Contract-Theoretic Approaches to Wages and Displacement

Wouter J. den Haan, Garey Ramey, and Joel Watson

Models of moral hazard in labor relationships have proven to be useful in explaining a variety of important macroeconomic phenomena. The existence of involuntary unemployment has been linked to the need to provide incentives for workers to choose high effort (Shapiro and Stiglitz, 1984). Further, since wage levels are important for workers' incentives, adjustment of wages in response to cyclical shocks may be subject to contractual constraints. This may help to explain the low observed variability of average wages relative to employment levels (Danthine and Donaldson, 1990, 1995; Strand, 1992; MacLeod, Malcomson and Gomme, 1994). More recently, contracting problems have been tied to limited verifiability of employment relationships, giving a mechanism whereby business cycle shocks may be magnified and made more persistent (Ramey and Watson, 1997a).

This paper focuses on the contract-theoretic underpinnings of wage adjustment and worker displacement in moral-hazard models of the labor market. We show that contracting imperfections play a key role in determining the fragility of employment relationships in the face of shocks to productivity, as well as influencing the form of worker compensation. Moreover, the responses of aggregate wages and employment to business-cycle shocks are sensitive to the structure of worker/firm contracting. Overall, our study establishes that the particular form of contracting imperfections can have major implications for economic outcomes. This highlights the importance of going beyond the reduced-form analysis of contracting that typifies much of the macromacroeconomics literature.

Our key assumption throughout is that firms and workers maintain long-term contractual relationships, whereby a particular firm and worker transact repeatedly until their relationship is severed. Within a unified theoretical framework, we consider two types of contracting imperfections in labor relationships. First, relationships may be subject to limited verifiability, whereby external enforcement authorities are unable to compel payments conditioned on the full set of actions chosen by the contracting partners. For example, the authorities may be unable to ascertain whether severance of the relationship was due to the worker's action or the firm's action. Second, desirable contracts may be infeasible due to the worker's limited liquidity, which prevents the worker from making payments to the firm.1

We demonstrate that privately inefficient breakup of relationships may occur in the presence of limited verifiability; that is, limited verifiability leads contracts to be fragile. The fundamental idea is that when a negative shock hits, the joint returns to cooperation between the firm and worker may be insufficient to offset the collective inducements to behave dishonestly, so there is no way to specify transfers between the firm and worker that can preserve the relationship. Increased verifiability leads to more robust relationships, more direct punishments for misbehavior, and a wider set of optimal compensation schemes. The worker's relative bargaining position always

1 Our analysis omits some other aspects of labor contracts that have been considered in the literature. First, we assume risk-neutral workers, so wage payments do not play any insurance role, in contrast to implicit contract models. Second, renegotiation of wage contracts is allowed, meaning that efficient severance cannot occur as a consequence of failure to renegotiate. Implicit contract models are surveyed in Romer (1996, ch.10); see Boldrin and Horvath (1995) for a recent empirical implementation. Suppression of renegotiation as a cause of displacement is considered in Hashimoto and Yu (1980) and Hall and Lazear (1984).
determines his total compensation, while the particular forms of payment may be influenced by the requirements of contracting. Performance bonding, for example, arises naturally in settings of unrestricted liquidity, but may be circumscribed when the worker is liquidity constrained. Moreover, since the form of compensation is identified by the timing and conditioning of payments, informal notions such as salary may be ambiguous.

Our framework also allows for a more precise analysis of the role of wage premia in solving labor contracting problems. We say that a worker obtains an efficiency wage when, in contract negotiation, the firm and worker must directly weigh reducing the worker's compensation against motivating effort. We demonstrate that, in the absence of liquidity constraints, effort incentives are driven by verifiability, bargaining power, and the state of the matching market, but not by the worker's current period compensation. Thus, in a precise sense, efficiency wages play no role in helping to preserve relationships. When the worker is liquidity constrained, however, the incentive constraint may bind at the time of contract negotiation, as a consequence of the worker's inability to make payments to the firm that would implement the unconstrained bargaining outcome. Thus, efficiency wages may emerge as added restrictions on wage determination when workers are liquidity constrained.

To analyze how contracting imperfections affect market outcomes, we posit that relationships are formed on a matching market, as in Pissarides (1985) and Mortensen and Pissarides (1994). We consider an example in which a limited liquidity specification with efficiency wages but no fragility is contrasted with a limited verifiability specification that is subject to fragility. In response to a permanent shock to the distribution of productivity, the presence of limited liquidity does serve to dampen wage adjustment, relative to a complete-contracting benchmark. However, the dampening is much more pronounced in the limited verifiability case, as the severance of low-productivity relationships greatly reduces the sensitivity of average wages to the shock. Moreover, the effect of the shock on total employment is greatly magnified as a consequence of fragility. Our example illustrates how models that emphasize displacement may be much more potent for explaining wage adjustment and propagation of shocks than models stressing wage effects within a given employment contract.

