Scarring Body and Mind: The Long-Term Belief-Scarring Effects of COVID-19

Julian Kozlowski  Laura Veldkamp  Venky Venkateswaran*
FRB of St. Louis  Columbia  NYU Stern

April 14, 2020

Abstract

The largest economic cost of the COVID-19 pandemic could arise if it changed behavior long after the immediate health crisis is resolved. A common explanation for such a long-lived effect is the scarring of beliefs. We show how to quantify the extent of such belief changes and determine their impact on future economic outcomes. We find that the long-run effect of the COVID crisis depends crucially on whether bankruptcies and changes in habit make existing capital obsolete. A policy that avoided most permanent separation of workers from capital could generate a much larger benefit than originally thought, that could easily be 180% of annual GDP, in present value.

JEL Classifications: D84, E32

Keywords: COVID-19, coronavirus, rare events, tail risk, belief-driven business cycles

*kozjuli@gmail.com; lv2405@columbia.edu; vvenkate@stern.nyu.edu. The views expressed are those of the authors and do not necessarily reflect official positions of the Federal Reserve Bank of St. Louis, the Federal Reserve System, or the Board of Governors.
One of the most pressing economic questions of the day is what long-run cost will arise from the COVID-19 pandemic of 2020. While the virus will eventually pass, vaccines will be developed, and workers will return to work, an event of this magnitude could leave lasting effects on the nature of economic activity. Economists are actively debating whether the recovery will be V-shaped, U-shaped or L-shaped.1 Much of this discussion revolves around confidence, fear and the ability of firms and consumers to rebound to their old investment and spending patterns. Our goal is to formalize this discussion and quantify these effects, both in the short- and long-run. To explore these conjectures about the extent to which the economy will rebound from this COVID-induced downturn, we use a standard economic framework, with one novel channel: a “scarring effect.” Scarring is a persistent change in beliefs about the probability of an extreme, negative shock to the economy. We use a simple model, a version of Kozłowski et al. (2020), to formalize this scarring effect and quantify its the long-run economic consequences, under different scenarios for the dynamics of the crisis.

We start from a simple premise: No one knows the true distribution of shocks in the economy. Consciously or not, we all estimate the distribution using economic data, like an econometrician would. Tail events are those for which we have little data. Scarce data makes new tail event observations particularly informative. Therefore, tail events trigger larger belief revisions. Furthermore, because it will take many more observations of non-tail events to convince someone that the tail event really is unlikely, changes in tail risk beliefs are particularly persistent.

We have seen the scarring effect in action before. Before 2008, few people entertained the possibility of financial collapse. Today, more than a decade after the Great Recession and financial crisis, the possibility of another run on the financial sector is raised frequently, even though the system today is probably much safer. Likewise, businesses will make future decisions with the risk of another pandemic in mind. We thought the U.S. financial system was stable and that our health system was robust. Economic outcomes taught us that the risks were greater than we thought. It is this new-found knowledge that has long-lived effects on economic choices.

To explore tail risk in a meaningful way, we need to use an estimation procedure that does not constrain the shape of the distribution’s tail. Therefore, we allow our agents to learn about the distribution of aggregate shocks non-parametrically. Each period, agents observe one more piece of data and update their estimates of the distribution. Section 1 shows how this process leads to long-lived responses of beliefs to transitory events, especially extreme, unlikely ones. The mathematical foundation for such persistence is the martingale property of beliefs. The logic is that once observed, the event remains in agents’ data set. Long after the direct effect of the shock has passed, the knowledge of that tail event affects beliefs and therefore, continues to restrain economic activity.

---

1See e.g., Krugman (2020), Reinhart and Rogoff (2020) and Cochrane (2020).
Our analysis also points to an important message for policy-makers. We know that interventions (e.g., the recent stimulus package) are expensive. The cost is often easy to see, but what are the benefits? In the short-term, they provide insurance, help protect the most vulnerable sections of society and help businesses survive. But, what are their long-term effects? Our analysis shows that policies that help prevent capital depreciation or obsolescence, even if it has only modest immediate effects on output, can have substantial long-run benefits, an order of magnitude larger than the short-run benefit that policy makers typically consider. No policy can prevent people from believing that future pandemics are more likely than they originally thought. Policy can however affect how the ongoing crisis affects capital returns. By changing that mapping, the costs of belief scarring can be mitigated. For example, widespread bankruptcies can lead to destruction of specific investments and a permanent erosion in the value of certain types of capital. While policy makers understood from the start that preventing bankruptcies was important, neglecting changing beliefs leads one to drastically underestimate just how important that mission is.

To illustrate the economic importance of these belief dynamics, Section 2 embeds our belief updating tool in a macroeconomic model. This framework is designed to link tail events like the current crisis to macro outcomes in a quantitatively plausible way and has been used – e.g. by Gourio (2012) and Kozlowski et al. (2020) – to study the 2008-09 Great Recession. It features, among other elements, bankruptcy risk and aggregate shocks to capital quality. This set of economic assumptions is not our contribution. It is simply a laboratory we employ to illustrate the persistent economic effects from observing extreme events. Section 3 describes the data we feed into the model to discipline our belief estimates. Section 4 combines model and data and uses the resulting predictions to show how belief updating can generate large, permanent losses. We compare our results to those from the same economic model, but with agents who have full knowledge of the distribution, to pinpoint belief updating as the source of the persistence.

Our main insight about why the economic effect of COVID-19 is likely to persist does not rest on the specific economic structure of the Gourio (2012) model, or on the use of a particular shock process as a driving force. The shock we use is one that represents the separation of labor from capital, in the form of social distancing. While many professions are amenable to remote work, many are not. It is as if a fraction of the productive capital stock has disappeared, in the sense that it is no longer available for use. Take the example of a restaurant. Its kitchen may still be in use, but its dining area is unproductive capital, on which it is earning zero return. A key question is then whether this capital is gone for good. Surely, the restaurant has not disappeared. It is physically still there. But it could go bankrupt, which means the value of firm-specific investments that they made to their structure will be lost permanently. Even if
the restaurant survives, people’s habits could change so that dining out is in lower demand for years to come. This could also be a source of permanent impairment to the value of such capital. In our analysis, we consider different scenarios – different combinations of permanent and transitory shocks – to highlight the central role of persistence on long-term outcomes.

The second ingredient is a belief updating process that uses new data to estimate the distribution of shocks, or more precisely, the probability of extreme events. It is not crucial that the estimation is frequentist.\(^2\) It is important that the distribution does not impose thin tails. We use data on the aggregate market value of capital to measure the driving shocks and estimate their frequency, prior to the COVID-19 crisis.

The third necessary ingredient is an economic model that links the risk of extreme events to real output. The model in Gourio (2012, 2013) has the necessary curvature (non-linearity in policy functions) to deliver a sizeable output response from changes in disaster risk. However, when agents do not learn from new data, the same model succeeds in producing a large initial output drop, but fails to produce any long-run scarring effects.

Finally, data on interest rates are also consistent with an increase in tail risk. Others point to low interest rates as a potential cause of stagnation. Our story complements this low interest rate trap narrative by demonstrating how heightened tail risk makes safe assets more attractive, depressing riskless rates in a persistent fashion.

