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What Has
Become of the
“Stability-
Through-
Inflation”
Argument?
James B. Bullard
Alvin L. Marty

The purpose of this article is to examine
the status of a well known argument
for a positive rate of steady state infla-

tion.  The original argument, by Vickrey
(1954) and Phelps (1972), suggests that
the economy is more able to dampen
shocks, such as fluctuations in the real rate
of return on risky capital investment,
when inflation rates are positive.  The
notion is that the conditions required for
stability are sturdier at higher rates of
inflation, and thus at higher nominal rates
of interest, making the economy as a
whole less vulnerable to stochastic shocks.
This has sometimes been forwarded as an
argument for stability through inflation.
Many economists have no doubt come
away from this literature thinking, albeit
probably vaguely, that a little inflation is a
good thing.  Echoes of this hypothesis can
be heard today as many economists won-
der aloud whether monetary policymakers
should proceed to lower inflation rates.  

Our view is that the “stability-through-
inflation” argument has not stood the test
of time very well.  On the one hand, the
rational expectations revolution destroyed
much of the argument’s foundation by
insisting on agents that adjust their expec-
tations very rapidly and hence immediately
violate the stability condition derived in

the previous literature.  The down side of
the rational expectations innovation was
that it left theorists arguing that a likely
outcome was a stationary equilibrium on
the high-inflation side of the Laffer curve.
On the other hand, more sophisticated
treatments of the adaptive expectations
hypothesis, mostly appearing in the recent
literature on learning in macroeconomic
models, have found less tendency toward
instability at low inflation rates.  They sug-
gest, instead, that relatively low inflation
rates were associated with stability in 
the learning dynamics, and relatively 
high inflation rates were associated with
instability in the learning dynamics.  In
these systems, higher inflation is often
more variable inflation.  In either case—
the rational expectations case or the
learning case—the notion that low rates of
inflation can generate instability is, if not
altogether absent, at least much less likely.
Thus we conclude that the stability-through-
inflation argument is effectively defunct.

We proceed by summarizing the orig-
inal stability-through-inflation arguments
and the grounds on which they were criti-
cized in the literature.  We then summarize
the rational expectations solution.  The
subsequent portion of the paper then 
turns to a discussion of the behavior of 
the model under what we regard as more
sophisticated treatments of the adaptive
expectations hypothesis.  In the second
half of the paper, we turn to recasting the
argument in a version of the model with
fixed real government deficits financed 
by seignorage revenue. The final section
provides a summary.

CAGAN’S FRAMEWORK
We frame our discussion in the guise

of a Cagan model:
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1 For more detail on the overlap-
ping-generations interpretation,
see the exposition in Sargent
(1987).
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and

where Ht is high-powered money at time t,
Pt is the price level at time t, F is an operator
representing the forecast made at time t for
the price at time t 1 1, bt is the expected
gross rate of inflation at time t, and S(.) is
a continuous money demand function in
expected gross inflation.  We assume that
S'(.) , 0 and S"(.) ≥ 0 ;b throughout.
Equation 2 is a version of the government
budget constraint in which we allow two
parameter configurations.  The first is {u .
1, j 5 0}, so that the stock of high-powered
money grows at a constant rate and the
revenue to the government from the infla-
tion tax is endogenous.  We will call this
the constant-money-growth model.  The
second parameter configuration is {u 5 1, j
. 0}, so that we can envision the government
choosing Ht to fix the real revenue from
money creation at j each period.  In this
case, j is the fixed real government deficit,
and we refer to this as the fixed-deficit
model.  The model is not closed until an
assumption is made about how expectations
are formed, and how this assumption is
made has wide-ranging implications for
the conclusions we will draw from this
model.  An equilibrium is a strictly
positive sequence for money and prices
such that the assumption concerning
expectations formation always holds.

We note for future use that in the case
of a constant-money-growth model, the
actual law of motion for prices is given by  

In the case of a fixed-deficit model, the
actual law of motion for prices is given by 

Equations 1-3 can be given a general
equilibrium interpretation.  In particular,
these equations arise in a simple
overlapping-generations model with fiat
money, where the technology is such that

one unit of labor produces one unit of the
good.  In that case, the function S(.) is an
aggregate excess demand function and is
thus continuous.  The assumption that 
S'(.) , 0 is a gross substitutes assumption
in such an economy.  If preferences are
time-separable logarithmic, the function
S(.) is linear in b.  Any choice of a contin-
uous function for S(.) can be mapped into
a set of well-defined preferences for the
agents in the overlapping generations
economy.  Finally, in the overlapping 
generations economy, Equation 2 can 
be viewed as a government budget con-
straint.  In the constant-money-growth
specification, government revenue is
endogenous, while in the fixed-deficit
specification, the money supply is chosen
to produce a fixed stream of revenue.1

THE CONSTANT MONEY
GROWTH MODEL
Adaptive Expectations

We first illustrate the argument for sta-
bility through inflation posed by Vickrey
(1954) and Phelps (1972).  We accordingly
close the model with an adaptive expecta-
tions assumption.  We derive the stability
condition for a general demand function,
although the early arguments were often
posed in terms of a specific function, a
Cagan demand schedule given by 

where a . 0 is the semi-log slope of the
demand function.