The framework presented in this paper builds on the contracting model of Ramey and Watson (1997a), who first developed the theoretical foundation of fragility and the related magnification of shocks. The present paper is also related to our earlier work on endogenous destruction margins and propagation of shocks, as reported in den Haan, Ramey, and Watson (1997). Here we address a wider range of contractual imperfections (including liquidity constraints and a range of verifiability conditions), we incorporate wage determination, and we consider adjustment of average wages in market equilibrium.2 Our framework is also related to the work of MacLeod and Malcolmson (1989, 1993, 1998). MacLeod and Malcolmson focus on timing and enforcement of compensation, using a model in which parties can make both externally enforced and discretionary transfers. Two contractual forms are emphasized: efficiency wages (which they define as the use of high wages with the threat of severance) and performance pay (defined by the use of discretionary bonuses). They demonstrate how the form of compensation depends on labor market conditions and equilibrium beliefs, interpreting the latter as a "social norm for a fair wage." Our work, in contrast, addresses (a) a broader range of contracting settings, including different restrictions pertaining to verifiability and liquidity; (b) inefficient severance of relationships following shocks; and (c) issues of propagation in the macroeconomy. We also take a different approach to modeling contract determination, whereby negotiation (and renegotiation) between workers and firms is directly incorporated.3
On the issue of contractual form, we obtain results different from those of MacLeod and Malcomson.

The main body of this paper is divided into four sections. The first introduces the basic model of an employment relationship. The second considers enforcement under various contracting environments, which differ in terms of what can be verified to a third party. The third section discusses efficiency wages and limited liquidity, while the fourth derives market outcomes from a matching setup.

THE MODEL

Employment Relationships

Employment relationships consist of one worker and one firm who interact in periods $t = 1, 2, \ldots$ until their relationship is severed. The firm is represented by a manager. Both the worker and manager make a private effort choice (high or low) that contributes to production. In addition, the parties negotiate a contract specifying transfers as a function of verifiable information. If both agents exert high effort during production, then the cooperative output level z_t is realized. We assume that z_t varies randomly across periods, taking the value z_G in the good production state and z_B in the bad state, with $z_G > z_B > 0$. For simplicity, z_t is assumed to be realized independently in each period, with ρ denoting the probability that $z_t = z_B$.

The realization of z_t, contracting, and effort choices within a period occur in three phases, as illustrated in Figure 1. In phase 1, the worker and manager observe the realized value of z_t for that period, then negotiate a contract that governs current-period interaction. If they reach an agreement, the contract specifies which decisions the agents will make in subsequent phases, as well as a profile of contingent payments. Disagreement leads to severance of the relationship, with the worker and manager obtaining outside option values of $b_w + w$ and $b_m + w$, respectively. The parameters b_j reflect current-period benefits received when the relationship is severed in phase 1 (e.g., the worker may obtain unemployment benefits), while the parameters w indicate the discounted values of future benefits, which may include returns from new relationships formed in the future. Severance as a result of disagreement will be referred to as outcome D. Further details of the contract negotiation are discussed below.

The manager makes his effort choice in phase 2. Low effort leads to outcome A, where the manager obtains a current-period private benefit of x_m, while the worker receives no benefit. Worker effort is selected in phase 3; there, low effort leads to outcome B, in which the worker receives a current-period private benefit of x_w and the manager obtains zero. Under either low-effort outcome, output is zero and the relationship is severed at the end of the period. On the other hand, high effort by both agents induces the cooperative outcome C, in which case output is z_t and the relationship continues into the next period. The manager is assumed to appropriate the output.

We assume $x^j > b^j$ for both j, meaning that agents gain more in the current period from staying in the relationship and putting out low effort than from leaving the relationship as a result of disagreement.

Figure 1

Timing of Actions in Employment Relationships

In each period:

- **Phase 1: Contract Negotiation**
- **Phase 2: Manager Effort Choice**
- **Phase 3: Worker Effort Choice**

D

A

B

C

4 The model is easily extended to introduce imperfect monitoring of effort choices, as follows. In phase 2, outcome A is reached with a positive probability under either effort choice of the manager, with low effort implying a greater probability of reaching A. Similarly, in phase 3 the probability of outcome B is higher when the worker chooses low effort. Thus, the contract cannot be conditioned directly on the effort choices, but only on the observable outcomes.
relationship in phase 1. Observe, however, that when an agent chooses low effort, his partner forgoes the opportunity to obtain b_i^j. We also assume that $x^i < b^w + b^m$, meaning the agents will never agree in phase 1 to induce outcomes A or B. Interpretations for our assumptions are discussed below.

We now compute the value of the relationship under various outcomes. First, the agents may choose high effort under both z^G and z^B in every period, in which case the relationship never breaks up. In this robust solution, the value of the relationship is given by

$$g^R = \frac{(1-\rho)z^G + \rho z^B}{1-\beta},$$

where β is the agents’ common discount factor. We let g^R denote the discounted continuation value of the relationship in this case:

$$g^R = \beta \left(\frac{(1-\rho)z^G + \rho z^B}{1-\beta} \right).$$

Second, the agents may agree to select high effort when z^G is realized, but to sever the relationship under z^B. In this fragile solution, in each period the relationship breaks up with probability ρ. The discounted future value of the relationship in this case satisfies

$$g^F = \beta \left((1-\rho)z^G + g^F \right) + \rho (b + w),$$

where $b=b^w + b^m$ and $w=w^w + w^m$. Solving for g^F yields

$$g^F = \frac{\beta(1-\rho)z^G + \rho \beta (b + w)}{1-(1-\rho)\beta}.$$}

Finally, the agents may agree to sever the relationship under both z^G and z^B and the relationship breaks up in period 1, having value $b+w$.

