larger than the critical values for the cases of 25 predictors or less in Table III of 

Ferson et al. (2003), in which they consider the case of spurious regression jointly with data 

mining. Of course, the critical values in their Table III would reject any forecasting model, 

including “the correct model” considered by these authors, if we assume that the documented 

predictability is based on a substantial degree of data mining. Moreover, there are ways to deal 

with data mining, e.g., using theoretically motivated variables and conducting out-of-sample 

forecast, as in our paper. 

Another potential issue is multicollinearity: MV and IV are closely correlated, as shown 

in Table 1. However, multicollinearity cannot explain our results because it usually leads to low 
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t-statistics, in contrast with the sharp increase of t-statistics from rows 1 and 2 to row 4 in Table 

2. Moreover, the characteristic-root-ratio test proposed by Belsley et al. (1980) confirms that 

multicollinearity is unlikely to plague our results. 

 It is possible that IV forecasts stock market returns because it is correlated with some 

commonly used predictive variables. For example, consistent with Campbell et al. (1997) and 

others, RREL has some predictive power for stock returns (row 3). However, adding RREL to 

the forecasting equation has little effect on forecasting abilities of IV and MV (row 5). 

Moreover, we find that IV and MV drive out many other macrovariables, i.e., the dividend yield, 

the term premium, and the default premium, from the forecasting equation. To conserve space, 

we do not report these results here but they are available upon request. 

 The deterministic trend in IV might bias our econometric inference. To address this issue, 

we consider two additional specifications: (1) using the detrended idiosyncratic volatility, D_IV, 

in row 6 and (2) adding a linear time trend to the forecasting equation in row 7. In both cases, we 

obtain essentially the same results as those in row 5. 

 In panel A of Table 2, we made an ad hoc downward adjustment for MV in 1987:Q4. To 

be robust, we repeat the above analysis using unadjusted MV and report the results in panel B of 

Table 2. Again, we find that IV is always negative and highly significant, while MV is always 

positive and significant or marginally significant. Although we obtain qualitatively the same 

results using unadjusted MV, its predictive abilities are noticeably weaker than those reported in 

panel A of Table 2. To further investigate the potential effect of the 1987 crash, we include an 

additional variable—the product of MV with a dummy variable, which is equal to 1 for 1987:Q4 

and 0 otherwise. We report the results in panel C of Table 2. The column MV now has four 

numbers for each specification: The top (bottom) two numbers are point estimate and t-value, 
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respectively, for MV (the 1987 crash dummy). We find that the 1987 crash dummy is always 

negative and statistically significant, confirming that the 1987 crash has a confounding effect on 

realized volatility. However, the sum of two slope parameters associated with MV is always 

positive, indicating that MV has an overall positive effect on expected stock returns immediately 

after the crash. Moreover, we find that the other results are almost identical to those reported in 

panel A of Table 2.  

 Lastly, in panel D of Table 2 we report the estimation results using log-transformed MV 

and IV. As expected, the log-transformation substantially mitigates the effect of potential outliers 

and we obtain very similar results to those in panel A of Table 2. Overall, our results indicate 

that the 1987 crash has a confounding effect on realized volatility and thus needs to be adjusted 

for. Nevertheless, our results are not sensitive to the particular choice of adjustment—i.e., 

adjusting MV of 1987:Q4 downward, adding a dummy variable for 1987:Q4, or using a log-

transformation. To conserve space, we report only the results obtained from using adjusted MV 

in the remainder of the paper. 

 

3.2 Subsamples 

As shown in Figure 1, IV rose dramatically in the late 1990s until the stock market 

correction in the early 2000s. To investigate whether this episode has any particular influence on 

the negative relation between IV and expected stock returns documented in Table 2, we repeat 

our analysis using two subsamples and report the results in Table 3: 1963:Q4 to 1982:Q4 (panel 

A) and 1983:Q1 to 2002:Q4 (panel B). In the first subsample, we find that, consistent with the 

full sample, adding IV to the forecasting equation substantially improves the predictive ability of 

MV (row 4). We obtain the same results if we use D_IV in place of IV (row 6) or add a linear 
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time trend to the forecasting equation (row 7). The results of the second subsample reported in 

panel B are also very similar to those of the full sample. Such a stable forecasting relation across 

time explains the good out-of-sample performance, which we will discuss in subsection 3.4. 

However, there are two noticeable differences between two subsamples. First, the adjusted R-

squared is much higher in panel A than panel B. This result is consistent with Pesaran and 

Timmermann (1995), among others, who show that predictable variations of stock returns 

change over time. Second, RREL becomes insignificant in the second subsample. However, this 

result is sensitive to the observations of 2001-02, during which both the short-term rate and stock 

market prices fell steeply. 

 

3.3 Alternative Measures of Idiosyncratic Stock Volatility 

 To investigate whether the results of Table 2 are sensitive to the particular measure of IV, 

we use various alternative measures of IV to forecast excess stock market returns and report the 

results in Table 4. Unless otherwise indicated, we calculate idiosyncratic stock volatility using 

all CRSP stocks through value-weighting. In panel A, we use the raw stock return in equation 1 

to calculate the average stock volatility (VWAV), which is approximately the sum of IV and 

MV. We use only the market factor to control for the systematic risk in panel B (VWIV_M) and 

use the FF model in panel C (VWIV_FF). All three panels report very similar results to those in 

Table 2. Therefore, our results are not sensitive to alternative measures of IV and we use IV 

constructed from the 500 biggest stocks in the remainder of the paper. 

For comparison, we also present the results of the equal-weighted average stock volatility 

(EWAV) used by Goyal and Santa-Clara (2003) in panel D.  We follow their exact procedure 

and calculate EWAV on a monthly basis. We then use the EWAV of the last month in each 
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quarter to forecast one-quarter-ahead stock returns over the sample period 1962:Q4 to 1999:Q4. 

We replicate their main result in row 10: EWAV is positive and highly significant in the 

forecasting regression, with an adjusted R-squared of over 4 percent. However, EWAV becomes 

insignificant after we include MV in the forecasting equation, while MV is significantly positive 

(row 11). This result is not sensitive to whether we also add RREL to the forecasting equation 

(row 12). Therefore, the equal-weighted average stock volatility proposed by Goyal and Santa-

Clara forecasts stock returns mainly because of its co-movements with stock market volatility. 