**Comparison to the literature** There are many new studies of the impact of the COVID-19 pandemic on the U.S. economy. Dingel and Neiman (2020) classify the feasibility of working at home for all occupations: About 34% of US jobs, accounting for 44% of overall wages, can plausibly be performed at home. Similarly, Koren and Pető (2020) provide theory-based measures of the reliance of U.S. businesses on human interaction, detailed by industry and geographic location. Leibovici et al. (2020) investigates the extent to which the shock on contact-intensive industries may propagate to the rest of the economy. A 51% drop in the final demand for goods and services from contact-intensive industries implies a 13% decline in the gross output of low contact-intensive industries and a 24% drop in aggregate gross output.

Mostly closely related, Jorda et al. (2020) study rates of return on assets using a dataset stretching back to the 14th century, focusing on 15 major pandemics where more than 100,000 people died. Significant macroeconomic after-effects of the pandemics persist for about 40 years, with real rates of return substantially depressed. Ludvigson et al. (2020) use VARs to estimate the cost of the pandemic over the next few months. In a more informal discussion, Cochrane (2020) explores whether the recovery from the COVID-shock will be V, U or L shaped. This

\(^2\)For an example of Bayesian estimation of tail risks in a setting without an economic model, see Orlik and Veldkamp (2014).
work formalizes many of the ideas in that discussion.

Outside of economics, biologists and socio-biologists have noted long ago that epidemics change the behavior of both humans and animals for generations. Loehle (1995) explore the social barriers to transmission in animals as a mode of defense against pathogen attack. Past disease events have effects on mating strategies, social avoidance, group size, group isolation, and other behaviors for generations. Gangestad and Buss (1993) find evidence of similar behavior among human communities.

In the economics realm, a small number of uncertainty-based theories of business cycles also deliver persistent effects from other sorts of transitory shocks. In Straub and Ulbricht (2013) and Van Nieuwerburgh and Veldkamp (2006), a negative shock to output raises uncertainty, which feeds back to lower output, which in turn creates more uncertainty. To get even more persistence, Fajgelbaum et al. (2014) combine this mechanism with an irreversible investment cost, a combination which can generate multiple steady-state investment levels. These uncertainty-based explanations are difficult to embed in quantitative DSGE models and to discipline with macro and financial data.

Our belief formation process is similar to the parameter learning models by Johannes et al. (2015), Cogley and Sargent (2005) and Kozeniauskas et al. (2014) and is advocated by Hansen (2007). However, these papers focus on endowment economies and do not analyze the potential for persistent effects in a setting with production. The most important difference is that our non-parametric approach allows us to incorporate beliefs about tail risk.

1 Belief Formation

Before laying out the underlying economic environment, we begin by explaining how we formalize the notion of belief scarring. After we explain the non-standard, but most crucial part of the model, we embed it in an economic environment, to quantify the effect of belief changes form the COVID-19 pandemic on the US economy.

No one knows the true distribution of shocks to the economy. We estimate such distributions, updating our beliefs as new data arrives. The first step is to choose a particular estimation procedure. A common approach is to assume a normal distribution and estimate its parameters (namely, mean and variance). While tractable, this has the disadvantage that the normal distribution, with its thin tails, is unsuited to thinking about changes in tail risk. We could choose a distribution with more flexibility in higher moments. However, this will raise obvious

---

3 Other learning papers in this vein include papers on news shocks, such as, Beaudry and Portier (2004), Lorenzoni (2009), Veldkamp and Wolfers (2007), uncertainty shocks, such as Jaimovich and Rebelo (2006), Bloom et al. (2014), Nimark (2014) and higher-order belief shocks, such as Angeletos and La’O (2013) or Huo and Takayama (2015).
concerns about the sensitivity of results to the specific distributional assumption used. To minimize such concerns, we take a non-parametric approach and let the data inform the shape of the distribution.

Specifically, we employ a kernel density estimation procedure, one of most common approaches in non-parametric estimation. Essentially, it approximates the true distribution function with a smoothed version of a histogram constructed from the observed data. By using the widely-used normal kernel, we impose a lot of discipline on our learning problem but also allow for considerable flexibility. We also experimented with a handful of other kernel and Bayesian specifications, which yielded similar results.

Setup Consider a shock $\phi_t$ whose true density $g$ is unknown to agents in the economy. The agents do know that the shock $\phi_t$ is i.i.d. Their information set at time $t$, denoted $I_t$, includes the history of all shocks $\phi_t$ observed up to and including $t$. They use this available data to construct an estimate $\hat{g}_t$ of the true density $g$. Formally, at every date, agents construct the following normal kernel density estimator of the pdf $g$

$$\hat{g}_t(\phi) = \frac{1}{n_t \kappa_t} \sum_{s=0}^{n_t-1} \Omega \left( \frac{\phi - \phi_{t-s}}{\kappa_t} \right)$$

where $\Omega (\cdot)$ is the standard normal density function, $\kappa_t$ is the smoothing or bandwidth parameter and $n_t$ is the number of available observations of at date $t$. As new data arrives, agents add the new observation to their data set and update their estimates, generating a sequence of beliefs $\{\hat{g}_t\}$.

The key mechanism in the paper is the persistence of belief changes induced by transitory $\phi_t$ shocks. This stems from the martingale property of beliefs - i.e. conditional on time-$t$ information ($I_t$), the estimated distribution is a martingale. Thus, on average, the agent expects her future belief to be the same as her current beliefs. This property holds exactly if the bandwidth parameter $\kappa_t$ is set to zero and holds with tiny numerical error in our application.\(^4\) In line with the literature on non-parametric assumption, we use the optimal bandwidth.\(^5\) As a result, any changes in beliefs induced by new information are expected to be approximately

\(^4\)As $\kappa_t \to 0$, the CDF of the kernel converges to $\hat{G}_t^0(\phi) = \frac{1}{n_t} \sum_{s=0}^{n_t-1} 1 \{\phi_{t-s} \leq \phi\}$. Then, for any $\phi$, $j \geq 1$

$$E_t \left[ \hat{G}_{t+j}^0(\phi) \mid I_t \right] = E_t \left[ \frac{1}{n_t + j} \sum_{s=0}^{n_t+j-1} 1 \{\phi_{t+j-s} \leq \phi\} \mid I_t \right] = \frac{n_t}{n_t + j} \hat{G}_t^0(\phi) + \frac{j}{n_t + j} E_t \left[ 1 \{\phi_{t+1} \leq \phi\} \mid I_t \right]$$

Thus, future beliefs are, in expectation, a weighted average of two terms - the current belief and the distribution from which the new draws are made. Since our best estimate for the latter is the current belief, the two terms are exactly equal, implying $E_t \left[ \hat{G}_{t+j}^0(\phi) \mid I_t \right] = \hat{G}_t^0(\phi)$.

permanent. This property plays a central role in generating long-lived effects from transitory shocks.