The adaptive expectations hypothesis
is given by  

where g . 0.  The agents in the economy
update their expectations by multiplying the
previous expectational error by a constant.
Here we have made use of the fact that 
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2 In some sense there will be no
second equilibrium in the model
in this case.  Bruno and Fischer
(1990) interpret a related
model with bonds and a Cagan
money-demand schedule.  In
their interpretation, a constant-
money-growth policy is superior
to a constant-deficit policy
because, in the former case,
the nonmonetary steady state
would not exist.

3 We analyze the characteristic
equation according to the condi-
tions laid out in Baumol (1959).

4 Cagan (1956) studied the sta-
bility of a related continuous
time system under adaptive
expectations using what has
become known as the Cagan
demand schedule.  The stability
condition in that case is 
ag < 1.

5 For a more detailed analysis of
dynamics of this sort, see
Bullard (1994).
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is the actual gross rate of inflation in this
economy.  We will call the constant g the
gain. Equation 7 defines a dynamic system
in one variable.  One can verify by inspec-
tion that b 5 u is a steady state of this
system.  A second steady state could exist
at a stationary value of b such that S(b) 5
0, and we will denote this steady state 
by b 5 b

_
.  We assume throughout that 

b , b
_

— that is, that the rate of currency
creation is not so high as to cause agents to
cease holding currency altogether.  We will
call the steady state at b 5 u the monetary
steady state and the steady state at b 5 b

_

the nonmonetary steady state to reflect the
fact that no currency is held in the latter
situation.  Since we assume that S'(.) , 0,
the nonmonetary steady state is unique.  It
may be the case that money demand
merely approaches zero asymptotically, as
with the Cagan schedule, and here we
simply think in terms of b

_
—> `.2

Equation 7 implies a first-order system
which can be written as  

so that, defining zt 5 [bt, bt -1]' and G(.)
by the right-hand side of these equations,
we can write zt 5 G(zt-1).  We can study
stability by linearizing this system at either
one of the steady states, which we denote
generically by z* 5 [b, b].  Linearization
results in the Jacobian matrix 

where 

A study of the characteristic equation of this
matrix leads to the conclusion that stability
of the system in the vicinity of a steady state
is governed by two conditions.3 The first
condition is that J , 1, and the second con-
dition is that the gain g is not greater than 1.

This situation is depicted in Figure 1, which
plots the value of J against the value of g.

The condition on the gain parameter g
simply says that if there is too much
emphasis on the expectational error in the
expectations adjustment process, the
dynamics of the system will be locally
unstable, regardless of any other parameter
values.  According to the figure, this situa-
tion occurs only with relatively large
values of g, in particular values that are
greater than unity.  While this result is
informative, we normally want to think of
expectations as being adjusted by some
fraction of the most recent expectational
error.  If we restrict the gain to be less than
one, then the condition for local stability
reduces to J , 1.  With this restriction and
a Cagan schedule, the local stability condi-
tion at the monetary steady state would
become agu , 1.4 When the condition 
J , 1 is satisfied, the steady state will be
stable so long as one starts the system
close to the steady state.  When the condi-
tion is violated, one of two dynamics may
be observed.  The system may simply
diverge, or it may settle into a cycle.  Which
of these possibilities occurs depends, in a
complicated way, on the second and third
derivatives of the money-demand schedule.5

We now comment on the condition 
J , 1.  We begin with the monetary steady
state, b 5 u.  We first note that high rates
of money creation, u..1 imply instability.
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Since the steady-state rate of inflation is the
constant rate of money creation in the mon-
etary steady state of this model, arguments
concerning low values of inflation must
involve relatively low values of u.  We note
that higher values of the gain parameter g
also imply instability.  But the argument for
stability through inflation involved the
semi-log slope of the demand function.
The argument by Vickrey (1954) and
Phelps (1972) suggested that a should be
viewed as itself depending on inflation, and
that it would rise dramatically as inflation
fell.  In particular, limb—>1 a 5 1 `.  Thus
the condition would be violated at rates of
inflation sufficient to drive the nominal
interest rate to zero.