We impose a final assumption:

$$b+w < z^B + g^R < x+w < z^G + g^F,$$

where $x = x^w + x^m$. The first inequality in assumption 1 implies that the agents prefer the robust outcome under either production state, so that the robust outcome is efficient. The remaining two inequalities will determine the conditions under which the agents can find a contract that supports the robust and fragile solutions, as discussed below.

Contracting

At the start of each period, the worker and manager negotiate a short-term contract that specifies payments from the manager to the worker conditional on the productivity level z^k, $k = G, B$, and on the outcome of productive interaction (A, B, or C). The set of feasible contracts is generally constrained by the limits of the external enforcement institution. Payments might also be subject to liquidity constraints. Let s^C denote the payment made to the worker in the event that outcome C is realized, under productivity level z^k, $k = G, B$. Since the manager directly appropriates z^k when outcome C is reached, his current-period payoff in this case is $z^k - s^C$, while the worker obtains s^C. Transfers conditioned on outcomes A and B will be written s_A and s_B, respectively; these transfers will not need to depend on k. In addition, the agents may agree on up-front transfers s_0, made at the time of contracting in phase 1. We adopt the convention that negative values of s^C, s_A, s_B and s_0 denote transfers from the worker to the manager.

The worker and manager also formulate a joint plan for how they will behave in the future, which yields an expected continuation value g. For example, if the agents intend to implement a robust solution, then $g=g^R$. We look for a specification of behavior, consisting of explicit contracts and individual actions over time, that satisfies four conditions. First, agents’ expectations about g accurately reflect the value of continuing the relationship. Second, in each period, agents make their effort choices in a utility-maximizing manner, given g and the values of transfers agreed to under the contract. Third, short-term
contract negotiation is resolved according to the Nash bargaining solution. Here, the agents recognize that they are implicitly bargaining over the total value of the relationship, which is the sum of current-period returns and the continuation value \(g \) (assuming the agents are able to maintain the relationship into the next period). The worker’s and manager’s bargaining weights are \(\pi^w \) and \(\pi^m \), respectively, and the disagreement point is outcome \(D \). The parameters \(\pi^w \) and \(\pi^m \) are nonnegative and satisfy \(\pi^w + \pi^m = 1 \). Fourth, the best equilibrium satisfying the first three conditions is selected by the firm and worker.\(^5\) In light of assumption 1, the firm and worker will chose the robust solution if it can be supported. Next in line is the fragile solution, followed by immediate severance.

Interpretation

Effort choices and unemployment benefits. Our model of employment relationships allows for effort choices by both workers and managerial personnel. These choices can be interpreted in a number of ways. The most familiar interpretation involves personal exertion, and here we augment the usual shirking model by specifying that, in addition to worker effort, managerial effort is also important for production. Further, low effort may entail activities that are directly harmful to production, such as theft. Managers may also abuse their power to direct workers’ activities, by unexpectedly assigning them to undesirable tasks.

An agent obtains a current-period private benefit when he chooses low effort. Alternatively, the agents can agree to dissolve their relationship at the start of the period and obtain current-period benefits outside the relationship. A key assumption of our model is that these unemployment benefits become unavailable once agents have agreed to a contract and have proceeded to phase 2; that is, the agents must make a commitment to production activities that rule out outside benefits in the current period. We have also assumed that low effort conveys a larger private benefit than does unemployment (this is the assumption \(x^j > b^j, j = w, m \)). The most direct way to interpret this assumption is that employment relationships convey perks that are themselves attractive, apart from personal costs associated with high effort. Further, unemployment may involve private costs, such as psychic harm and search costs, that are not incurred within active relationships. Note that private benefits are zero for agents who exert high effort in a relationship, which serves to normalize utility.\(^6\)

Low effort and severance. We have assumed that low effort by either the worker or manager leads the employment relationship to be severed. There are two basic motivations for this assumption. First, low effort may induce rapid decay in the productivity of the relationship, to the point where returns to continuation fall short of operating costs. For the manager, low effort might also be directly tied to liquidation; for example, the manager may sell off essential assets. Second, contractual enforcement mechanisms used by the partners to sustain cooperation may entail a costly and time-consuming dispute resolution process in the event that either agent chooses low effort; see Ramey and Watson (1997b) for a detailed discussion of such mechanisms. When dispute resolution costs are sufficiently high, the worker and manager will opt to sever their relationship.

As another possibility for contractual agreement, the agents might seek to temporarily suspend their relationship when high effort is unsustainable, for example, through a layoff, in order to preserve match capital. Such suspensions will be infeasible, however, if returns from the relationship would experience rapid deterioration without active inputs of effort. For example, production equipment or organization may depreciate during the suspension, or market dominance may be permanently lost. Further, as will become clearer below, contracts that support temporary suspension will be infeasible if a third-party enforcement authority

\(^5\) The first three properties define a negotiation equilibrium, which is simply a specification of behavior consistent with private incentives and the Nash bargaining solution. Specifically, the Nash solution implies that, given \(g \), the surplus of the relationship at the time of negotiation (which is \(z^* + g - b - w \)) is shared in proportions defined by the bargaining weights. The fourth property implies that, at the meta-level of negotiating over negotiation equilibria, the firm and worker select the equilibrium that maximizes their joint returns. For example, if they could sustain both the values \(g^* \) and \(g^t \), then they are assumed to select the preferred plan yielding \(g^* \). In our framework, there will always be an equilibrium that is maximal in every period.