 

3.4 Tests of Out-of-Sample Forecast Performance  

Some recent authors, e.g., Bossaerts and Hillion (1999) and Goyal and Welch (2003), 

cast doubt on the in-sample evidence of stock return predictability because they find that the 

predictive variables used by the early authors do not forecast stock returns out of sample. 

However, Inoue and Kilian (2004) argue that, while out-of-sample tests are not necessarily more 

reliable than in-sample tests, in-sample tests are more powerful than out-of-sample tests, even 

asymptotically. To address this issue, we use three statistics to compare the out-of-sample 

performance of our forecasting models with a benchmark of constant excess stock returns. First 

is the commonly used mean-squared forecasting error (MSE) ratio. Second is Clark and 

McCracken’s (2001) encompassing test (ENC-NEW), which tests the null hypothesis that the 

benchmark model incorporates all the information about the next quarter’s excess stock market 

return against the alternative hypothesis that our forecasting variables provide additional 

information. Third is McCracken’s (1999) equal forecast accuracy test (MSE-F). In the MSE-F 

test, the null hypothesis is that the benchmark model has a MSE less than or equal to that of the 

augmented model and the alternative hypothesis is that the augmented model has a smaller MSE. 
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Clark and McCracken (2001) show that the latter two tests have the best overall power and size 

properties among a variety of tests proposed in the literature. 

 We report the results of the out-of-sample forecast tests in Table 5. As in Lettau and 

Ludvigson (2001), we use the first one-third of the observations for the initial in-sample 

estimation and form the out-of-sample forecasts recursively in the remaining sample. That is, we 

use the observations over the period 1963:Q4 to 1976:Q4 to make the forecast for 1977:Q1 and 

update the sample to 1977:Q1 to forecast the return for 1977:Q2 and so forth. It should be noted 

that we also estimate the expected return in the benchmark model recursively using the return 

data available at the time of forecast. The column AMSE / BMSE  is the MSE ratio of the 

augmented model to that of the benchmark model. The column Asy. CV reports the 95 percent 

critical value from the asymptotic distribution provided by Clark and McCracken (2001) and 

McCracken (1999) and the column BS. CV is the 95 percent critical value obtained from 

bootstrapping, as in Lettau and Ludvigson (2001). We use IV and MV as forecasting variables in 

row 1. Consistent with the in-sample regression results, we find that the augmented model has 

smaller MSE than the benchmark model of constant stock returns. More importantly, both the 

ENC-NEW and MSE-F tests reject the null hypothesis that MV and IV provide no information 

about future stock returns at the 5 percent significance level using both asymptotic and 

bootstrapping critical values. For comparison, we also add RREL to the forecasting equation 

(row 2) and the results are mixed. While the augmented model has negligible out-of-sample 

forecasting power according to the MSE ratio and the MSE-F test, the ENC-NEW test indicates 

that its predictive power is statistically significant at the 5 percent level. These results might 

reflect the structural break in the predictive power of RREL, as documented in Table 3. 
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Figure 3 plots the recursive MSE ratio of the augmented model (row 1 of Table 5) to the 

benchmark model of constant returns through time. The horizontal axis denotes the starting 

forecast date—for example, the value corresponding to March 1976 is the MSE ratio over the 

forecast period 1976:Q1 to 2002:Q4. We choose the range 1968:Q4 to 1997:Q4 for the starting 

forecast date; therefore, we utilize at least 20 observations for both the in-sample estimation and 

the calculation of MSE. As shown in Figure 3, except for a few years in the 1980s, the MSE ratio 

is always less than 1, indicating that IV and MV jointly have strong out-of-sample forecasting 

power for stock returns. We find very similar results in the MSE-F test, which is closely related 

to the MSE ratio. Interestingly, the ENC-NEW test indicates that the performance of the 

augmented model is always significantly better than that of the benchmark model at the 5 percent 

level. 

 

4. IS IV A PERVASIVE MACROVARIABLE? 

In the preceding section, we document a negative relation between IV and conditional 

excess stock market returns. This result is somewhat puzzling because it contradicts the non-

diversification hypothesis advocated by Levy (1978) and Malkiel and Xu (2001), among others. 

However, as mentioned in the introduction, it appears to be consistent with equilibrium models, 

e.g., Guo (2004) and Cao et al. (2005). In this section, we further investigate whether, as 

suggested by these economic theories, IV is a pervasive macrovariable that captures systematic 

movements in stock returns. 

  

4.1 Forecasting Excess Returns on Portfolios Formed on IV 
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 We sort all CRSP stocks into decile portfolios by their realized idiosyncratic volatility in 

the past quarter; for example, stocks with the highest idiosyncratic volatility are in the first decile 

and so forth. For each decile portfolio, we also calculate portfolio-specific idiosyncratic 

volatility, IV_P, using all stocks in that portfolio. Table 6 shows that, consistent with Ang et al. 

(2005), the average return is much lower for the portfolio of stocks with the highest idiosyncratic 

volatility (decile 1) than the portfolio of stocks with the lowest idiosyncratic volatility (decile 

10). Also, the standard deviation of the portfolio return decreases monotonically from decile 1 to 

decile 10. We run a regression of the portfolio returns on MV, IV, and IV_P and report the OLS 

estimation results at the right part of Table 6. We have also controlled for RREL and a linear 

time trend in the forecasting equation; to conserve space, their point estimates are not reported 

here. It should also be noted that we obtain essentially the same results without these controls. 

For all ten portfolios, IV_P is always insignificant, while IV is always significant and negative. 

These results indicate that aggregate IV is a pervasive macrovariable. 

 

4.2 Forecasting Value Premium, Size Premium, and Momentum Profit 

Fama and French (1993) show that the CAPM cannot explain the value premium, HML, 

and the size premium, SMB. Also, Fama and French (1996) find that the existing asset pricing 

models fail to explain Jegadeesh and Titman’s (1993) momentum strategy of buying past 

winners and selling past losers (WML). These “anomalies” inspired rapid growth in the 

behavioral finance literature; however, they might also indicate that the existing theories fail to 

properly take into account the hedging demand for time-varying investment opportunities, as 

emphasized by Merton (1973), among others. Specifically, Merton argues that the priced risk 

factors should include excess stock market returns and the variables that forecast stock market 
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returns and volatility. Therefore, if (1) the returns on HML, SMB, and WML reflect rational 

asset pricing and (2) our forecasting variables are proxies for risk factors of a multi-factor or 

ICAPM model, the latter should have significant forecasting abilities for the former. 