This can happen.  An example of
stability through inflation under adaptive
expectations can be constructed for the
Lucas (1994) money demand schedule, 

where he(0, 1).  In this case, the condition
J , 1 amounts to 

The limit of this expression as u—>1 is 1 `,
so the stability condition is always violated
at sufficiently low rates of inflation.

The argument that ag is more likely to
be greater than one at low rates of inflation
may be countered with the argument that
g is likely to be higher at high rates of
inflation and lower at low rates of inflation.
It seems plausible that people revise expec-
tations more rapidly the higher the inflation
rate, so that the increase in a at low rates
of inflation may be offset by a corresponding
reduction in g.  Later in this section, we
will see that this type of phenomenon is 
in fact possible under alternative expecta-
tional assumptions.

The nonmonetary steady state will
never be locally stable based on the condi-
tion J , 1, because while S'(b

_
) is finite,

S(b
_
) 5 0 and thus we expect the condition

to be violated.  The model with the Cagan
demand schedule does not possess a finite
value for b

_
and thus we cannot evaluate

that model at b
_
.

Rational Expectations
The argument for stability through

inflation is largely moot if one assumes
rational expectations, but at the same time
the results under rational expectations are
unsettling.  Here we close the model 1-3
with a perfect foresight assumption:

 

so that Equations 1-2  imply the first-order
difference equation, 

The equation has steady states at b 5 u
and b 5 b

_
.  We plot this function qualita-

tively in Figure 2 for the case of a linear
demand schedule, 1 -lbt, with le(0, 1).

There is an infinity of equilibrium
sequences indexed by b0.  The monetary
steady state is the asymptotic outcome only
if b0 5 u.  All other equilibrium sequences
have the property that limt—>`bt 5 b
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The model is silent about which of these
equilibrium sequences will actually be
achieved, but many have interpreted this
result as meaning that the monetary steady
state is unstable under the rational expec-
tations dynamics. That is, the nonmonetary
steady state is locally stable, unless b

–
—>`,

in which case the inflation rate accelerates
forever and real balances fall to zero
asymptotically.

Thus, there is little to argue about the
slope of the demand schedule in the perfect
foresight case.  Here the monetary steady
state of the system is unstable regardless of
parameter values.  We note that the high-
inflation stationary equilibrium at b

–
is a

Pareto inferior outcome in the general
equilibrium interpretation of the model.

Least Squares Learning
Since the rational expectations

dynamics do not seem entirely sensible,
some authors have tried to improve on the
adaptive expectations hypothesis by
employing a learning assumption.  Bullard
(1994) has analyzed the constant-money-
growth model under least squares learning
by using methods introduced by Marcet
and Sargent (1989). The model is closed
by assuming that 

so that agents form expectations by calcu-
lating a first-order autoregression on past
prices.  The least squares formula can be
written recursively as  

where  

If the recursive rewrite is combined with
the actual law of motion for prices in this
system, we obtain  

where

Thus, this system differs from the adaptive
expectations scheme in that the gain para-
meter varies between zero and one.  This
situation creates a dynamic system in three
variables, bt, bt-1, and gt and if the linearized
system is evaluated at the steady state,
there are three associated eigenvalues.

One of the eigenvalues is u -2, and given
our assumption that u .1, this root is
stable.  Whether the remaining eigenvalues
are inside the unit circle depends on
whether J , 1,  where J is now given by 

If we employ the Cagan schedule and
evaluate the condition at the monetary
steady state, J , 1 implies that 

From this, we come to still a different con-
clusion regarding the prospects for the
stability of the monetary steady state. First,
the right-hand side of this inequality goes
to zero as u —> `.  Thus we again conclude
that high rates of money growth will be
destabilizing.  But for low rates of inflation,
that is, for u —>1 from the positive side,
the right-hand side of the inequality tends
to 1 `.  The inequality is very likely to be
satisfied for low rates of money creation and
hence low rates of inflation. The argument
for stability through inflation was that a
might become very large for low rates of
inflation, and we conclude that in the least
squares learning case the semilog slope
would have to tend to infinity very rapidly
at low rates of inflation if the condition for
stability were to be violated. Thus, the
condition in this case is far sturdier.

The increase in sturdiness can be illus-
trated if we return to Lucas’s (1994) money
demand schedule, S(bt) 5 (bt -1)-h, and
compute the value of J at the monetary
steady state:
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Here, limu–>1 J52h, so that stability is
retained so long as h , 0.5.  Lucas’s (1994)
preferred value for h was in fact 0.5.  More
broadly, a situation that was always unstable
in the adaptive expectations case, regardless
of parameters, is here stable for some fairly
reasonable parameter configurations.