\(^6\) Our setup admits the standard shirking model, in which firms behave more passively. The standard model is obtained by setting \(b^w = x^w = 0 \), so that the manager obtains neither unemployment benefits nor benefits from low effort. In this case, the manager’s incentive to agree to the contract at phase 1 are identical to his incentive to choose high effort at phase 2, so in effect the manager does not make an effort choice.
is unable to tell whether suspension resulted from a breach of contract by one of the parties.

While severance following low effort is our benchmark case, the model can also cover situations in which temporary suspension is feasible. This is done by setting \(w^I = g^I - \alpha^I, j = w, m \), where \(g^w \) and \(g^m \) give the discounted values to the worker and manager, respectively, of continuing the relationship into the next period, and \(\alpha^w \) and \(\alpha^m \) are the costs of maintaining the relationship while not producing.

Contracted transfer payments. The model allows for contracts specifying an up-front transfer to the worker, \(s_k^w \), as well as a transfer that is made conditional on choices of high effort by both agents, \(s_k^C \). The former can be interpreted as a “salary,” in that it is paid in return for the worker’s commitment to forgo his unemployment benefit and commit to production activities for some interval of time, while the latter represents a “performance payment,” received only after the successful completion of production.\(^7\)

The transfers \(s_k^w \) and \(s_k^C \) are used to impose direct punishments for low effort and can be interpreted as damages stipulated by the contract for nonperformance, or penalties imposed by an external legal or regulatory authority.

Contract duration. We have assumed that agents can write only short-term contracts, specifying transfers that are enforceable within the current period. In this contracting environment, the transfers \(s_k^w \) and \(s_k^C \) can be thought of as severance payments (in addition to punishments), since the relationship is dissolved following low effort. Note that agents are free to sever their relationship following outcome \(C \), but such a decision is made in phase 1 of the next period, after the current contract expires. Thus, by short-term contract we mean that the agents cannot stipulate to transfers conditional on whether they reach agreement in the negotiation phase of the next period.\(^8\)

\(^7\) MacLeod and Malcolmson’s (1989, 1993, 1998) bonus payment is like \(s_k \), although they assume it is discretionary; for example, the firm is not contractually committed to making the payment. In our framework, firms would never make discretionary transfers following production, and only what is enforceable matters.

\(^8\) In our setting, short- and long-term contracts differ only to the extent that agents can enforce a transfer conditional on outcome \(D \) occurring in the next period. To see this, consider two contracting environments: (a) short-term, as described in the text; and (b) long-term, with a recontracting option in each period. Fix the scope of what can be verified and enforced within a given period, and assume that the agents have symmetric information whenever they negotiate. Then (a) and (b) support exactly the same behavior over time, if in setting (b) the agents cannot condition transfers on outcome \(D \) occurring in the next period.

Further, the latter restriction on setting (b) may be implied by limited liability, in that the legal institution might not enforce transfers conditional on severance unless there is cause for awarding damages. In most of the work presented here, options for long-term contracting do not affect our results.

\(^9\) This is without loss of generality, given that in each period the agents maximize their joint value over feasible equilibria.
is consistent with the agents’ private incentives at phases 2 and 3 if and only if
\[z^k - s^k + g^R - g^wR \geq x^m - s_A + w^m \tag{3} \]
and
\[s^B + g^wR \geq x^w + s_B + w^w. \tag{4} \]

Inequalities 3 and 4 can be satisfied for each \(k \) by making \(s_A \) sufficiently positive and \(s_B \) sufficiently negative, that is, by imposing sufficiently large punishments for choosing low effort. Since the robust solution maximizes the joint value of the relationship in each period (from phase 1, where negotiation occurs), the fourth contracting condition also holds.

Beyond the requirements on \(s_A \) and \(s_B \), there is wide latitude for selecting salary and performance payments that satisfy equation 2, and there is essentially no distinction between the two kinds of payment. For example, contracts might involve performance payments only, or salaries only; in the latter case, the worker’s incentive to choose high effort is supported by the loss of future-period salary payments, rather than current- and future-period performance payments.

Limited Verifiability

Now suppose the enforcement authority can enforce payments conditional on severance of the relationship due to low effort, but the authority cannot ascertain which agent’s low effort choice caused the separation. That is, the authority cannot distinguish between outcomes A and B. Remember that the agents cannot contract on severance following outcome C, since this would occur in the next period. However, the agents can still specify the transfer \(s^c \) contingent on C occurring. Further recall that, at the time of negotiation, there is no outstanding contract specifying transfers in the event of outcome D.

Given the limitation on what can be observed, the contract can specify only a single severance transfer \(s \), where \(s_A = s_B = s \). Let us check whether the robust solution can be supported. Adding the incentive conditions 3 and 4 gives
\[z^k + g^R \geq x + w, \tag{5} \]
which fails when \(k = B \), given assumption 1. Thus, in the bad productivity state, either the manager or the worker will have an incentive to choose low effort, no matter what value of \(s \) is proposed. Limitations on verifiability, in the form of inability to condition severance transfers on the reason for severance, imply that the robust solution becomes infeasible. The key problem is that the joint surplus from cooperative behavior, given by \(z^B + g^B \), falls short of the sum of the agents’ returns from low effort, which are \(x^m + w^m \) and \(x^w + w^w \).

