Solving the 1980s’ Velocity Puzzle: A Progress Report

Courtenay C. Stone and Daniel L. Thornton

The velocity of money measures the relationship between nominal income and the money stock. In its simplest form, the quantity theory of money states that nominal income is equal to the money stock multiplied by its velocity. If velocity is reasonably stable, changes in the money stock have predictable consequences on nominal income; if the money stock is controllable as well, the quantity theory has useful implications for economic policy. The relationship between money growth and inflation can be derived from the quantity theory framework by “breaking up” nominal income into its two components — the price level and real output. Thus, the stability of the money-price link, holding real output constant, is also related closely to the stability of velocity.

For over a third of a century — from 1946 to 1981 — the growth of the velocity of money, measured as the ratio of gross national product (GNP) to the narrow money stock (M1), was stable. Its stability contributed to the rise of monetarism and the adoption of monetary aggregate targets by the Federal Reserve and other central banks around the world. Its stability also resulted in two empirically based rules of thumb that came to be used fairly successfully as guides to money growth’s effects on income and inflation. Now, however, analysts believe that these rules have failed to explain the course of income and inflation during the 1980s, due to a relatively sudden and unanticipated drop in velocity.

Given the important role that velocity plays in economic and policy analysis, it is not surprising that considerable effort has been devoted to solving this velocity puzzle. Unfortunately, these efforts have produced a welter of competing and occasionally confusing explanations. To bring some order to this disarray, this article highlights the problems that have resulted from the puzzling behavior of velocity in recent years and examines the more prominent explanations of the velocity puzzle.

Because the concept of velocity stems directly from the theory of the demand for money, anything that affects velocity can be related to some aspect of the demand for money. (See shaded insert on the following page.) Because the demand-for-money approach is likely to be less intuitive to the general reader, however, we will discuss the various explanations of the velocity puzzle in terms of velocity itself.
Velocity and the Demand for Money

The demand for money is usually expressed as depending on GNP and various other factors, denoted by Z. That is, the demand for money can be written as:

1. $M_1 = f(GNP, Z)$

Under certain technical conditions it is possible to re-write (1) as:

2. $M_1 = GNP f(Z)$
3. $M_1/GNP = f(Z)$

Since velocity is simply the reciprocal of equation (3), it can be written as:

4. Velocity = $GNP/M_1 = 1/(f(Z)) = g(Z)$

It is possible to characterize all “explanations” of the velocity puzzle in terms of equation (4), which is a slightly rewritten version of the demand for money. For example, suppose that equation (1) is not the correct specification of the demand for money, that instead, money demand depends on some broad transactions measure, T, rather than GNP. The true measure of velocity would not be equation (4), instead it would be:

5. $T/M_1 = k(Z)$

If velocity as defined in equation (4) were stable for a number of years, it would imply that GNP was roughly proportional to T, or $GNP = \alpha T$, where α is a constant. Consequently, the usual measure of velocity is just n times the “true” measure, that is, $(GNP/M_1) = \alpha (T/M_1)$. While the level of the usual measure of velocity would be wrong, its movements would mimic movements in the true velocity measure. If this characterization were correct, the crucial question is not “Why did velocity decline?”, instead, it is “What caused the break in the relationship between T and GNP?”

Alternatively, GNP may be proportional to T in the long run but there may be short-run, cyclical variations in GNP relative to T. This characterizes the argument that GDP is a better measure of transactions than GNP when there are sizable changes in net exports and inventories.

The tax-cut explanation of the decline in velocity is analogous, except that a reduction in marginal tax rates can increase the demand for money, permanently reducing velocity. It argues that the demand for money depends on after-tax income, not on GNP. A cut in the marginal tax rates increases after-tax income and, hence, the demand for money relative to GNP. The usual measure of velocity falls, though the “correct measure,” based on after-tax income, does not.

The arguments based upon the incorrect measure of money are analogous to those that contended the use of GNP is inappropriate. For example, let M^* denote the theoretically correct measure of money. If GNP is the correct scale variable, the correct measure of velocity would be:

6. $GNP/M^* = w(Z)$

The extent to which equation (4) is a good proxy for equation (6) depends on the relationship between M^* and M. Again, the interesting questions are “Why was equation (4) stable for so long?” and “What caused the recent shift in the relationship between M_1 and M^*”?

Structural shift arguments imply that there has been a change in the functional relationship determining velocity, that is, a change in $g(Z)$. Such a change could be due to a number of factors. The key point is that the former relationship no longer explains velocity. The important issues are to identify the factors that produced this shift and to identify the new relationship. In some sense, specification problems can be thought of as structural shifts because they are presumed to result from some shift in the underlying relationships. For example, between GNP and T or between M_1 and M^*.

The cyclical explanation can be characterized by unusual movements in the factors that determine the demand for money, Z. Unusual movements in these variables can produce the appearance of unusual behavior in velocity. For example, one element of Z is the nominal interest rate. Because the demand for money is inversely related to the nominal rate of interest, a decrease in the interest rate could increase the demand for money relative to GNP, causing measured velocity to decline. For this explanation to be valid, however, there should have been a similar rise in velocity when the interest rate was rising.
WHAT WENT WRONG AND WHEN?

Two fundamental relationships between M1 and specific economic measures have been supported empirically for decades. One relationship is the link between money and prices. Charts 1 and 2 show the dramatic changes in these relationships that occurred during the 1980s.

Chart 1 depicts the behavior of the income velocity (GNP divided by M1) for the past 40 years; as the chart suggests, something unusual occurred to velocity around 1982. From 1946 through 1981, it rose fairly steadily at about 3.6 percent per year; since then, it has declined at an annual rate of about 2.4 percent.