Figures 3 and 4 plot qualitatively the
modulus of the eigenvalues for this system,
computed at the monetary steady state, for
the Cagan money-demand schedule.  In
Figure 3, u is on the horizontal axis, while
in Figure 4, a is on the horizontal axis.
These diagrams are unchanged in qualita-
tive terms for different fixed levels of a (in
Figure 3) and u (in Figure 4).  When the
quantity au -1(u2–1) is small, as it will be
for low a and low rates of money creation,
the system is stable, and all three roots are
real and inside the unit circle.  As we move
to the right in the diagrams, two roots
combine into a complex conjugate and
cross the unit circle.  When the condition 
J , 1 is satisfied and the system is started
in the vicinity of the monetary steady state,
the dynamics converge.  If the condition 
is violated, either the system is locally
nonconvergent or the dynamics settle into
a cycle.  Bullard (1994) analyzes this bifur-
cation in some detail and provides
examples of the possible outcomes.

The nonmonetary steady state will not
be locally stable under least squares learning.
If we think in terms of a linear demand
schedule, for instance, the condition in
Equation 19 will never be met, because
S'(b

_
) is a constant and S(b

_
) 5 0, causing 

J —> ̀  at this stationary equilibrium.  The
Cagan schedule cannot be evaluated at this
steady state because b

_
—> ̀  in that case.6

We now turn to stability-through-infla-
tion arguments in the fixed deficit model.

THE FIXED DEFICIT MODEL
Adaptive Expectations

The fixed deficit model with adaptive
expectations is given by 

We look for steady states of this equation,
which occur at

( )
( )

( )
.21 0

S

S

β
β ξ

β
−

− =

( )
( )

( )
.20 1

2

1
1β β γ β

β ξ
βt t

t

t
t

S

S
= +

−
−









−

−

−
−

( )
( )

( )
.19

1

1

2

J = − −
−

η θ
θ θ

Figure 3

1.4

1.2

1.0

0.8

0.4

0.2

0

0.6

1.0 1.5 2.0 2.5 3.0

Note: Stability as a function of     under least squares learning. For low values of   , the 
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6 We comment briefly on the
case where u # 1.  Here the
monetary steady state involves
either constant prices or a
declining price sequence.  The
roots of the system are no
longer given according to the
previous paragraph.  Instead
the gain, gt , tends to zero at a



FEDERAL  RESERVE  BANK OF  ST.  LOU IS

43

JANUARY/FEBRUARY  1998

or

If j 5 0, the steady states occur at b 51
and b 5 b

_
, which are the monetary and

nonmonetary steady states of the constant-
money-growth model in the special case
where the currency stock is fixed (u 5 1).
This is a way of saying that the constant-
money-growth model with no growth in 
the money supply is the same as the fixed
deficit model with a zero deficit, because a
zero deficit implies that the money stock 
is constant.

To find the steady states in the case
where j . 0, we derive a Laffer curve as
follows.  First, find the derivative of j with
respect to a steady state rate of expected
gross inflation b as

This derivative is positive as b —> 1 from
the positive side, and negative as b—>b

_

from the left.  The maximum value of the
deficit can be obtained when this derivative
is zero, which is when  

Because the right-hand side is negative, jmax

must occur at a value of b . 1.  Since b .
b
_

implies that the right-hand side is posi-
tive, jmax must occur at a value b , b

_
.

From Figure 5 we deduce that there are
always two steady states so long as 0 , j
, jmax.  We call these the low-inflation steady
state, bl, and the high-inflation steady state,
bh. We note that 1 , bl , bh , b

_
and that

money is held at both steady states.
We can again define zt 5 [bt, bt-1]' and

G(.) based on the right hand side of  Equa-
tion 22, so that zt 5 G(zt-1), and we let the
two steady states be represented generically
by z*5 [b, b]'.  The relevant Jacobian
matrix is then given by 

where

Stability in the vicinity of a steady state is
governed by two conditions.  The first is
that J , 1, and the second is that the gain
g is not too large.  In fact, as b—>1, a
depiction of the local stability conditions is
exactly as shown in Figure 1.  For systems
with more inflation, the upward-sloping
line in that figure becomes flatter while
still going through the point (2, 0).  Again,
instability arising solely from too large a
gain only occurs for high values of g, well
in excess of unity.  This makes intuitive
sense in that it means that a small expecta-
tional error in the previous period gets
translated into a large change in expectations
in the current period, to such an extent
that the system is destabilized.  If we make
the restriction g , 1, then there is a single
condition for local stability, namely J , 1.7