We present the OLS regression results in Table 7. As shown in panel A, both IV and MV 

are strong predictors of HML, with an adjusted R-squared of over 7 percent (row 1). We find 

very similar results if we use D_IV in place of IV (row 2) or add a linear time trend to the 

forecasting equation (row 3). The coefficients on IV and MV have opposite signs to those 

reported in Table 2 for stock market returns possibly because HML and stock market returns are 

negatively correlated. 

MV is also a significant predictor for WML, as shown in panel C of Table 7, with an 

adjusted R-squared around 6 percent. MV has a negative coefficient possibly because WML and 

stock market returns are negatively correlated. We obtain the momentum profit from Ken 

French at Dartmouth College; Guo (2005) finds the same results using the momentum data 

constructed by Jegadeesh and Titman (2001) and shows that innovations in MV explain a large 

portion of the observed momentum profit. 

In contrast, panel B of Table 7 shows that our forecasting variables have weak 

explanatory power for SMB. This last result, however, is not too surprising given that the 

quarterly average of SMB is an insignificant 0.45 percent in our sample period 1963:Q4 to 

2002:Q4, compared with a significant 1.16 percent for HML and a significant 2.75 percent for 

WML. Overall, our results again indicate that IV is a pervasive macrovariable because it 

captures systematic movements of HML, which has been interpreted as a hedging factor for 

time-varying investment opportunities (e.g., Campbell and Vuolteenaho 2004 and Brennan, 

Wang, and Xia 2004). 

 18  



4.3 Forecasting Returns on International Stock Market Indices 

 Given that the U.S. equity market is a large portion of the world equity market, IV should 

also forecast returns on international stock market indices if it is a pervasive macrovariable. 

Table 8 presents the forecasting results using 18 international stock market indices and a measure 

of world stock market index, which are obtained from MSCI. The sample spans from 1970:Q1 to 

2002:Q4. All the indices are denominated in the U.S. dollar and we use the U.S. risk-free rate to 

calculate the excess returns for each index. Interestingly, IV is statistically significant at the 5 

percent level in all cases. Similarly, MV is significant at the 5 percent level in 11 cases and 

significant at the 10 percent level in 6 cases. However, RREL appears to be a weak forecasting 

variable for international stock market returns. 

 

4.4 IV and Consumption-Wealth Ratio 

Guo (2006) finds a positive risk-return relation by controlling for CAY in the forecasting 

equation of stock market returns, and his results also suggest an omitted variables problem: 

While CAY and MV are negatively related to each other, they are positively related to future 

stock market returns. Hence, the behavior of CAY in the forecasting regression is similar to that 

we found for IV, suggesting that the two variables may be related. Indeed, as shown in Table 1, 

IV is strongly correlated with CAY, with a correlation coefficient of –0.52. 

We formally investigate the relation between IV and CAY in Table 9. Row 1 confirms 

Lettau and Ludvigson’s (2001) results that CAY is a strong predictor of excess returns. 

Consistent with Guo (2006), while MV by itself is insignificant at the 5 percent level (row 2), it 

becomes highly significant if we also include CAY in the forecasting equation (row 3). We also 

note that CAY becomes more significant and the adjusted R-squared is much higher in row 3 
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than in rows 1 and 2. As mentioned above, these results likely reflect an omitted variables 

problem. Furthermore, we find essentially the same results if we also include RREL in the 

forecasting equation (row 4). Therefore, CAY has very similar forecasting patterns to those of 

IV, as reported in Table 2. 

To investigate whether forecasting abilities of CAY and IV are related, we include both 

CAY and IV in the forecasting equation and report the results in row 5 of Table 9. Although IV 

remains significantly negative, the absolute values of its point estimate and t-value are 

substantially smaller than those reported in row 5 of Table 2. Similarly, the point estimate and 

the t-value of CAY attenuate noticeably as well. These results indicate that IV and CAY share at 

least some information about future stock market returns. However, these results are potentially 

vulnerable to the criticism of spurious regression because of the deterministic trend in IV. 

Interestingly, IV becomes insignificant at the 5 percent level if we add a linear time trend to the 

forecasting equation (row 7); D_IV is insignificant as well (row 6). In contrast, CAY is always 

significantly positive in rows 6 and 7. To further investigate this issue, Figure 4 plots the 

recursive MSE ratio of the model that uses CAY, VAR, RREL, and IV as forecasting variables 

to the model using only CAY, VAR, and RREL. Again, we find that IV provides little additional 

information beyond CAY. Therefore, IV forecasts stock market returns mainly because of its 

negative co-movements with CAY. 

 

4.5. IV and Aggregate Stock Market Liquidity 

In this subsection, we investigate whether IV is related to aggregate liquidity. As 

mentioned in the introduction, such a relation is consistent with existing theories. For example, 

Guo (2004) argues that CAY, which is closely related to IV (Table 9), is a proxy for the liquidity 
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premium. Alternatively, various liquidity measures are closely related to the dispersion of 

opinion, which is negatively related to conditional excess stock returns in Cao et al. (2005). 

Liquidity is a broad and elusive concept that generally denotes the ability to trade large 

quantities, at low cost, without moving the price (see Pastor and Stambaugh 2003). In the 

empirical literature, it has been defined in many different ways to capture various aspects of 

liquidity. To be robust, we investigate whether IV is related to various measures of aggregate 

liquidity analyzed in Chordia et al. (2001, 2002), which were generously provided to us by 

Avanidhar Subrahmanyam. One advantage of their measures is that many of them are 

constructed using the intra-day transaction data from the Institute for Study of Securities Markets 

(ISSM) and New York Stock Exchange TAQ (trades and automated quotations). However, the 

data span over a relatively short sample period, 1988 to 2002, and our results should be 

interpreted with caution. The data are originally available on a daily basis, and we convert them 

into quarterly data using quarterly averages. 

Panel A of Table 10 provides summary statistics of various liquidity measures 

constructed by Chordia et al. (2001, 2002). There are four measures of bid-ask spread, which are 

proxies for illiquidity. QSPR is the quoted spread; ESPR is the effective spread; RQSPR is the 

relative quoted spread; and RESPR is the relative effective spread. There are seven measures of 

trading activity, which are proxies for liquidity. DEP is depth in thousands of shares, TRVOL is 

CRSP trading volume in thousands of shares, TURN is CRSP turnover, QP is the number of buy 

trades, QM is the number of sell trades, SHBUY is shares bought in thousands, and SHSELL is 

shares sold in thousands. We find that these measures are only moderately correlated with Pastor 

and Stambaugh’s liquidity measure, PSLM. In contrast, they are highly correlated with IV as 

well as MV and CAY. 
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Panel B of Table 10 reports the regression results of forecasting one-quarter-ahead excess 

stock market returns. We always include a linear time trend (not reported in the table) in the 

regression because Chordia et al. (2001, 2002) show that liquidity (illiquidity) has increased 

(decreased) over the past decade. To conserve space, we report only results using RESPR 

(relative effective spread), TURN (turnover), and SHBUY (shares bought in thousands). 