2 Economic Model

To gauge the magnitude of the scarring effect of the COVID-19 pandemic on long-run economic outcomes, we need to embed it in an economic environment. To have any effect of tail risk beliefs, our model needs two key features. First, it should have transitory productivity and capital depreciation or obsolescence shocks that we use to describe the COVID event. A transitory effect could be due to lost productivity due to sick workers, mis-matched demand and productive capacity, and stay-at-home orders preventing services from reaching consumers. But, in order to speak to the large changes in equity valuations, the model must also allow for the possibility of a loss of some productive capital. The interior of the restaurant that went bankrupt, the unused capacity of the hotel that will not fill again for many years to come. Tastes, habits, and consumption patterns may change permanently, rendering some capital obsolete or worthless. One might think this is hard-wiring persistence in the model. Yet, this capital destruction by itself, has a short lived effect and typically triggers an investment boom, as the economy rebuilds capital better suited to the new consumption normal. We do not take a stand on how much loss of capital value versus productivity shock the pandemic will trigger. That likely depends on policy implementation. Instead, we explore three possible scenarios that highlight the enormous importance of preventing capital obsolescence, because of the scarring of beliefs. The second key ingredient is a setting where economic activity is sensitive to the probability of extreme shocks to capital returns. Two key ingredients – namely, Epstein-Zin preferences and costly bankruptcy – combine to generate significant non-linearity in policy functions. Similarly, preferences that shut down wealth effects on labor avoid a surge in hours in response to crises.

None of these ingredients guarantees persistent effects. Absent belief revisions, these shocks do not change the long-run trajectory of the economy. Similarly, the non-linear responses induced by preferences and debt influence the size of the economic response, but by themselves do not generate any internal propagation. They simply govern the magnitude of the impact, both in the short and long run.

To this setting, we add belief scarring. We model beliefs using the non-parametric estimation described in the previous section and show how to discipline this procedure with observable macro data, avoiding free parameters. This belief updating piece is not there to generate the right size reaction to the initial shock. Instead, belief updating adds the persistence.
2.1 Setup

Preferences and technology: An infinite horizon, discrete time economy has a representative household, with preferences over consumption \((C_t)\) and labor supply \((L_t)\):

\[
U_t = \left(1 - \beta \right) \left[ \left( C_t - \frac{L_t^{1+\gamma}}{1+\gamma} \right)^{1-\psi} + \beta E_t \left( U_{t+1}^{1-\eta} \right)^{\frac{1-\psi}{1-\eta}} \right]^{\frac{1}{1-\psi}}
\]  

(1)

where \(\psi\) is the inverse of the intertemporal elasticity of substitution, \(\eta\) indexes risk-aversion, \(\gamma\) is inversely related to the elasticity of labor supply, and \(\beta\) represents time preference.\(^6\)

The economy is also populated by a unit measure of firms, indexed by \(i\) and owned by the representative household. Firms produce output with capital and labor, according to a standard Cobb-Douglas production function \(z_t \equiv k_t^{\alpha} l_t^{1-\alpha}\).

Aggregate uncertainty is captured by a single random variable, \(\phi_t\), which is i.i.d. over time and drawn from a distribution \(g(.).\) The i.i.d. assumption is made in order to avoid an additional, exogenous, source of persistence.\(^7\) This shock has both permanent and transitory effects on production. The permanent component works as follows: A firm that enters the period \(t\) with capital \(\hat{k}_{it}\) has effective capital \(k_{it} = \phi_t \hat{k}_{it}\). In other words, \(\phi\) reflects a long-lasting change in the economic value of a piece of capital. A realization of \(\phi < 1\) captures the loss of specific investments or other forms of lasting damage from a prolonged disruption, e.g. the lost value of cruise ships that will never sail again, restaurants that do not re-open, airplanes that will be grounded due to a lasting drop in business travel, or office buildings space that will stay empty for a while as working from home becomes more the norm. Of course, all these forms of capital will still have some residual value: but, a sizeable portion of their value was specific to that purpose and it will require costly investments to repurpose them. As we will see, this investment is exactly what happens in a standard model, and what the scarring effect of beliefs prevents.

In addition to this permanent component, the shock \(\phi_t\) also has a temporary effect, through the TFP term \(z_t = \phi_t^\nu\). The parameter \(\nu\) governs the relative strength of the transitory component. This specification allows us to capture both permanent and transitory disruptions with only one source of uncertainty \(\phi\). By varying \(\nu\), we can capture a range of scenarios with having to introduce additional shocks.

Firms are also subject to an idiosyncratic shock \(v_{it}\). These shocks scale up and down the

\(^6\)This utility function rules out wealth effects on labor, as in Greenwood et al. (1988).

\(^7\)The i.i.d. assumption also has empirical support. In the next section, we use macro data to construct a time series for \(\phi_t\). We estimate an autocorrelation of 0.15, statistically insignificant. In previous work, we showed that this generates almost no persistence in the economic response.
total resources available to each firm (before paying debt, equity or labor)

\[ \Pi_{it} = v_{it} \left[ z_t k_{it}^{\alpha} l_{it}^{1-\alpha} + (1 - \delta) k_{it} \right] \]  

(2)

where \( \delta \) is the rate of capital depreciation. The shocks \( v_{it} \) are i.i.d. across time and firms and are drawn from a known distribution, \( F \).\(^8\) The mean of the idiosyncratic shock is normalized to be one: \( \int v_{it} \ di = 1 \). The primary role of these shocks is to induce an interior default rate in equilibrium, allowing a more realistic calibration, particularly of credit spreads.

Finally, firms hire labor in a competitive market at a wage \( W_t \). We assume that this decision is made after observing the aggregate shock but before the idiosyncratic shocks are observed, i.e. labor choice is solved the following static problem:

\[ \max_{l_{it}} z_t (\phi_t k_{it})^{\alpha} l_{it}^{1-\alpha} - W_t l_{it} \]

Credit markets and default: Firms have access to a competitive non-contingent debt market, where lenders offer bond price (or equivalently, interest rate) schedules as a function of aggregate and idiosyncratic states, in the spirit of Eaton and Gersovitz (1981). A firm enters period \( t + 1 \) with an obligation, \( b_{it+1} \) to bondholders. The shocks are then realized and the firm’s shareholders decide whether to repay their obligations or default. Default is optimal for shareholders if, and only if,

\[ \Pi_{it+1} - b_{it+1} + \Gamma_{t+1} < 0 \]

where \( \Gamma_{t+1} \) is the present value of continued operations. Thus, the default decision is a function of the resources available to the firm (output plus undepreciated capital less wages \( \Pi_{it+1} \)) and the obligations to bondholders (\( b_{it+1} \)). Let \( r_{it+1} \in \{0, 1\} \) denote the default policy of the firm.

In the event of default, equity holders get nothing. The productive resources of a defaulting firm are sold to an identical new firm at a discounted price, equal to a fraction \( \theta < 1 \) of the value of the defaulting firm. The proceeds are distributed pro-rata among the bondholders.\(^9\)

Let \( q_{it} \) denote the bond price schedule faced by firm \( i \) in period \( t \), i.e. the firm receives \( q_{it} \) in exchange for a promise to pay one unit of output at date \( t + 1 \). Debt is assumed to carry a tax advantage, which creates incentives for firms to borrow. A firm which issues debt at price \( q_{it} \) and promises to repay \( b_{it+1} \) in the following period, receives a date-\( t \) payment of \( \chi q_{it} b_{it+1} \), where \( \chi > 1 \). This subsidy to debt issuance, along with the cost of default, introduces a trade-off in

\(^8\)This is a natural assumption - with a continuum of firms and a stationary shock process, firms can learn the complete distribution of any idiosyncratic shocks after one period.