Despite their inability to achieve the robust solution, the agents can find a contract that supports the fragile solution. We can specify \(s^G_0 + s^G_C \) to satisfy
\[s^G_0 + s^G_C + g^{wF} = \pi^H(z^G + g^F - b - w) + b^w + w^w, \]
where \(g^{wF} \) gives the worker’s discounted future value of continuation in the fragile solution:
\[g^{wF} = \beta \left[(1 - \rho) \left(s^G_0 + s^G_C \right) + \rho (b^w + w^w) \right]. \]

Thus, the first and third equilibrium conditions are satisfied. Since \(z^G + g^F > x + w \), we can find a value \(s^G_C - s \) satisfying
\[z^G - (s^G_C - s) + g^F - g^{wF} \geq x^m + w^m \tag{7} \]
and
\[(s^G_C - s) + g^{wF} \geq x^w + w^w, \tag{8} \]
and clearly each agent has an incentive to choose high effort in the good state. Thus, the relationship continues as long as the good state is realized, while in the bad state the relationship is severed. Finally, the fourth equilibrium condition follows from the fact that \(z^G + g^F > b + w \); that is, the fragile solution is superior to immediate
severance, while the robust solution is infeasible. Importantly, severance is inefficient for the agents; since $z^a + g^a > b + w$ implies that the agents would prefer the robust solution if it could be implemented. Observe further that there is a large range of payment profiles that can support the fragile solution; for example, if higher s^G is specified, then the severance transfers will be correspondingly increased to preserve inequalities 7 and 8, and s^G will be reduced to maintain equation 6. As in the case of full verifiability, here the worker's total compensation, driven by relative bargaining powers, does not determine the exact form of compensation.

The analysis is similar for the case in which disagreement or low effort imply temporary layoff as opposed to severance. For example, suppose $\alpha^u = \alpha^u = 0$. In this instance, assumption 1 is replaced by $b < z^a < x < z^b$. Under the robust solution with temporary layoffs, we have $w = g^a$; since equation 6 continues to be necessary for satisfaction of the incentive constraints, it follows that the robust solution cannot be implemented as a consequence of $z^a < x$. Further, it is easy to verify that the fragile solution, which involves layoffs in the bad state, can be implemented, and the assumption $b < z^a$ implies that the layoffs are inefficient.

Other Cases

Limited Liability. Agents may be protected from liability for payments in the event that the relationship is severed. This serves as a further restriction on the case of limited verifiability, where $s_A = s_B = 0$ is now imposed. It is easy to see that there is a solution to expressions 6-8 satisfying this restriction: s^G is pinned down by inequalities 7 and 8, and s^G is then chosen to satisfy equation 6. Interestingly, a contract of this form may involve bond-posting by the worker. For example, a high positive value of s^E may be specified in order to sustain the worker's incentives to choose high effort, combined with a negative value of s^G that implements the bargaining solution. Here the worker makes an up-front transfer, s^F, and receives recompense s^E only in the event that high effort is realized. To the extent that s^G is fixed by inequalities 7 and 8, higher values of π^m correspond to larger bonding measures.

Noncontractible Worker Effort. The actions of some agents may be unobservable to the enforcement authority, even as transfers can be conditioned on the behavior of other agents. Consider the case in which the worker's effort is noncontractible in this sense. Thus, the authority cannot distinguish between outcomes B and C, although A is still separately observable. In contrast to the case of limited verifiability, it is possible to implement the robust solution in this environment. First, the manager's incentive constraint (inequality 3) can be satisfied by choosing sufficiently large s_k. Since $s_k = s^k$, however, the worker's constraint (inequality 4) now becomes

$$g^w x w = x^w + w^w.$$

Observe that current-period choices of s^k and s^E cannot affect whether inequality 9 is satisfied. It follows that the robust outcome is sustainable if and only if inequality 9 holds at values of the transfer payments that solve equation 2, which will tend to occur when π^m is large or when x^w is small. Thus, through their effect on the worker's expected future compensation, bargaining weights have an impact on incentives, although they have no implications for the form of compensation (salary versus performance pay).

Nonverifiability. Finally, consider the case in which the enforcement authority cannot distinguish between any of the outcomes A, B, and C. Thus, there is a single transfer payment s^k that is enforced under all three outcomes. Note first that the robust solution cannot be forced in this case, as adding inequalities 3 and 4 for $k = B$ implies violation of the assumption $z^a + g^a < x + w$. Next, the fragile solution can be enforced if the following conditions hold for the value of g^w determined by equation 6:
As in the previous case, the agents' relative bargaining weights influence whether cooperation can be sustained. Note that these conditions are unaltered if it is instead assumed that the enforcement authority cannot enforce any transfers at all, since all needed transfers can be made using the up-front payment s^0_G.

Summary

Observability of actions within the relationship by external authorities plays a key role in determining how successful agents can be in solving their contracting problems. Full verifiability implies that the complete range of necessary transfer payments can be enforced, allowing the most efficient solution to be implemented. In contrast, nonverifiability rules out efficiency, and even the fragile solution becomes unenforceable for a range of parameter values. Between these two extremes, various possibilities arise. When verifiability is limited in the sense that severance payments cannot be conditioned on the reason for severance, only the fragile solution is implementable; when worker effort is noncontractible, the bargaining outcome determines the solution, and there will be no production in any state when the worker's bargaining power is sufficiently small. Finally, except in the case of limited liability, the split of the worker's compensation between salary and performance payments plays no role in implementing the various solutions.