Nevertheless, as discussed below, we find similar results using the other measures, which are 

available upon request. We also exclude RREL in the regression because it is statistically 

insignificant in the recent sample period, as shown in Table 3. Of course, adding RREL to the 

forecasting equation has little effect on our results. 

We first replicate our main findings over the short sample period 1988:Q2 to 2002:Q4. 

MV, IV, and CAY are insignificant individually, as shown in rows 1 through 3, respectively. 

However, IV (row 4) and CAY (row 5) become significant when combined with MV. Similarly, 

MV becomes significant in row 4 and marginally significant in row 5, when combined with IV 

and CAY, respectively. 

Consistent with Jones (2002), we find that the bid-ask spread (RESPR) is positively and 

significantly related to future excess stock market returns (row 6). However, it becomes 

insignificant after we control for CAY, with (row 11) and without (row 9) MV in the forecasting 

equation. Similarly, adding RESPR to the forecasting equation makes CAY insignificant in row 

11. Therefore, our results indicate that RESPR and CAY share some similar information about 

future returns. However, RESPR remains significant after we control for IV (rows 8 and 10). We 

also find qualitatively similar results using QSPR, ESPR, and RQSPR. 

Jones (2002) also finds that turnover (TURN) is negatively related to future stock market 

returns. We find that TURN is statistically insignificant by itself (row 12); however, 
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interestingly, it becomes significantly negative when combined with MV, and MV also becomes 

marginally significant (row 13). In contrast, TURN remains insignificant when combined with 

IV (row 14) and CAY (row 15). It is insignificant when combined with MV and IV (row 16). 

However, it is significant when combined with MV and CAY (row 17). Overall, these results 

indicate that the turnover has some forecasting abilities similar to those of IV and CAY. 

SHBUY is negative and marginally significant by itself (row 18). Interestingly, similar to 

CAY or IV, it becomes highly significant after controlling for MV, and MV becomes highly 

significantly as well (row 19). In contrast, it becomes insignificant when combined with IV (row 

20) and CAY (row 21), and IV and CAY are insignificant as well. It drives out IV (row 22) and 

CAY (row 23) from the forecasting equation when combined with MV. The latter result 

indicates that IV and CAY forecast returns mainly because they are proxies for the liquidity 

premium or the dispersion of opinion. However, it should be interpreted with caution because of 

the small sample size. In particular, we find that SHBUY forecasts returns mainly because it is 

highly correlated with the trading volume, which is driven out by CAY in a longer sample from 

1963 to 2002 (not reported). Similarly, we find essentially the same results using QP, QM, and 

SHSELL, which are all highly correlated with the trading volume. Moreover, the order 

imbalance—the difference between SHBUY and SHSELL―is strongly and positively correlated 

with the trading volume; it is also a strong predictor of stock market returns when combined with 

MV. Moreover, we also find that the trading volume forecasts stock market returns when 

combined with stock market volatility in a longer sample from 1963 to 2002. DEP is not 

significantly related to future stock market returns, however. We have also investigated Pastor 

and Stambaugh’s liquidity measure, PSLM. Interestingly, we find that PSLM also forecasts stock 

market returns mainly because of its strong (negative) co-movements with MV; however, it is 
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only moderately correlated with IV and CAY. Lastly, we find that the liquidity measure 

proposed by Amihud (2002) does not forecast stock returns over our quarterly sample. 

Overall, our results indicate that IV is closely related to some standard liquidity 

measures. 

 

VI. CONCLUSION 

In this paper, we find that the value-weighted idiosyncratic stock volatility is a strong 

predictor of excess stock market returns when combined with stock market volatility. Contrary to 

the non-diversification hypothesis, a high level of idiosyncratic volatility is usually associated 

with low expected future stock returns. Moreover, its forecasting abilities are very similar to 

those of the consumption-wealth ratio and some standard measures of aggregate stock market 

liquidity. Overall, our results indicate that IV is a pervasive macrovariable that captures 

systematic movements in stock returns; in particular, it might be a proxy for volatility of a risk 

factor of a multi-factor or ICAPM model omitted from the CAPM. 

Our results shed light on the out-of-sample stock return predictability, for which recent 

authors, e.g., Bossaerts and Hillion (1999) and Goyal and Welch (2003), find little support using 

the conventional forecasting variables. The difference is explained by the fact that our 

forecasting variables drive out most variables used by the early authors, including the dividend 

yield, the term premium, and the default premium. We are also able to provide insight in the 

predictive power of CAY for stock returns, which has been questioned because it has a look-

ahead bias and is subject to data revision. Our results suggest that the predictive power of CAY 

is not spurious because IV—a variable available in real time—contains information about future 
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stock returns that is very similar to that of CAY. Of course, IV should have more appeal than 

CAY to practitioners who must rely on real-time data to make portfolio choices. 

The analysis in this paper can be extended in several directions. First, our results appear 

to be consistent with two alternative explanations: (1) IV is a proxy for liquidity risk and (2) IV 

is a proxy for the dispersion of opinion. However, we do not distinguish the two hypotheses 

because liquidity and the dispersion of opinion are two closely related empirical concepts. We 

may use the underlying economic theories to develop more powerful tests to distinguish the two 

hypotheses in future research. 

Second, our results indicate that, in addition to a standard risk component, conditional 

excess stock market returns have an additional component, which is negatively related to the risk 

component. These results have an ICAPM interpretation, and it is interesting to investigate 

whether they can be related to the known CAPM-related anomalies. Also, recent work by Guo 

(2004) and Cao et al. (2005), among others, provides tentative explanations for our results. 

However, the fundamental source of this additional risk factor remains uncovered, e.g., we do 

not know why the aggregate measure of stock market liquidity or the aggregate measure of the 

dispersion of opinion moves in a persistent manner, as documented in this paper. These issues 

warrant further investigation, both empirical and theoretical. 