\(^9\)In our baseline specification, default does not destroy resources - the penalty is purely private. This is not crucial - it is straightforward to relax this assumption by assuming that all or part of the cost of the default represents physical destruction of resources.
the firm’s capital structure decision, breaking the Modigliani-Miller theorem.\textsuperscript{10}

For a firm that does not default, the dividend payout is its total available resources, minus its payments to debt and labor, minus the cost of building next period’s capital stock (the undepreciated current capital stock is included in $\Pi_{it}$), plus the proceeds from issuing new debt, including its tax subsidy

$$d_{it} = \Pi_{it} - b_{it} - \hat{k}_{it+1} + \chi q_{it} b_{it+1}. \quad (3)$$

Importantly, we do not restrict dividends to be positive, with negative dividends interpreted as (costless) equity issuance. Thus, firms are not financially constrained, ruling out another potential source of persistence.

**Timing and value functions:**

1. Firms enter the period with a capital stock $\hat{k}_{it}$ and outstanding debt $b_{it}$.

2. The aggregate capital quality shock $\phi_t$ is realized. Labor choice and production take place. The firm-specific profit shocks $v_{it}$ are realized.

3. The firm decides whether to default or repay ($r_{it} \in \{0, 1\}$) its bond claims.

4. The firm makes capital $\hat{k}_{it+1}$ and debt $b_{it+1}$ choices for the following period.

In recursive form, the problem of the firm is

$$V (\Pi_{it}, b_{it}, S_t) = \max \left[ 0, \max_{d_{it}, \hat{k}_{it+1}, b_{it+1}} d_{it} + \mathbb{E}_t M_{t+1} V (\Pi_{it+1}, b_{it+1}, S_{t+1}) \right] \quad (4)$$

subject to

**Dividends:**

$$d_{it} \leq \Pi_{it} - b_{it} - \hat{k}_{it+1} + \chi q_{it} b_{it+1} \quad (5)$$

**Resources:**

$$\Pi_{it} = v_{it+1} \max_{l_{it}} \left[ \max_{l_{it}} z_t (\phi_t \hat{k}_{it}) \alpha l_{it}^{1-\alpha} - W_l l_{it} + (1 - \delta) \phi_t \hat{k}_{it} \right] \quad (6)$$

**Bond price:**

$$q_{it} = \mathbb{E}_t M_{t+1} \left[ r_{it+1} + (1 - r_{it+1}) \frac{\theta V_{it+1}}{b_{it+1}} \right] \quad (7)$$

The first max operator in (4) captures the firm’s option to default. The expectation $\mathbb{E}_t$ is taken over the idiosyncratic and aggregate shocks, given beliefs about the aggregate shock

\textsuperscript{10}The subsidy is assumed to be paid by a government that finances it through a lump-sum tax on the representative household.
The value of a defaulting rm is simply the value of a rm with no external obligations, i.e. 
\[ \tilde{V}_{it} = V(\Pi_{it}, 0, S_t) \]

The aggregate state \( S_t \) consists of \((\Pi_t, L_t, I_t)\) where \( \Pi_t \equiv z_t AK^\alpha L_t^{1-\alpha} + (1 - \delta)K_t \) is the aggregate resources available, and \( I_t \) is the economy-wide information set. Equation (7) reveals that bond prices are a function of the firm’s capital \( \hat{k}_{it+1} \) and debt \( b_{it+1} \), as well as the aggregate state \( S_t \). The firm takes the aggregate state and the function \( q_{it} = q(\hat{k}_{it+1}, b_{it+1}, S_t) \) as given, while recognizing that its firm-specific choices affect its bond price.

**Information, beliefs and equilibrium** The set \( I_t \) includes the history of all shocks \( \phi_t \) observed up to and including time-\( t \). For now, we specify a general function, denoted \( \Psi \), which maps \( I_t \) into an appropriate probability space. The expectation operator \( \mathbb{E}_t \) is defined with respect to this space. In the following section, we make this more concrete using the kernel density estimation procedure outlined in section 1 to map the information set into beliefs.

For a given belief function \( \Psi \), a recursive equilibrium is a set of functions for (i) aggregate consumption and labor that maximize (1) subject to a budget constraint, (ii) firm value and policies that solve (4), taking as given the bond price function (7) and the stochastic discount factor is such that (iii) aggregate consumption and labor are consistent with individual choices.

### 2.2 Characterization

The equilibrium of the economic model is a solution to the following set of non-linear equations. First, we use the solution to the labor choice problem

\[ l_t = \left[ \frac{(1 - \alpha)z_t}{W_t} \right]^{\frac{\alpha}{\alpha}} \phi_t \hat{k}_t \]

and the fact that the constraint on dividends (5) will bind at the optimum to substitute for \( d_{it} \) and \( l_{it} \) in the firm’s problem (4). This leaves us with 2 choice variables \( (\hat{k}_{it+1}, b_{it+1}) \) and a default decision. Optimal default is characterized by a threshold rule in the idiosyncratic output shock \( \nu_{it} \):

\[ r_{it} = \begin{cases} 0 & \text{if } \nu_{it} < \nu(S_t) \\ 1 & \text{if } \nu_{it} \geq \nu(S_t) \end{cases} \]

It turns out to be more convenient to redefine variables and cast the problem as a choice of \( \hat{k}_{it+1} \) and leverage, \( lev_{it+1} \equiv \frac{b_{it+1}}{\hat{k}_{it+1}} \). We relegate detailed derivations and the full characterization to the Appendix. Since all firms make symmetric choices for these objects, in what follows, we suppress the \( i \) subscript. The optimality condition for \( \hat{k}_{t+1} \) is:
1 = \mathbb{E}[M_{t+1}R^k_{t+1}] + (\chi - 1)lev_{t+1}q_t - (1 - \theta)\mathbb{E}[M_{t+1}R^k_{t+1}h(\nu)] \quad (8)

where

\[ R^k_{t+1} = \frac{z_t\phi_t^{\alpha} \hat{k}_{t+1}^{1-\alpha} W_{t+1}1_{l_{t+1}} + (1 - \delta) \phi_{t+1} \hat{k}_{t+1}}{k_{t+1}} \quad (9) \]

The term \( R^k_{t+1} \) is the ex-post per-unit, pre-wage return on capital, while \( \nu \equiv \frac{lev_{t+1}}{R^k_{t+1}} h(\nu) \equiv \int_{-\infty}^{\nu} vf(v)dv \) is the default-weighted expected value of the idiosyncratic shock.