EFFICIENCY WAGES

Efficiency Wages and Contract Negotiation

The literature on moral hazard in labor relationships has placed great emphasis on solving worker incentive problems through the payment of efficiency wages. Fundamental to the idea of an efficiency wage is that motivating the worker to choose high effort places a binding constraint on wage setting, so that wages cannot be cut without inducing low effort. In other words, when the firm and worker negotiate over wages in a period, they confront a trade-off between the worker's compensation and effort incentives. In this section we show, however, that such a trade-off never arises in the contracting setting considered thus far. Thus, there is no scope for efficiency-wage effects in contracting models of this form.\(^{11}\)

Consider the incentive constraints for the manager and worker, which we can write generally as

\[
 z^k - s^k_c + g^l_i - g^m_w \geq x^m - s_A + w^m
\]

and

\[
 s^k_c + g^m_w \geq x^w + s_B + w^w.
\]

Observe that, in addition to the parameters $z^k, x^m, x^n, w^m,$ and w^w that are fixed from the perspective of the manager and worker, these constraints depend on three sets of parameters. First, there is the joint continuation value g^l_i, which is maximized when the agents select the best equilibrium (either robust, fragile, or immediate severance). Since higher values of g^l_i relax the incentive constraints, there is no trade-off between compensation and incentives at the level of equilibrium selection. Second, the constraints involve the manager and worker's shares of the continuation value, described by $g^m_i - g^m_{wi}$ and g^m_{wi}. Given g^l_i, these values are tied down by negotiation in future periods, which in turn is fully determined by bargaining weights and the fixed disagreement point D. In other words, from the agents' perspective at the negotiation phase in any given period, they have no control over continuation values in a way that forces them to address a trade-off between compensation and incentives.

The third set of parameters comprise the contracted transfers $s_A, s_B,$ and s^k_c. These are directly controlled by the worker and firm in the current period. Note, however, that the up-front transfer s^k_c does not.

\(^{11}\) The term "efficiency wages" is also used in connection with the idea that incentive problems lead to involuntary unemployment. Regardless of incentive problems, however, employed workers fare better than unemployed workers whenever employment relationships entail quasi-rents (as when matching is costly/frictional) and workers have some bargaining power. Further, as argued by Carmichael (1985), involuntary unemployment is not a necessary consequence of incentive problems.
not appear in the incentive constraints. As a free parameter, \(s^B_0 \) can be set to affect any division of the relationship's value between the firm and worker, with no implications for the provision of incentives in the current period.\(^\text{12}\) As a result, during contract negotiation, there is absolutely no trade-off between compensating the worker and inducing high effort, and so there is no payment of efficiency wages.\(^\text{13}\)

This is not to say that incentive constraints are unimportant. Our point is that consideration of incentives in employment relationships should center on the satisfaction of incentive constraints given the contracting and matching environment, which may or may not generate phenomena such as efficiency wages. Importantly, the contracting environment is described by bargaining powers, whether negotiation is recurrent, and the extent of verifiability.

Worker Liquidity Constraints

Efficiency-wage effects emerge if the worker is unable to make payments to the manager, because of insufficient worker liquidity. A worker liquidity constraint can be introduced into the model by requiring that all transfer payments be nonnegative. Consider the implications of this constraint in the case of full verifiability. Since \(s^B_0 \geq 0 \), supporting the robust solution requires that inequality 4 be replaced by

\[
(12) \quad s^k + g^{WR} \geq x^w + w^w,
\]

where \(g^{WR} \) is determined by equation 2. Inequality 12 is made as slack as possible by setting the salaries \(s^B_0 \) equal to zero and compensating the worker completely through performance payments. If inequality 12 still does not hold, then \(s^B_0 \) must be raised above the value determined by equation 2 in order to induce high effort, so that inequality 12 becomes binding in \(s^B_0 \). In this case, a trade-off between compensation and incentives is clearly present, and we can say that an efficiency wage is paid in state \(k \).

As one possibility, suppose that equation 2 with \(s^B_0 = 0 \) implies the following:

\[
s^B + g^{WR} < x^w + w^w \leq s^G + g^{WR}.
\]

Here the agents must agree to a higher value of \(s^B \) when the bad state is realized, in order to induce the worker to choose high effort. Correspondingly, \(s^G \) will be chosen at a lower value in order to maintain equation 2 in the good state. It may be that \(s^B_0 \) must be lowered so much that inequality 12 becomes binding even in the good state. In any event, we have

\[
s^B + g^{WR} > \pi^w(2^B + g^R - b - w) + b^m + w^w,
\]

and it follows that the worker receives an efficiency wage in the bad state. Observe that the worker obtains a value strictly in excess of his outside option even when \(\pi^w = 0 \); in this case, compensation is equal in both states, and efficiency wages are paid in both states. We conclude that efficiency wages may emerge when worker liquidity constraints rule out the use of direct penalties or worker bonding to enforce high effort. It should be noted that the manager must give up some of his bargaining surplus when efficiency wages are needed, which may lead to disagreement and inefficient severance despite the existence of full verifiability. Whenever inequality 12 is binding, the manager obtains a payoff of \(z^k + g^R - x^w - w^w \), which can lie below his outside option value \(b^m + w^m \) even when agreement is reachable in the absence of liquidity constraints. A similar analysis may be carried out for the other contracting environments, where prospects for obtaining productive solutions are also reduced by the addition of a worker liquidity constraint.\(^\text{14}\)