Third, the strong relation among idiosyncratic volatility, the consumption-wealth ratio, 

and aggregate liquidity reveals an important link between general equilibrium theories and 

market microstructure, as recently emphasized by O’Hara (2003). These two approaches have 

been carried out separately in the early literature; a joint investigation, however, should greatly 

improve our understanding of how asset prices are determined. 
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Figure 1. Idiosyncratic Volatility (Solid Line) and Stock Market Volatility (Dashed Line) 
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Figure 2. Idiosyncratic Volatility (Solid Line) and the Consumption-Wealth Ratio (Dashed Line) 
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Figure 3. Recursive MSE Ratio of Augmented Model to Benchmark Model (Table 5) 
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Figure 4. Recursive MSE Ratio of Model with IV to Model without IV (Table 9) 
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Table 1. Summary Statistics: 1963:Q4 - 2002:Q4 
 

Note: We report summary statistics for excess stock market return, ; stock market volatility, ERt

MVt ; idiosyncratic volatility IVt ; detrended idiosyncratic volatility, D IVt_ ; the consumption-

wealth ratio, ; and the stochastically detrended risk-free rate, tCAY RRELt . To construct IVt , we 
use the FF model to control for the systematic risk and use only the largest 500 stocks in the CRSP 
stock files.  

 ERt  MVt  IVt  D IVt_  
tCAY  RRELt  

 
Panel A: Correlation Matrix 

ERt  1.00      
MVt  -0.39 1.00     
IVt  -0.19 0.77 1.00    
D IVt_  -0.23 0.67 0.87 1.00   

tCAY  0.32 -0.41 -0.52 -0.65 1.00  
RRELt  -0.26 -0.11 -0.09 -0.01 -0.10 1.00 

       
Panel B: Univariate Statistics 

Mean 0.013 0.005 0.017 0.000 -0.001 -0.000 
Standard Deviation 0.087 0.004 0.012 0.010 0.014 0.003 
Autocorrelation 0.03 0.56 0.83 0.77 0.84 0.72 
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Table 2. Forecasting Quarterly Excess Stock Market Returns: Full Sample 
Note: We report the OLS regression results of the one-quarter-ahead excess stock market return on 
some predetermined variables. The heteroskadesticity-corrected t-statistics are in parentheses and 
bold denotes significance at the 5 percent level. MVt  is stock market volatility; IVt  is idiosyncratic 
volatility; D IVt_  is detrended realized idiosyncratic volatility; RRELt  is the stochastically 
detrended risk-free rate, and Trend  is a linear time trend. We make a downward adjustment for MV 
of 1987:Q4 in panel A and use the raw MV in panels B, C, and D.  We include an additional variable 
in panel C: the product of MV with a dummy variable, which is equal to 1 for 1987:Q4 and 0 
otherwise. The column MV has four numbers in panel C: The top (bottom) two numbers are point 
estimate and t-value, respectively, for MV (the 1987:Q4 dummy). We use log transformation of IV 
and MV in panel D. The sample spans from 1963:Q4 to 2002:Q4. 

t

 MVt  IVt  D IVt_  RRELt  Trendt  R 2  
Panel A: Adjusted MV 

1 2.907 
(1.681) 

    0.015 

2  -0.632 
(-1.070) 

   0.007 

3    -5.714 
(-2.439) 

 0.033 

4 10.306 
(4.686) 

-3.611 
(-5.361) 

   0.104 

5 9.894 
(4.582) 

-3.614 
(-5.539) 

 -5.322 
(-2.485) 

 0.133 

6 7.326 
(3.658) 

 -3.081 
(-4.110) 

-4.606 
(-2.118) 

 0.107 

7 9.913 
(4.517) 

-3.828 
(-5.333) 

 -5.120 
(-2.424) 

0.000 
(0.663) 

0.130 

Panel B: Raw MV 
8 1.654 

(1.877) 
    0.009 

9 3.621 
(1.968) 

-1.870 
(-2.694) 

   0.043 

10 3.449 
(1.947) 

-1.941 
(-3.044) 

 -5.649 
(-2.534) 

 0.076 

11 3.116 
(2.147) 

 -2.058 
(-2.965) 

-5.121 
(-2.271) 

 0.074 

12 3.491 
(1.987) 

-2.189 
(-3.136) 

 -5.420 
(-2.448) 

0.000 
(0.717) 

0.073 
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Table 2. Continued 
Panel C: Raw MV with the Crash Dummy 

13 10.545 
(4.348) 
-7.828 

(-3.709) 

-3.647 
(-5.267) 

   0.092 

14 10.137 
(4.258) 
-7.551 

(-3.641) 

-3.651 
(-5.439) 

 -5.324 
(-2.478) 

 0.128 

15 7.362 
(3.403) 
-5.238 

(-2.756) 

 -3.084 
(-4.085) 

-4.606 
(-2.118) 

 0.102 

16 10.132 
(4.187) 
-7.503 

(-3.557) 

-3.855 
(-5.256) 

 -5.128 
(-2.428) 

0.000 
(0.644) 

0.125 

Panel D: Log Transformation of Raw MV and IV 
17 0.011 

(1.465) 
    0.005 

18  -0.009 
(-0.635) 

   -0.005 

19 0.041 
(3.947) 

-0.060 
(-3.471) 

   0.048 

20 0.041 
(4.057) 

-0.067 
(-4.089) 

 -6.146 
(-2.833) 

 0.087 

21 0.027 
(2.926) 

 -0.054 
(-2.645) 

-5.443 
(-2.461) 

 0.068 

22 0.041 
(4.036) 

-0.072 
(-3.768) 

 -6.030 
(-2.813) 

0.000 
(0.537) 

0.083 
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Table 3. Forecasting Quarterly Excess Stock Market Returns: Subsamples 
Note: We report the OLS regression results of the one-quarter-ahead excess stock market return on 
some predetermined variables. The heteroskadesticity-corrected t-statistics are in parentheses and 
bold denotes significance at the 5 percent level. MVt  is stock market volatility; IVt  is idiosyncratic 
volatility; D IVt_  is detrended idiosyncratic volatility; RRELt  is the stochastically detrended risk-
free rate, and Trend  is a linear time trend. t

 MVt  IVt  D IVt_  RRELt  Trendt  R 2  
Panel A: 1963:Q4 - 1982:Q4 

1 9.553 
(3.116) 

    0.092 

2  0.919 
(0.425) 

   0.010 

3    -7.660 
(-2.450) 

 0.071 

4 22.819 
(5.792) 

-8.389 
(-3.614) 

   0.192 

5 23.882 
(7.011) 

-9.080 
(-4.396) 