The first term on the right hand side of (8) is the usual expected direct return from investing, weighted by the stochastic discount factor. The other two terms are related to debt. The second term reflects the indirect benefit to investing arising from the tax advantage of debt - for each unit of capital, the firm raises \( b_{t+1}^{\frac{1}{k_{t+1}}} q_t \) from the bond market and earns a subsidy of \( \chi - 1 \) on the proceeds. The last term is the cost of this strategy - default-related losses, equal to a fraction \( 1 - \theta \) of available resources.

Next, the firm’s optimal choice of leverage, \( lev_{t+1} \) is

\[(1 - \theta) \mathbb{E}_t \left[ M_{t+1} \frac{lev_{t+1}}{R^k_{t+1}} f \left( \frac{lev_{t+1}}{R^k_{t+1}} \right) \right] = \left( \frac{\chi - 1}{\chi} \right) \mathbb{E}_t \left[ M_{t+1} \left( 1 - F \left( \frac{lev_{t+1}}{R^k_{t+1}} \right) \right) \right]. \quad (10) \]

The left hand side is the marginal cost of increasing leverage - it raises the expected losses from the default penalty (a fraction \( 1 - \theta \) of the firm’s value). The right hand side is the marginal benefit - the tax advantage times the value of debt issued.

The optimality conditions, (8) and (10), along with those from the household side, form the system of equations we solve numerically.

### 3 Measurement, Calibration and Solution Method

This section describes how we use macro data to estimate beliefs and parameterize the model, as well as our computational approach. A strength of our theory is that we can use observable data to estimate beliefs at each date.

**Measuring past shocks**  We model the COVID-19 shock as an inability to pair workers with previously productive capital. Some of that inability is temporary. But some of it represents a more permanent loss of value. A helpful feature of capital depreciation and productivity shocks is that their mapping to available data is straightforward. A unit of capital installed in period \( t-1 \) (i.e. as part of \( \hat{K}_t \)) is, in effective terms, worth \( \phi_t \) units of consumption goods in period \( t \). Thus, the change in its market value from \( t-1 \) to \( t \) is simply \( \phi_t \).
We apply this measurement strategy to annual data on non-residential capital held by US corporates. Specifically, we use two time series Non-residential assets from the Flow of Funds, one evaluated at market value and the second, at historical cost.\footnote{These are series FL102010005 and FL102010115 from Flow of Funds.} We denote the two series by $NFA_t^{MV}$ and $NFA_t^{HC}$ respectively. To see how these two series yield a time series for $\phi_t$, note that, in line with the reasoning above, $NFA_t^{MV}$ maps directly to effective capital in the model. Formally, letting $P^k_t$ the nominal price of capital goods in $t$, we have $P^k_t K_t = NFA_t^{MV}$. Investment $X_t$ can be recovered from the historical series, $P^k_{t-1} X_t = NFA_t^{HC} - (1-\delta) NFA_{t-1}^{HC}$. Combining, we can construct a series for $P^k_{t-1} \hat{K}_t$:

\[
P^k_{t-1} \hat{K}_t = (1-\delta)P^k_{t-1} K_{t-1} + P^k_{t-1} X_t
= (1-\delta)NFA_{t-1}^{MV} + NFA_{t}^{HC} - (1-\delta) NFA_{t-1}^{HC}
\]

Finally, in order to obtain $\phi_t = \frac{K_t}{\hat{K}_t}$, we need to control for nominal price changes. To do this, we proxy changes in $P^k_t$ using the price index for non-residential investment from the National Income and Product Accounts (denoted $PIN DX_t$).\footnote{Our results are robust to alternative measures of nominal price changes, e.g. computed from the price index for GDP or Personal Consumption Expenditure.} This yields:

\[
\phi_t = \frac{K_t}{\hat{K}_t} = \left(\frac{P^k_t K_t}{P^k_{t-1} \hat{K}_t}\right) \left(\frac{PIN DX^k_t}{PIN DX^k_{t-1}}\right)
= \left[\frac{NFA_t^{MV}}{(1-\delta)NFA_{t-1}^{MV} + NFA_t^{HC} - (1-\delta) NFA_{t-1}^{HC}}\right] \left(\frac{PIN DX^k_t}{PIN DX^k_{t-1}}\right)
\] (11)

Using the measurement equation (11), we construct an annual time series for capital quality shocks for the US economy since 1950. The left panel of Figure 1 plots the resulting series. The mean and standard deviation of the series over the entire sample are 1 and 0.03 respectively. The autocorrelation is statistically insignificant at 0.15.

**Calibration** A period is interpreted as a year. We choose the discount factor $\beta$ and depreciation $\delta$ to target a steady state capital-output ratio of 3.5 (this is taken from Cooley and Prescott (1995)) and an investment-output ratio of 0.12 (this is the average ratio of non-residential investment to output during 1950-2019 from NIPA accounts).\footnote{This leads to values for $\beta$ and $\delta$ of 0.91 and 0.03 respectively. These are lower than other estimates in the literature.} The share of capital in the production, $\alpha$, is 0.40, which is also taken from Cooley and Prescott (1995). The recovery rate upon default, $\theta$, is set to 0.70, following Gourio (2013). The distribution for the idiosyncratic shocks, $v_{it}$ is assumed to be lognormal, i.e. $v_{it} \sim N\left(-\frac{\hat{\sigma}^2}{2}, \hat{\sigma}^2\right)$ with $\hat{\sigma}^2$ chosen
to target a default rate of 0.02. The labor supply parameter, $\gamma$, is set to 0.5, in line with Midrigan and Philippon (2011), corresponding to a Frisch elasticity of 2.

For the parameters governing risk aversion and intertemporal elasticity of substitution, we use standard values from the asset pricing literature and set $\psi = 0.5$ (or equivalently, an IES of 2) and $\eta = 10$. The tax advantage parameter $\chi$ is chosen to match a leverage target of 0.50, the ratio of external debt to capital in the US data - from Gourio (2013)). Table 1 summarizes the resulting parameter choices.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preferences:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\beta$</td>
<td>0.91</td>
<td>Discount factor</td>
</tr>
<tr>
<td>$\eta$</td>
<td>10</td>
<td>Risk aversion</td>
</tr>
<tr>
<td>$\psi$</td>
<td>0.50</td>
<td>$1/$Intertemporal elasticity of substitution</td>
</tr>
<tr>
<td>$\gamma$</td>
<td>0.50</td>
<td>$1$/Frisch elasticity</td>
</tr>
<tr>
<td>Technology:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\alpha$</td>
<td>0.40</td>
<td>Capital share</td>
</tr>
<tr>
<td>$\delta$</td>
<td>0.03</td>
<td>Depreciation rate</td>
</tr>
<tr>
<td>$\hat{\sigma}$</td>
<td>0.25</td>
<td>Idiosyncratic volatility</td>
</tr>
<tr>
<td>Debt:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\chi$</td>
<td>1.06</td>
<td>Tax advantage of debt</td>
</tr>
<tr>
<td>$\theta$</td>
<td>0.70</td>
<td>Recovery rate</td>
</tr>
</tbody>
</table>