Relation to Other Models

In this section, we consider how the efficiency wage issue is treated in a few of the standard models of dynamic labor contracting found in the literature. The model of Shapiro and Stiglitz (1984) can be viewed as producing a trade-off between worker compensation and incentives by constraining the kinds of contracts that firms may offer to workers. In essence, firms are required to offer a single, stationary wage. Over
multiple periods of time, firms are committed to the same transfer in each period, conditional on no discovery of shirking. In fact, firms would prefer to offer a low wage in the current period, with only the promise of higher wages later.\(^\text{15}\)

MacLeod and Malcomson’s (1989, 1993, 1998) theory is designed to rectify such inconsistencies by explicitly modeling the contracting process. They provide a more rigorous foundation for the kinds of market phenomena of interest to the early efficiency-wage literature, such as involuntary unemployment. By tying prevailing labor contracts to a social norm, however, their model does not incorporate trade-offs between compensation and incentives at the level of individual employment relationships. Rather, compensation and incentives are together traded off against social sanctions.\(^\text{16}\)

In Ramey and Watson (1997a), firm/worker pairs determine long-term contracts through direct bilateral negotiation, and they are not influenced by social norms. Like the model presented here, however, there is no tension between compensation and incentives, so efficiency wages are not at issue. Through the use of an up-front transfer, a firm and worker can manage any split of the relationship’s value, while implementing the best outcome that verifiability will allow. The present model takes the contracting framework a step further by incorporating the negotiation phase in each period of interaction, which implies that ongoing surplus division is moderated by bargaining weights.\(^\text{17}\)

MARKET OUTCOMES

We now describe how employment relationships are formed in steady-state matching equilibria. Assume that the labor market contains a unit mass of workers, each of whom either begins a period matched with a manager in an employment relationship or begins the period in a pool of unmatched workers seeking to locate a manager. In addition, there is a large number of potential managers. At the beginning of each period, unmatched managers can elect to post vacancies at a cost of \(c > 0\). For simplicity, we assume that unmatched workers bear no search costs. The flow of new matches in a period is given by a standard matching function, \(m(U,V)\), where \(U\) indicates the mass of unmatched workers and \(V\) gives the mass of managers who post vacancies.\(^\text{18}\)

The matching process is assumed to take place in phase C, at the same time as production occurs in active relationships. Thus, workers whose relationships are severed in phases D, A, or B can enter the current-period matching pool. Further, to ensure that the pool of unemployed workers does not become empty, we assume that, with probability \(\rho\), relationships are severed for exogenous reasons. Exogenous separations occur in phase 1, and workers who experience these separations can also enter the current-period matching pool.

We consider two types of steady-state equilibria of the model, distinguished by whether contracting solutions within relationships are robust or fragile. For robust and fragile equilibria, respectively, the discounted future values of relationships are determined by

\[
g^R = \beta \{ (1 - \rho^R)(1 - \rho)z^G + \rho z^G + \beta g^R \} + \rho^R (b + \omega^R) \]

and

\[
g^F = \beta \{ (1 - \rho^F)(1 - \rho)z^G + \beta g^F \} + \left[1 - (1 - \rho^F)(1 - \rho) \right] (b + \omega^F) \]

where \(\omega^R \) and \(\omega^F \) give the values of outside options in robust and fragile equilibria. The value of the worker’s outside option in either case satisfies

\[
w^j = \frac{m(U,V)}{U} g^j - \frac{m(U,V)}{U} \beta w^j, j = R, F, \]

where \(g^R \) and \(g^F \) are determined by equations 2 and 6, respectively. Because of

\(^{15}\) Resolving this issue requires a more complete model of contract determination, as Carmichael’s (1985) critique of the Shapiro-Stiglitz (1984) model indicates.

\(^{16}\) In MacLeod and Malcomson (1998), if a firm offers any contract not in accord with the norm, it is branded as a deviant, and workers at this firm shirk forever after. In MacLeod and Malcomson (1989), the social coordination role is modeled more abstractly in terms of prevailing equilibrium beliefs. Incidentally, since a matched firm and worker do not have direct control over their joint plan of behavior in the theory of MacLeod and Malcomson, total inaction can be supported as an equilibrium.

\(^{17}\) Ramey and Watson (1997a) also incorporate what one might call an efficiency investment: Since the firm makes a noncontractible investment that affects incentives and value, it faces a direct trade-off between compensating the worker (by raising or lowering the value of the relationship) and satisfying incentive constraints.

\(^{18}\) Added assumptions are ordinarily imposed to guarantee existence of equilibrium and to facilitate theoretical analysis of steady-states and dynamics. We do not lay out these assumptions here, since we restrict our attention to a single numerical example.
Free entry of managers into the vacancy pool, the value of managers' outside option is zero, and we have the following free-entry condition:

Finally, the number of employed workers and the size of the unemployment pool are given by

Observe that the latter two equations conform to the assumption that workers whose relationships are severed enter the unemployment pool in the current period.