In considering this condition, we note
that b enters as a separate term in the
numerator and thus that stability will
depend in part on the level of steady-state
inflation.  In the case of a Cagan schedule,
we conclude that the condition for the 
stability of the low-inflation steady state
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Steady States Based on a Laffer Curve
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rapid rate.  This can inhibit
learning since learning ceases
with this algorithm when gt =
0; that is, the system can get
stuck at some point because
the gain is zero and no further
adjustment can be made.  The
stability of the system is not in
question, however, and the
problem of the gain tending to
zero can be remedied by
adding a stochastic element to
the money-creation process.
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would be agbl , 1, and for the high-infla-
tion steady state would agbh , 1.  This
means that, if there is any steady-state
inflation rate on the low-inflation side of
the Laffer curve for which the condition 
J , 1 fails, then the condition fails at all
points on the high-inflation side of the
Laffer curve, since the steady-state inflation
rates there are higher still.  Thus stability
on the high-inflation side of the Laffer
curve is unlikely.

The arguments for stability through
inflation in the deficit model mirror those
for the constant-money-growth model,
since stability conditions are analogous.

Rational Expectations
Sargent and Wallace (1981, 1987)

have studied this model under rational
expectations. We summarize their findings
here. We assume perfect foresight, which
implies that equilibrium is described by
the difference equation  

The qualitative graph is given in Figure 6.
The low-inflation steady state is unstable

under the rational expectations dynamics,

and the high-inflation steady state is locally
stable.  Again, there is little to discuss in
the case of rational expectations.  Marcet
and Sargent (1989) note that the equilibrium
at bh involves perverse comparative statics,
an increase in the deficit leading to a
decrease in the steady state rate of inflation.
These comparative statics are the result of
the fact that the equilibrium is on the high
inflation side of the Laffer curve.

Least Squares Learning
The least squares learning version has

been analyzed by Marcet and Sargent (1989)
in the special case that the demand function
is linear. We summarize their findings
here. The dynamic system is given by  

where

This is a three-dimensional system, and
here the gain gt is always between zero and
one. One characteristic root of the linearized
system is always in the stable region. The
remaining roots are the eigenvalues of the
characteristic equation associated with 

where

Marcet and Sargent (1989) report that, for
the linear demand schedule, the low-infla-
tion steady state is locally stable if and only
if J , 1, and that the high-inflation steady
state is unstable in the least squares learning
dynamics.  The condition that J , 1 is
exactly the same as in the fixed money
growth case except that u is replaced by 
bl.  The arguments concerning stability
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7 Bruno and Fischer (1990)
studied a related model under
adaptive expectations and a
Cagan demand schedule, but in
continuous time.  There the sta-
bility condition is ag < 1.

Figure 6
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through inflation are therefore essentially
the same here as in the constant-money-
growth model.

CONCLUSIONS
We have analyzed the status of the sta-

bility-through-inflation argument due to
Vickrey (1954) and Phelps (1972), and we
have done so largely within the framework
of original argument. This framework is
simple and abstract.  Certainly much more
could be done in the context of less
abstract models; we leave that task as a
challenge for future research.

Other attempts have been made to get
to the bottom of the stability question in
versions of the Cagan model.  Marimon and
Sunder (1993) conducted experiments with
human subjects in the fixed-deficit model
with a linear demand schedule and found
that the resulting dynamics nearly always
converge near the low-inflation steady state.
Marimon and Sunder (1993) concluded
that least squares learning provides a
better approximation to the behavior of
their subjects than rational expectations.

Arifovic (1995) studied some of the
systems outlined here in the case of genetic
algorithm learning. The genetic algorithm
envisions large numbers of agents trying
out alternative decision rules simultaneously.
Successful rules are copied more often than
unsuccessful ones, and Arifovic studies the
convergence properties of these systems.
Her main finding is that the systems with
genetic algorithm learning tend to converge
to the low-inflation steady state, and that
these systems sometimes converge even
when the same system under least squares
learning does not.

It appears that not much remains of the
original argument that stability can be main-
tained through inflation. Under adaptive
expectations, it is possible that the local
stability condition is violated because of an
increase in the elasticity of money demand
at low or negative inflation rates.  This hap-
pens, for instance, in the case of the Lucas
(1994) money demand schedule.  But under
least squares learning, any effect of low
inflation on the slope of the demand

schedule can be offset by a countervailing
movement in the gain.  Under rational
expectations, the argument for stability
through inflation is turned on its head.
Stability in this case is achieved only at
high rates of inflation, at a socially
undesirable point on the high-inflation
side of the Laffer curve.
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