 -8.450 
(-3.326) 

 0.286 

6 18.773 
(5.272) 

 -7.364 
(-2.989) 

-8.629 
(-3.334) 

 0.237 

7 24.128 
(6.912) 

-9.569 
(-3.939) 

 -8.567 
(-3.352) 

0.000 
(0.504) 

0.278 

Panel B: 1983:Q1 - 2002:Q4 
8 0.640 

(0.324) 
    -0.011 

9  -1.120 
(-1.911) 

   0.023 

10    -2.244 
(-0.648) 

 -0.008 

11 6.899 
(3.246) 

-2.992 
(-4.347) 

   0.089 

12 6.802 
(3.216) 

-2.967 
(-4.293) 

 -0.755 
(-0.239) 

 0.077 

13 6.149 
(2.707) 

 -3.008 
(-3.995) 

-1.152 
(-0.350) 

 0.066 

14 6.819 
(3.262) 

-2.909 
(-3.733) 

 -0.703 
(-0.217) 

-0.000 
(-0.142) 

0.065 
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Table 4. Alternative Measures of Idiosyncratic Volatility 
Note: We report the OLS regression results of the one-quarter-ahead excess stock market return on various alternative 
measures of idiosyncratic volatility. The heteroskadesticity-corrected t-statistics are in parentheses and bold denotes 
significance at the 5 percent level. Unless otherwise indicated, we calculate idiosyncratic volatility using all CRSP stocks 
through value weighting. We use the raw return in equation (1) to calculate average stock volatility, VWAV  (panel A); 
use the idiosyncratic shock based on the CAPM for VWIV

t

Mt_  (panel B); and use idiosyncratic volatility based on the 
FF model for VWIV  (panel C).  EVAV  is the monthly equal-weighted average stock volatility used by Goyal and 
Santa-Clara (2003). We convert EVAV  into the quarterly data by taking only last month’s observation for each quarter. 

FFt_ t

t

MVt  is stock market volatility and RRELt  is the stochastically detrended risk-free rate. 
 VWAVt  VWIV Mt_  VWIV FFt_  EVAVt  MVt  RRELt  R 2  

 
Panel A: Value-Weighted Average Stock Volatility: 1963:Q1 to 2002:Q4 

1 -0.073 
(-0.219) 

     -.006 

2 -2.334 
(-4.516) 

   13.253 
(4.244) 

 0.095 

3 -2.327 
(-4.730) 

   12.807 
(4.218) 

-5.241 
(-2.434) 

0.122 

 
Panel B: Value-Weighted Idiosyncratic Volatility Based on the CAPM: 1963:Q4 to 2002:Q4 

4  -0.352 
(-0.803) 

    -0.003 

5  -2.507 
(-4.481) 

  9.673 
(4.222) 

 0.086 

6  -2.482 
(-4.623) 

  9.197 
(4.103) 

-5.186 
(-2.379) 

0.113 

 
Panel C: Value-Weighted Idiosyncratic Volatility Based on the FF Model: 1963:Q4 to 2002:Q4 

7   -0.358 
(-0.705) 

   -0.003 

8   -2.750 
(-4.490) 

 9.753 
(4.269) 

 0.084 

9   -2.775 
(-4.786) 

 9.391 
(4.188) 

-5.419 
(-2.494) 

0.114 

 
Panel D: Equal-Weighted Average Stock Volatility: 1962:Q3 to 1999:Q4 

10    1.297 
(3.066) 

  0.043 

11    0.590 
(1.327) 

6.230 
(2.974) 

 0.082 

12    0.283 
(0.611) 

6.325 
(3.067) 

-5.514 
(-2.404) 

0.112 
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Table 5. Tests of Out-of-Sample Forecast Performance 
Note: We assume that excess stock market returns are constant in the benchmark model and augment the benchmark model 
withMVt  and IVt  in row 1 and with MVt , IVt , and RRELt  in row 2. MVt  is stock market volatility; IVt  is idiosyncratic 
volatility; and RRELt  is the stochastically detrended risk-free rate. We report three out-of-sample forecast tests: (1) the mean-

squared forecasting error (MSE) ratio of the augmented model to the benchmark model, AMSE / BMSE ; (2) the 
encompassing test ENC-NEW developed by Clark and McCracken (2001); and (3) the equal forecast accuracy test MSE-F 
developed by McCracken (1999). ENC-NEW tests the null hypothesis that the benchmark model encompasses all the relevant 
information about the next quarter’s excess stock market return, against the alternative hypothesis that the predetermined 
variables provide additional information. MSE-F tests the null hypothesis that the benchmark model has a MSE less than or 
equal to the augmented model, against the alternative hypothesis that the augmented model has smaller MSE. We use 
observations over the period 1963:Q4 to 1976:Q4 for the initial in-sample estimation and then generate forecasts recursively 
for stock returns over the period 1977:Q1 to 2002:Q4. The Asy. CV column reports the asymptotic 95 percent critical values 
provided by Clark and McCracken (2001) and McCracken (1999). The BS. CV column reports the empirical 95 percent 
critical values obtained from the bootstrapping, as in Lettau and Ludvigson (2001). In particular, we first estimate a VAR (1) 
process of excess stock market returns and its forecasting variables with the restrictions under the null hypothesis. We then 
feed the saved residuals with replacements to the estimated VAR system, of which we set the initial values to their 
unconditional means. The ENC-NEW and MSE-F statistics are calculated using the simulated data and the whole process is 
repeated 10,000 times.  

      
   ENC-NEW  MSE-F 

 Models AMSE /

BMSE  
Statistic Asy. 

CV 
BS. 
CV 

 
 

Statistic Asy. 
CV 

BS. 
CV 

1 C+MVt  + IVt  vs. C 0.98 16.97 2.09 3.14  2.19 1.52 1.29 
2 C+MVt  + IVt  +RRELt  vs. C 1.04 20.89 3.56 3.69  -3.52 1.61 0.96 
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Table 6. Forecasting Excess Returns on Portfolios Sorted by Past Idiosyncratic Volatility 
Note: We sort CRSP stocks into decile portfolios by their realized idiosyncratic volatility in the past quarter. For example, the first 
decile is the portfolio of stocks with the highest idiosyncratic volatility and so forth. The heteroskedasticity-corrected t-statistics are 
in parentheses and bold denotes significance at the 5 percent level. MVt  is stock market volatility, IVt  is idiosyncratic volatility, 
and IV Pt_  is the portfolio-specific idiosyncratic volatility. We also control for the stochastically detrended risk-free rate, RRELt , 
and a linear time trend in the forecasting equation. The sample spans from 1963:Q4 to 2002:Q4. 