Table 1: Parameters

**Numerical solution method** Because curvature in policy functions is an important feature of the economic environment, our algorithm solves equations (8) – (10) with a non-linear collocation method. Appendix A.2 describes the iterative procedure. In order to keep the computation tractable, we need one more approximation. The reason is that date-$t$ decisions (policy functions) depend on the current estimated distribution ($\hat{g}_t(\phi)$) and the probability distribution $h$ over next-period estimates, $\hat{g}_{t+1}(\phi)$. Keeping track of $h(\hat{g}_{t+1}(\phi))$, (a compound lottery) makes a function a state variable, which renders the analysis intractable. However, the approximate martingale property of $\hat{g}_t$ discussed in Section 1 offers an accurate and computationally efficient approximation to this problem. The martingale property implies that the average of the compound lottery is $E_t[\hat{g}_{t+1}(\phi)] \approx \hat{g}_t(\phi), \forall \phi$. Therefore, when computing policy functions, we approximate the compound distribution $h(\hat{g}_{t+1}(\phi))$ with the simple lottery $\hat{g}_t(\phi)$, which is today’s estimate of the probability distribution. We use a numerical experiment to show that this approximation is quite accurate. The reason for the small approximation error

---

14 This is in line with the target in Khan et al. (2014), though a bit higher than the one in Gourio (2013). We verified that our quantitative results are not sensitive to this target.
is that $h(\hat{g}_{t+1})$ results in distributions centered around $\hat{g}_t(\phi)$, with a small standard deviation. Even 30 periods out, $\hat{g}_{t+30}(\phi)$ is still quite close to its mean $\hat{g}_t(\phi)$. For 1-10 quarters ahead, where most of the utility weight is, this standard error is tiny.

To compute our benchmark results, we begin by estimating $\hat{g}_{2019}$ using the data on $\phi_t$ described above. Given this $\hat{g}_{2019}$, we compute the stochastic steady by simulating the model for 1000 periods, discarding the first 500 observations and time-averaging across the remaining periods. This steady state forms the starting point for our results. Subsequent results are in log deviations from this steady state level. Then, we subject the model economy to three possible additional adverse realizations for 2020, one at a time. Using the one additional data point for each scenario, we re-estimate the distribution, to get $\hat{g}_{2020}$. To see how persistent economic responses are, we need a long future time series. We don’t know what distribution future shocks will be drawn from. Given all the data available to us, our best estimate is also $\hat{g}_{2020}$. Therefore, we simulate future paths by drawing many sequences of future $\phi$ shocks from the $\hat{g}_{2020}$ distribution and plot the mean future path of various aggregate variables, in the results that follow.

## 4 Main Results

In this section, we present our estimates of the scarring effect. To highlight the role of beliefs, we will compare our estimates to the same model where agents are presumed to have full knowledge of the distribution from the very beginning. A major hurdle to quantifying the long-run effects is the lack of data and estimates of the current impact. While this will surely be sorted out in months, for now, with the crisis still raging and policy still being set, the impact is uncertain. More importantly for us, the nature of the economic shock is uncertain. It may be a temporary closure with furloughs, or it could involve widespread bankruptcies and changes in habits that permanently separate workers from capital or make the existing stock of capital ill-suited to the new consumption demands. Since it is too early to know this, we present three possible scenarios, chosen to illustrate the interaction between learning and the type of shock we experience. All three involve enormous losses in the short term but their long-term effects and their lifetime welfare effects for the economy are drastically different.

Specifically, a scenario is described by a combination of a realization for $\phi_{2020}$ and a value for the parameter $\nu$ that deliver the same initial blow to output, across all three scenarios. The target for this initial impact is quite large: an 18% decline in GDP. This is likely a conservative estimate for Q2 2020, but more extreme than some forecasts for the entire year. This is partly by design – the scarring mechanism is really only relevant for an outlier shock. While Q2 will

\[15\] Ludvigson \textit{et al.} (2020) for example, forecast an annual 13-17\% drop in output, depending on the sector.
be certainly be one, whether 2020 stands out as an outlier will depend on how Q3 and Q4 turn out. If they are significantly more moderate, then we are overstating both the immediate impact and the scarring potential. The ideal solution would be to use a higher frequency model (e.g., quarterly or even monthly). But for now, we proceed with the current annual version, with the caveat that the first period impact might be better interpreted as an annualized Q2 change in GDP, rather than an actual forecast for 2020.

In scenario 1, the shock makes 25% of the capital stock obsolete, but $\nu = 0$, i.e. it does not induce additional, transitory effects. The values that accompany this scenario are $[\phi, \nu] = [0.75, 0]$.

In scenario 2, the shock makes 15% of the capital stock obsolete and is accompanied by a 1-period 5% drop in productivity. This combination is chosen to have the same immediate impact on aggregate output, but represent a middle-ground outcome. The temporary fall in productivity represents the loss from workers who are temporarily separated from their productive capital, but will return shortly, as productive as they were before. The values for $[\phi, \nu]$ that accompany this scenario are $[0.85, 0.3]$.

In scenario 3, only 5% of the value of the capital stock is lost. That is large, but is smaller than most estimates of annual capital depreciation. One might think of this as, because of the dislocation in demand, the normal capital depreciation that would happen over 18 months, now happens in a year. This capital depreciation shock is accompanied by an 8% 1-year drop in productivity. Again, this combination is chosen to deliver the same short-run impact, in order to facilitate the comparison of effects that are specific to the long-run. The values that accompany this scenario are $[\phi, \nu] = [0.95, 1.6]$.

How much belief scarring? We apply our kernel density estimation procedure to the capital return time series and our three scenarios to construct a sequence of beliefs. In other words, for each $t$, we construct $\{\hat{g}_t\}$ using the available time series until that point. The resulting estimates for 2019 and 2020 are shown in Figure 1. The differences are subtle. Spotting them requires close inspection where the dotted and solid lines diverge, around 0.75, 0.85 and 0.95, in scenarios 1, 2 and 3 respectively. They show that the COVID-19 pandemic induces an increase in the perceived likelihood of extreme negative shocks. In scenario 1, the estimated density for 2019 implies near zero (less than $10^{-5}\%$) chance of a $\phi = 0.75$ shock; the 2020 density attaches a 1-in-70 or 1.42% probability to a similar event recurring.

As the graph shows, for most of the sample period, the shock realizations are in a relatively tight range around 1, but we saw two large adverse realizations during the Great Recession: 0.93 in 2008 and 0.84 in 2009. These reflect the large drops in the market value of non-residential capital stock. The COVID shock is now a third extreme realization of negative capital returns.
Figure 1: Beliefs about the probability distribution of outcomes, plotted before and during the COVID-19 crisis.

All three panels show the same estimated kernel densities in 2019 (solid line). They show different estimated distributions of shocks in 2020 (dashed line), depending on the scenario. The subtle changes in the left tail represent the scarring effect of COVID-19.

in the last 20 years. It makes such an event appear much more likely.

Figure 2: Output with scarring of beliefs (solid line) and without (dashed line).

Units are percentage changes, relative to the pre-crisis steady-state, with 0 being equal to steady state and \(-0.1\) meaning 10% below steady state. Common parameters listed in Table 1. Scenario-specific parameters are: Scenario 1: \([\phi, \nu] = [0.75, 0]\); Scenario 2: \([\phi, \nu] = [0.85, 0.3]\); Scenario 3: \([\phi, \nu] = [0.95, 1.6]\).