We model cyclical shocks as changes in holding other parameters fixed. To keep the analysis simple, we look at comparative statics of steady states as a function of \(\rho \). Thus, we approximate the business cycle by studying the economy's long-run response to a highly persistent productivity shock. This is a good approximation when the cycle has a low frequency and/or response is rapid. Figure 2 shows results for four contracting environments under a particular parameterization of the model. Equilibrium employment and average wages under the four cases are traced out as \(\rho \) rises from zero, at the upper right-hand corner of all four curves, to 0.04. For comparison, the values at \(\rho = 0.02 \) are indicated by dots.\(^{19}\)

Consider first the case of full verifiability, in which workers and managers are able to write robust contracts. The right-most curve in Figure 2 depicts employment and average wages for this case. A productivity shock taking the form of an increase in \(\rho \) shifts the outcome down the curve, so that employment and wages both fall. Since relationships are robust, the rise in \(\rho \) has no effect on the breakup probability. Employment is lower only because managers are less willing to post vacancies, given that average productivity is lower. The reduction in wages also reflects lower average productivity, as well as a reduced value of the worker's matching probability.

Next, the case of full verifiability with worker liquidity constraints, as discussed in the previous section, is considered for two values of the worker matching probability. For \(\pi^w = 0.5 \), equilibria are robust, and the worker liquidity constraint binds in the bad productivity state; thus, efficiency wages are paid only in the bad state. In this case, wages adjust a little less relative to employment, when compared to the full verifiability case, but the effect is slight. Setting \(\pi^w = 0 \) yields robust equilibria with efficiency wages paid in both states, and relative wage adjustment declines a bit more.\(^{20}\) In these cases, worker liquidity constraints restrict the decline in wages as \(\rho \) rises, and the dampening effect on wage adjustment is more pronounced as the liquidity constraint binds in a larger number of states.

Finally, the case of limited verifiability, described in the external enforcement and verifiability section, is shown as the left-most curve. Equilibria are fragile in this case; in particular, inequality 1 holds at the value \(w = w^f \). As \(\rho \) rises, employment reductions become much sharper due to the increase in the probability of severance. Average productivity is also reduced relative to the

\(^{19}\)Parameter values are \(z^g = 1 \), \(z^s = 0.5 \), \(x^g = 1.25 \), \(x^s = 1.45 \), \(b^g = b^s = 0.2 \), \(\beta = 0.96 \), \(m(U, V) = 0.25U^{1/3}V^{1/3} \), \(c = 0.157 \), and \(\rho = 0.07 \). We also have \(\pi^w = 0.5 \) except for one case where we set \(\pi^w = 0 \).

\(^{20}\)We have renormalized the \(\pi^w = 0 \) economy to equate employment and wages at \(\rho = 0 \) under the various cases.
earlier cases, since output in bad states is zero, rather than z^B. The latter effect also tends to reduce employment, by depressing vacancies, and it causes wage reductions to be much greater. Thus, the higher breakup probabilities lead shocks to be significantly magnified when contracts are restricted by limited verifiability. Observe further that relative wage adjustment is substantially less when compared to the other cases, as the higher probability of breakups serves to shift the cross-sectional distribution of wages toward relatively high productivity relationships.

Overall, this example demonstrates that efficiency-wage effects can dampen wage adjustments, as past authors have suggested, but that the scope for efficiency wages as a mechanism for propagating shocks is limited. Fragility effects deriving from limited verifiability, on the other hand, can produce large magnification of shocks; further, changes in the composition of jobs generates more dampening in the adjustment of wages.21

CONCLUSION

On the basis of the preceding results, we offer three broad conclusions. First, the particular form of imperfections that are present in the contracting environment can have major implications for economic outcomes. In moving from limited liquidity to limited verifiability, for example, the implications for important variables such as employment, wages and job displacement probabilities can be radically altered. "Reduced-form" analysis of contracting imperfections that have been prevalent in much past macroeconomic literature may hide too much of the key underlying structure. Contractual outcomes depend on the way firms and workers meet and negotiate, and this demands a new theoretical perspective and reformulation of conventional notions, such as the idea of efficiency wages.

Second, economic effects deriving from severance of employment relationships warrant very close attention as explanations for observed phenomena, including the occurrence of large cyclical fluctuations in employment and the relatively dampened character of wage adjustments. Broad cyclical swings in job destruction rates have been documented by Davis, Haltiwanger, and Schuh (1996), who also highlight the large number of macroeconomic questions that may be linked to job creation and destruction. From the quantitative standpoint, den Haan, Ramey, and Watson (1997) show how fluctuations in job destruction rates can serve as an important mechanism for propagation of business cycle shocks. The heavy focus of much past work on wage-setting within a given set of employment contracts may be misplaced.

Third, interactions between credit market imperfections and imperfections in labor contracting can yield interesting new implications. In this paper, we have linked the occurrence of efficiency wages with worker liquidity constraints. More broadly, the ability to solve contracting problems is closely tied to credit-market trading, and these ties may prove to be of central importance in accounting for macroeconomic phenomena.

REFERENCES

- - - - - - - , and - - - - - - . "Liquidity Flows and the Fragility of Business Enterprises," Discussion Paper 99, UCSD, (February 1999a).

21As mentioned earlier, inefficient severance in the bad state may occur under full verifiability and worker liquidity constraints when the manager must give up too much surplus in order to elicit worker effort. In this case, fragile contracts would arise in equilibrium, leading to aggregate wage adjustment and magnification effects similar to those of the limited verifiability case.