Portfolios Mean Standard 
Deviation 

Forecasting Portfolio Returns 

   MVt  IVt  IV Pt_  R 2  
1(highest) -0.024 0.194 25.832 

(5.832) 
-8.473 

(-5.583) 
-0.022 

(-0.157) 
0.138 

2 -0.004 0.175 20.826 
(5.055) 

-7.072 
(-3.221) 

-0.048 
(-0.079) 

0.103 

3 0.005 0.158 19.222 
(4.680) 

-6.843 
(-2.997) 

-0.178 
(-0.214) 

0.122 

4 0.011 0.135 13.534 
(3.773) 

-3.734 
(-2.156) 

-1.271 
(-1.320) 

0.111 

5 0.017 0.123 12.769 
(3.659) 

-3.187 
(-2.067) 

-1.393 
(-1.074) 

0.095 

6 0.018 0.107 11.851 
(3.985) 

-2.861 
(-2.465) 

-1.640 
(-1.204) 

0.112 

7 0.015 0.094 9.032 
(3.703) 

-2.991 
(-3.083) 

-0.856 
(-0.570) 

0.078 

8 0.015 0.084 9.290 
(3.732) 

-3.064 
(-4.175) 

-1.748 
(-0.958) 

0.119 

9 0.017 0.076 7.648 
(3.686) 

-2.922 
(-3.783) 

-0.294 
(-0.109) 

0.099 

10(lowest) 0.013 0.071 6.124 
(3.137) 

-2.340 
(-3.234) 

1.563 
(0.335) 

0.063 

 

 39  



Table 7. Forecasting Portfolio Returns: 1963:Q4 – 2002:Q4 
Note: We report the OLS estimation results of the one-quarter-ahead portfolio returns on some 
predetermined variables. HML is the return on a portfolio that is long in stocks with high book-to-market 
value ratios and short in stocks with low book-to-market value ratios. SMB is the return on a portfolio that is 
long in small stocks and short in big stocks. WML is the return on a portfolio that is long in past winners and 
short in past losers. The heteroskadesticity-corrected t-statistics are in parentheses and bold denotes 
significance at the 5 percent level. MVt  is stock market volatility; IVt  is idiosyncratic volatility; D IVt_  is 
detrended idiosyncratic volatility; RRELt  is the stochastically detrended risk-free rate; and Trend  is a 
linear time trend. 

t

 MVt  IVt  D IVt_  RRELt  Trendt  R 2  
 

Panel A: HML 
1 -4.415 

(-2.238) 
2.084 

(2.487) 
 3.080 

(2.259) 
 0.076 

2 -3.246 
(-2.108) 

 1.975 
(2.788) 

2.622 
(1.890) 

 0.069 

3 -4.435 
(-2.264) 

2.319 
(2.789) 

 2.859 
(2.124) 

-0.000 
(-1.155) 

0.076 

 
Panel B: SMB 

4 1.764 
(1.019) 

-0.123 
(-0.224) 

 -2.379 
(-1.586) 

 0.012 

5 0.247 
(0.174) 

 0.806 
(1.509) 

-2.562 
(-1.694) 

 0.022 

6 1.720 
(1.068) 

0.381 
(0.718) 

 -2.855 
(-1.936) 

-0.000 
(-2.232) 

0.036 

 
Panel C: WML 

7 -5.873 
(-2.678) 

0.698 
(0.938) 

 -1.573 
(-0.717) 

 0.061 

8 -3.889 
(-2.029) 

 -0.354 
(-0.636) 

-1.495 
(-0.690) 

 0.057 

9 -5.830 
(-2.769) 

0.207 
(0.307) 

 -1.109 
(-0.521) 

0.000 
(1.883) 

0.074 
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Table 8. Forecasting Quarterly Returns on International Stock Market Indices 
Note: We report the OLS estimation results of the one-quarter-ahead excess returns on the 
international stock market indices constructed by MSCI. The heteroskadesticity-corrected t-statistics 
are in parentheses and bold denotes significance at the 5 percent level. MVt  is stock market volatility; 
IVt  is idiosyncratic volatility; and RRELt  is the stochastically detrended risk-free rate. The sample 
spans from 1970:Q1 to 2002:Q4. 
Country MVt  IVt  RRELt  R 2  
Australia 7.467 

(2.640) 
-2.218 

(-2.201) 
-3.179 

(-1.033) 
0.021 

Austria 4.336 
(1.748) 

-2.527 
(-2.362) 

-1.204 
(-0.356) 

0.010 

Belgium 9.280 
(2.835) 

-3.825 
(-3.135) 

-3.202 
(-0.959) 

0.071 

Canada 8.905 
(3.526) 

-3.127 
(-2.514) 

-1.529 
(-0.557) 

0.061 

Denmark 4.274 
(2.199) 

-2.219 
(-3.686) 

-4.597 
(-1.648) 

0.030 

France 6.685 
(1.962) 

-3.351 
(-3.026) 

-3.001 
(-0.765) 

0.027 

Germany 6.004 
(2.333) 

-3.391 
(-4.191) 

-3.910 
(-1.317) 

0.047 

Hong Kong 5.706 
(1.116) 

-3.697 
(-3.043) 

-8.312 
(-1.532) 

0.016 

Italy 6.504 
(1.704) 

-2.997 
(-2.401) 

-1.334 
(-0.344) 

0.005 

Japan 2.194 
(0.573) 

-2.135 
(-2.133) 

-6.560 
(-2.073) 

0.026 

Netherlands 6.921 
(2.558) 

-3.188 
(-3.190) 

-5.073 
(-1.751) 

0.074 

Norway 4.493 
(1.593) 

-2.129 
(-2.247) 

2.714 
(0.548) 

0.008 

Singapore 12.481 
(1.793) 

-4.417 
(-2.696) 

-5.788 
(-1.415) 

0.034 

Spain 8.509 
(2.573) 

-3.376 
(-3.542) 

0.655 
(0.257) 

0.022 

Sweden 9.035 
(3.075) 

-3.832 
(-2.858) 

-4.956 
(1.477) 

0.054 

Switzerland 3.876 
(1.167) 

-2.603 
(-1.975) 

-4.289 
(-1.339) 

0.036 

UK 8.666 
(1.841) 

-3.788 
(-3.503) 