**Long-run output loss**

Observing a tail event like the COVID-19 pandemic changes beliefs and outcomes in a persistent way. Figure 2 compares the predictions of our model for total output (GDP) to an identical model without learning. The units are log changes, relative to the pre-crisis steady-state. In the model without learning, agents know the true probability of pandemics. When they see the COVID crisis, they do not update the distribution, because they know it to be true with certainty. This corresponds to what is typically called “rational expectations.” The model with learning, which uses our real-time kernel density estimation to inform beliefs, generates similar short-term reactions, but worse long-term effects.

When agents learn, the three scenarios correspond to what economist might call an L-
shaped, swoosh and V-shaped recession. The fact that all three scenarios deliver the same initial -18% impact to output is by construction. The result is what happens subsequently. In the long run, it is not the size of the initial impact that matters, as much as its persistence.

The present discounted value of output in these three scenarios is vastly different. If we discount future declines in output at rate $\beta = 0.91$, the present value of the pandemic crisis in scenario 3 is 65% of GDP. In scenario 2, the long-run effects are larger, generating a 114% of GDP loss in present discounted value. Scenario 1 delivers an overwhelming present discounted value loss of 188% of annual GDP. The contribution of the long-run changes to the present value are also very different across scenarios. On the one hand, in scenario 3 most of the action is in the short-run. The first two years contribute 41% to the overall net present value. On the other hand, in scenario 1 most of the action is in the long-run, the initial drop in the first two years only contributes 26% of the overall present value.

Our discounting, at 9% per year, is intentionally quite conservative. If instead one discounted using a simple Gordon growth formula, the potentially losses are substantially larger. If we assume that long-term capital return is 2% to 5% higher than the economic growth rate, then the long-run value of a 2% loss in output (scenario 3) is 40% -100% of GDP. In scenario 2, the 8% loss in GDP corresponds to a 160%-400% of GDP loss in present discounted value. Scenario 1 delivers an overwhelming present discounted value loss of 380%-950% of annual GDP. That worst case means that nearly 10 years of output could be lost. A whole paper might be written on the correct discounting method. Our point is simply that however one discounts the future, the long-run losses are potentially large, much larger than the one-year costs that most economists are focused on.

Just like large shocks alone do not produce long-term effects, the scarring of beliefs (learning) alone does not produce sizeable long-term effects in all cases. In scenario 3, where $\phi = 0.95$, only 5% of the capital stock is permanently mal-adapted to the new reality. Instead, most of the immediate fall in output comes from the transitory productivity shock, as reflected in the large coefficient of $\nu = 1.6$. Since $0.95^{1.6} = 0.92$, this represents an 8% 1-year drop in aggregate productivity.

Of course, such a temporary drop in productivity is also a rare event, also learned about by our agents, and also scars their beliefs going forward. But the scarring is much less, producing only a 2% loss in long-run output. The reason that the productivity shock has much less effect is that it impairs the return to capital by less. Tail risk mostly affects the risk premium required on capital investments. Labor also contracts, but that is a reaction to the loss of available capital that can be paired with labor. When a chunk of capital becomes mal-adapted and worthless, that is an order of magnitude more costly to the investor than the temporary decline in capital productivity. From the point of few of the distribution of capital returns, the $\phi$ shock
that operates directly on the capital stock is much more an outlier for capital returns than is the $z$ shock that is derived from the same $\phi$ realization.

**Turning off belief updating**  When agents do not learn, all three scenarios involve quick and complete recoveries, even with this large initial impact. Without the scarring of beliefs, facilities are retrofitted, workers find new jobs, and while the transition is painful to many, the economy does return to its pre-crisis trajectory. With learning, this is no longer true.

To demonstrate the role of learning, we plot average simulated outcomes from an otherwise identical economy where agents know the final distribution $\hat{g}_{2020}$ with certainty, from the very beginning (dashed line in each figure). Now, by assumption, agents do not revise their beliefs after the Great Recession. This corresponds to a standard rational expectations econometrics approach, where agents are assumed to know the true distribution of shocks hitting the economy and the econometrician estimates this distribution using all the available data. The post-2020 paths are simulated as follows: each economy is assumed to be at its stochastic steady state in 2019 and is subjected to the same 2020 $\phi$ and $z$ shocks; subsequently, sequences of shocks drawn from the estimated 2020 distribution, the same as in the main results.

In the absence of belief revisions, the negative shocks lead to an investment boom, as the economy replenishes the lost effective capital. While the curvature in utility moderates the speed of this transition to an extent, the overall pattern of a steady recovery back to the original steady state is clear. Since the no-learning economy is endowed with the same end-of-sample beliefs as the learning model, they both ultimately converge to the same levels. But, they start at different steady states (normalized to 0 for each series). This shows that learning is what generates long-lived reductions in economic activity.

![Figure 3: Without belief scarring, investment surges.](image)

Results show average aggregate investment, with scarring of beliefs (solid line) and without (dashed line). Common parameters listed in Table 1. Scenario-specific parameters are: Scenario 1: $[\phi, \nu] = [0.75, 0]$; Scenario 2: $[\phi, \nu] = [0.85, 0.3]$; Scenario 3: $[\phi, \nu] = [0.95, 1.6]$.  

19
Investment and Labor. The behavior in investment in Figure 3 further reinforces this point. It is the combination of the capital-return depressing small \(\phi\), along with learning, that has large investment effects. When agents do not learn, investment surges or dips for only one period. When agents learn, but the shock is less detrimental to capital returns, there is a quick fall in investment during the period when productivity is low and then a rebound, to a higher investment level than before, to make up for the lower capital stock.

One reason that we focus on shocks directly to capital is because we saw such large equity price responses. The initial 30% drop in the value of equity is nearly impossible to reconcile with any temporary productivity shock, since more than half of the value of equity derives from its cash flows more than one year ahead. The large initial reaction suggests that investors had substantial concerns for losses that were more permanent.

![Scenario 1](Image1) ![Scenario 2](Image2) ![Scenario 3](Image3)

Figure 4: Labor with scarring of beliefs (solid line) and without (dashed line).

Common parameters listed in Table 1. Scenario-specific parameters are: Scenario 1: \([\phi, \nu] = [0.75, 0]\); Scenario 2: \([\phi, \nu] = [0.85, 0.3]\); Scenario 3: \([\phi, \nu] = [0.95, 1.6]\).

In figure 4, we see that the initial reaction of labor is a little more mild than for investment. But the bigger difference is in the second period reaction. When the transitory shock passes, investment surges, to higher than its initial level, to compensate for the lost mal-adapted capital. But labor returns to a lower than initial level. Labor demand is depressed by the lower capital stock. Labor demands continues to respond gradually, as the capital stock is rebuilt.

What belief scarring does is to make the rebound slower and less. By deterring investment, with the knowledge of the greater possibility of low investment returns, the scarring effect lowers the capital stock and thereby lowers the complementary demand for labor. While labor is not the main mechanism of the effect, it matters immensely for welfare, equity and human happiness.