-6.111 
(-1.946) 

0.068 

US 8.761 
(4.262) 

-3.340 
(-5.564) 

-5.007 
(-2.475) 

0.126 

World 7.784 
(3.603) 

-3.158 
(-4.948) 

-4.827 
(-2.324) 

0.111 
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Table 9. Idiosyncratic Volatility and Consumption-Wealth Ratio 
Note: We report the OLS regression results of the one-quarter-ahead excess stock market return on some predetermined 
variables. The heteroskadesticity-corrected t-statistics are in parentheses and bold denotes significance at the 5 percent level. 
MVt  is stock market volatility; IVt  is idiosyncratic volatility; D IVt_  is detrended idiosyncratic volatility; RRELt  is the 

stochastically detrended risk-free rate; Trend  is a linear time trend; and  is the consumption-wealth ratio. The 
sample spans from 1963:Q4 to 2002:Q4.  

t tCAY

 MVt  IVt  D IVt_  RRELt  Trendt  tCAY  R 2  
1      1.704 

(3.410) 
0.066 

2 2.907 
(1.681) 

     0.015 

3 6.110 
(3.770) 

    2.498 
(5.067) 

0.139 

4 5.630 
(3.528) 

  -3.760 
(-1.737) 

 2.354 
(4.766) 

0.150 

5 10.077 
(4.429) 

-2.528 
(-3.326) 

 -4.129 
(-1.995) 

 1.806 
(3.462) 

0.186 

6 7.156 
(3.432) 

 -1.352 
(-1.121) 

-3.746 
(-1.760) 

 1.907 
(2.641) 

0.154 

7 10.075 
(4.449) 

-2.067 
(-1.938) 

 -4.263 
(-2.102) 

-0.000 
(-0.766) 

2.051 
(2.898) 

0.185 
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 Table 10. Idiosyncratic Volatility and Aggregate Liquidity Measures 
Note: Panel A presents summary statistics. We report the OLS regression results of the one-quarter-ahead excess stock market 
return on some predetermined variables in panel B. We also control for a linear time trend in the forecasting equation, which is not 
reported here. The heteroskadesticity-corrected t-statistics are in parentheses and bold denotes significance at the 5 percent level. 

 is Pastor and Stambaugh’s (2003) liquidity measure; tPSLM MVt  is realized stock market volatility; IVt  is realized idiosyncratic 

volatility; RRELt  is the stochastically detrended risk-free rate; and  is the consumption-wealth ratio. The other liquidity 
measures are the same as those used in Chordia et al. (2001, 2002). There are four measures of bid-ask spread, which are proxies 
for illiquidity. QSPR is quoted spread; ESPR is effective spread; RQSPR is relative quoted spread; RESPR is relative effective 
spread. There are seven measures of trading activities, which are proxies for liquidity. DEP is depth in thousands of shares, TRVOL 
is CRSP trading volume in thousands of shares, TURN is CRSP turnover, QP is number of buy trades, QM is number of sell trades, 
SHBUY is shares bought in thousands, and SHSELL is shares sold in thousands. The sample spans from 1988:Q2 to 2002:Q4. 

tCAY

*: Scaled by 100. 
Panel A. Summary Statistics 

Liquidity Measures  Mean Standard 
Deviation

Cross-Correlation with 

   tPSLM  MVt  IVt  RRELt  tCAY  
QSPR 0.164 0.051 0.122 -0.592 -0.583 0.311 0.646 
ESPR 0.110 0.034 0.111 -0.612 -0.637 0.359 0.676 

RQSPR 0.004 0.001 0.128 -0.560 -0.580 0.310 0.724 
RESPR 0.003 0.000 0.122 -0.579 -0.623 0.354 0.750 

DEP 9.032 3.388 0.257 -0.621 -0.437 0.490 0.653 
TRVOL 1919.532 1970.532 -0.147 0.752 0.805 -0.276 -0.742 
TURN 0.003 0.001 -0.202 0.757 0.785 -0.181 -0.732 

QP 571.536 553.378 -0.130 0.754 0.830 -0.268 -0.800 
QM 501.361 482.190 -0.137 0.759 0.837 -0.240 -0.793 

SHBUY 920.866 963.532 -0.151 0.755 0.801 -0.282 -0.741 
SHSELL 793.699 810.946 -0.150 0.752 0.810 -0.272 -0.752 
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Table 10 (continued) 
Panel B. Forecasting One-Quarter-Ahead Excess Stock Market Returns 

 RESPR TURN SHBUY MVt  IVt  tCAY  R 2  
1    2.302 

(0.917) 
  0.006 

2     -1.322 
(-1.636) 

 0.027 

3      1.185 
(1.669) 

0.026 

4    6.705 
(2.734) 

-2.856 
(-3.074) 

 0.103 

5    5.095 
(1.876) 

 2.037 
(2.440) 

0.073 

6 65.683 
(2.174) 

     0.065 

7 66.586 
(2.179) 

  2.439 
(0.950) 

  0.068 

8 73.127 
(2.524) 

   -1.603 
(-1.943) 

 0.103 

9 56.681 
(1.587) 

    0.653 
(0.738) 

0.059 

10 84.426 
(3.031) 

  7.747 
(3.231) 

-3.419 
(-3.705) 

 0.212 

11 46.811 
(1.291) 

  4.439 
(1.636) 

 1.488 
(1.466) 

0089 

12  -24.643 
(-1.160) 

    0.008 

13  -65.280 
(-2.324) 

 6.187 
(1.895) 

  0.064 

14  -7.870 
(-0.280) 

  -1.171 
(-1.043) 

 0.011 

15  -12.912 
(-0.489) 

   1.020 
(1.117) 

0.013 

16  -48.498 
(-1.672) 

 8.939 
(3.337) 

-2.433 
(-2.424) 

 0.126 

17  -57.801 
(-2.059) 

 8.252 
(2.757) 

 1.831 
(2.154) 

0.115 

18   -0.004* 
(-1.810) 

   0.063 

19   -0.085* 
(-3.403) 

8.113 
(3.182) 

  0.181 

20   -0.004* 
(-1.144) 

 -0.392 
(-0.313) 

 0.048 

21   -0.004* 
(-1.231) 

  0.594 
(0.605) 

0.054 

22   -0.007* 
(-2.561) 

9.980 
(5.035) 

-1.827 
(-1.929) 

 0.209 

23   -0.008* 
(-3.102) 

9.721 
(4.179) 

 1.544 
(1.799) 

0.214 
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