Defaults and Interest Rates. One of the ways in which these three scenarios differ is in their default rates. Default happens only in the first period, when the shock hits. But the 15% default rate in scenario 1 scars investors far more than the 7% and 3% default rates of scenarios
Figure 5: Realized default does not respond much to beliefs. Results show with scarring of beliefs (solid line) and without (dashed line), often with the two lines on top of each other. Common parameters listed in Table 1. Scenario-specific parameters are: Scenario 1: $[\phi, \nu] = [0.75, 0]$; Scenario 2: $[\phi, \nu] = [0.85, 0.3]$; Scenario 3: $[\phi, \nu] = [0.95, 1.6]$.

2 and 3, with their more transitory shocks. This result suggest that, to prevent long-term scarring effects, policy needs to work hard to prevent business default. While this has been a focus of recent policy, and is common sense, we had little quantitative evidence to evaluate the benefits of such policy. This work suggests that the benefits of avoiding widespread defaults is a nearly-permanent 11%-17% annual gain in GDP, in perpetuity. That gain is far more than one might have imagined.

Figure 6: Risk free rate falls is belief scarring is severe. Results show the return on a riskless asset, with scarring of beliefs (solid line) and without (dashed line). Common parameters listed in Table 1. Scenario-specific parameters are: Scenario 1: $[\phi, \nu] = [0.75, 0]$; Scenario 2: $[\phi, \nu] = [0.85, 0.3]$; Scenario 3: $[\phi, \nu] = [0.95, 1.6]$.

Finally, we show that incorporating learning affects long-run interest rate trajectories. Table 2 summarizes the short-run effects of shocks and the long-run effects of the belief changes, by comparing the initial effects in 2020, with the long-run outcomes in 2060. It shows that the long-run effects depend crucially on how much capital is permanently separated from labor. One could equivalently name these high- medium- and low-bankruptcy scenarios. The long-run gain in employment from preventing widespread bankruptcy, by transiting from...
scenario 1 to scenario 3, is 10% per year.

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Short-run</th>
<th>Long-run</th>
</tr>
</thead>
<tbody>
<tr>
<td>GDP</td>
<td>-0.18</td>
<td>-0.19</td>
</tr>
<tr>
<td>Realized default (level)</td>
<td>0.15</td>
<td>0.01</td>
</tr>
<tr>
<td>Labor</td>
<td>-0.12</td>
<td>-0.12</td>
</tr>
<tr>
<td>Capital</td>
<td>-0.25</td>
<td>-0.28</td>
</tr>
<tr>
<td>Investment</td>
<td>-0.08</td>
<td>-0.17</td>
</tr>
<tr>
<td>Risk-free rate (%)</td>
<td>-1.46</td>
<td>-1.46</td>
</tr>
</tbody>
</table>

Table 2: Long-run and short-run economic activity from three COVID-19 scenarios. Short-run values are 2020 levels, relative to the pre-crisis state, with 0 being equal to steady state and −0.1 meaning 10% below steady state. Risk free rates are simply changes in the rate, relative to steady state, which is already a percentage. Common parameters listed in Table 1. Scenario-specific parameters are: Scenario 1: \([\phi, \nu] = [0.75, 0]\); Scenario 2: \([\phi, \nu] = [0.85, 0.3]\); Scenario 3: \([\phi, \nu] = [0.95, 1.6]\).

5 Conclusion

No one knows the true distribution of shocks to the economy. Economists typically assume that agents in their models know this distribution, as a way to discipline beliefs. But assuming that agents do the same kind of real-time estimation that an econometrician would do is equally disciplined and more plausible. For many applications, assuming full knowledge has little effect on outcomes and offers tractability. But for outcomes that are sensitive to tail probabilities, the difference between knowing these probabilities and estimating them with real-time data can be large. The estimation error can introduce new, persistent dynamics into a model with otherwise transitory shocks. The essence of the persistence mechanism is this: Once observed, a shock (a piece of data) stays in one’s data set forever and therefore persistently affects belief formation. The less frequently similar data is observed, the larger and more persistent the belief revision.

When we quantify this mechanism and use capital price and quantity data to directly estimate beliefs, our model’s predictions tell us that preventing bankruptcies or permanent separation of labor and capital, could have enormous consequences for the value generated by the U.S. economy for decades to come. What sound policy might avoid is the prospect that, after seeing how fragile our economy is to a pandemic, firms will be scarred and will never think about tail risk in the same way again.
References


A Solution

A.1 Equilibrium Characterization

Thus, an equilibrium is the solution to the following system of equations:

\[
1 = EM_{t+1} \left[ R_{t+1}^k \right] J^k(v)
\]

\[
R_{t+1}^k = \frac{z_t \phi_t^\alpha K_{t+1}^\alpha L_{t+1}^{1-\alpha} - W_{t+1}L_{t+1} + (1-\delta) \phi_{t+1} K_{t+1}}{K_{t+1}}
\]

\[
L_t = \left( \frac{(1-\alpha)z_t}{L_t} \right) ^{\frac{1}{\alpha}} \phi_t \hat{K}_t = \left( \frac{(1-\alpha)z_t}{W_t} \right) ^{\frac{1}{\alpha}} \phi_t \hat{K}_t
\]

\[
(1-\theta) E_t [M_{t+1} f (v)] = \left( \frac{\chi - 1}{\chi} \right) E_t [M_{t+1} (1 - F (v))]
\]

\[
C_t = z_t \phi_t^\alpha \hat{K}_t^\alpha L_t^{1-\alpha} + (1-\delta) \phi_t \hat{K}_t - \hat{K}_{t+1}
\]

\[
U_t = \left[ (1 - \beta) (u(C_t, L_t))^{1-\psi} + \beta E \left( U_{t+1}^{1-\eta} \right)^{\frac{1-\psi}{1-\eta}} \right]^{\frac{1}{1-\psi}}
\]

where

\[
v = lev_{t+1}^t
\]

\[
J^k(v) = 1 + (\chi - 1) v (1 - F (v)) + (\chi \theta - 1) h (v)
\]

\[
M_{t+1} = \left( \frac{dU_t}{dC_t} \right)^{-1} \frac{dU_t}{dC_t} + \beta \left[ E \left( U_{t+1}^{1-\eta} \right) \right]^{\frac{1-\psi}{1-\eta}} U_{t+1}^{\psi-\eta} \left( \frac{u(C_{t+1}, L_{t+1})}{u(C_t, L_t)} \right)^{-\psi}
\]

A.2 Solution Algorithm

To solve the system described above at any given date \( t \) (i.e. after any observed history of \( \phi_t \)), we recast it in recursive form with grids for the aggregate state \( \hat{K} \) and the shocks \( \phi \). We then use an iterative procedure:

- Estimate \( \hat{g} \) on the available history using the kernel estimator.
- Start with a guess (in polynomial form) for \( U(\hat{K}, \phi), C(\hat{K}, \phi) \).
- Solve (12)-(15) for \( \hat{K}', \text{lev}'(\Pi, L) \) using a non-linear solution procedure.
- Verify/update the guess for \( U, C \) using (16)-(17) and iterate until convergence.