Chart 2 shows the relationship since 1948 between annual inflation (as measured by the growth of the GNP deflator) and the average growth in M1 over a three-year period; use of M1's trend growth is designed to capture the long-run impact of money on prices. While the rate of inflation deviated from the trend growth of M1, sometimes substantially, from 1948 to 1981, the deviations generally were temporary. More importantly, the larger deviations were attributable to non-monetary events (for example, government mandated wage-price controls, OPEC oil price actions and the like). Since 1982, however, inflation has been substantially and persistently below the trend growth in M1. These deviations are not easily attributable to a specific non-monetary event.

Numerous attempts have been made to explain the recent changes in velocity. In this paper, these explanations are grouped loosely into three categories: misspecification, a perturbation category we call "structural shifts" and cyclical factors.

MISSPECIFICATION

The most widely used velocity measure, the income velocity of M1, is calculated by dividing nominal GNP by the nominal stock of M1. Both GNP and M1 are empirical counterparts to theoretical concepts that appear in various theories of the demand for money. One explanation for the shift in velocity is that GNP or M1 or both have become less reliable proxies for their corresponding theoretical concepts. This problem is called a specification problem.

GNP Vs. Transactions Measures

One specification problem could arise if money is held primarily to make daily transactions. If these include intermediate and financial transactions, the usual velocity measure could vary with changes in the proportion of such transactions relative to transactions on final goods and services. Because GNP measures only final output, it will differ widely from the level of expenditures on all transactions. In this case, GNP is a useful proxy for total transactions only if the proportion of GNP to total transactions remains relatively constant.

This problem can manifest itself in several ways. For example, suppose consumers purchase more goods and, as a result, increase their money holdings in proportion to their increased desire to spend. If these newly purchased goods are imported or drawn from domestic inventories of previously produced goods, GNP will remain unchanged while the demand for money rises. Consequently, the usual measure of velocity would decline, while an alternative measure based on total transactions would remain unchanged. Thus, using GNP as the transactions measure to calculate velocity may produce sizable swings in velocity whenever there are large swings in inventories or net exports. Some analysts have argued that gross domestic final demand (GDFD), which equals GNP minus inventory adjustments and net exports, is preferable to GNP as the transactions proxy. Unfortunately, the substitution of GDFD for GNP does not explain the velocity puzzle of the 1980s. As chart 3 indicates, this velocity measure performs essentially the same as the usual measure both before and after 1981. Consequently, simply replacing GNP with GDFD does not explain the protracted velocity decline during the 1980s.

A number of these are considered in studies by Rasche (1986), Darby et. al. (1987), Hetzel (1987), Trehan and Walsh (1987) and Kretzmer and Porter (1987). The categories considered here are somewhat more general than those considered by Trehan and Walsh.

References

"See the appendix to Thornton (1983) for an illustration of the specification problem involved in finding the appropriate measure of "income."

"There are two distinct, though not mutually exclusive theories of the demand for money: the transactions approach and the asset approach. The asset approach emphasizes the role of money as an asset and, hence, as an alternative way of holding wealth. The transactions approach emphasizes the role of money as a medium of exchange. For a useful discussion of this distinction in relation to the velocity issue, see Spindt (1985).

"Radecki and Wenninger (1985).

"Rasche (1986) also rejects this explanation for much the same reason.
Recently, McGibany and Nourzad (1985) have offered another variant of the specification problem. They too argue that the demand for money is based on expenditures instead of current income or GNP. In their view, the 1980 tax cut initially increased disposable personal and business income relative to GNP and, hence, raised desired expenditures relative to GNP; consequently, the tax cut increased the demand for money, resulting in a fall in velocity.\(^7\)

One way to evaluate this explanation is to look at the ratio of disposable personal income to GNP. If their explanation is valid, this ratio should increase when velocity is falling and decrease when velocity is rising. As chart 4 indicates, however, this has not generally happened during the 1980s. While there was an initial expansion in disposable income following the tax cut, the ratio of disposable income to GNP has generally declined since 1982.\(^8\)

Recently, McGibany and Nourzad (1986) have provided estimates indicating that the demand for money is inversely related to the average tax rate. Rasche (forthcoming) rejects the tax cut hypothesis by arguing that, for it to explain the velocity decline, marginal tax rates would have had to have fallen continuously over the 1980s.\(^9\)

Others have argued that the recent velocity decline is related to a sharp rise in financial transactions relative to total output. According to this view, the rise in financial transactions caused an increase in the demand for money relative to GNP. One way to assess this claim is to compare velocity measures using broad measures of financial and non-financial transactions in place of GNP.\(^9\) These alternatives are presented in chart 5. The non-financial transactions velocity measure shows the same pattern as the GNP velocity measure. Consequently, explanations of the velocity puzzle that rely on the recent slowing of GNP growth relative to the growth of more general non-financial transactions measures are implausible.

The financial transactions velocity measure does not show the downturn in the 1980s that characterizes the non-financial and GNP-based velocity measures. Nor, however, does it show substantial increases during the 1980s which would be required if the rise in financial transactions is to account for the decline in M1 velocity. In fact, the annual growth rate of the financial transactions velocity measure has averaged

\(^7\)These data were obtained from the Board of Governors of the Federal Reserve System.
Chart 4
Ratios of GNP/M1 and Disposable Income/GNP

<table>
<thead>
<tr>
<th>Ratio</th>
<th>Quarterly Data</th>
<th>Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.5</td>
<td></td>
<td>7.4</td>
</tr>
<tr>
<td>7.0</td>
<td></td>
<td>7.3</td>
</tr>
<tr>
<td>6.5</td>
<td></td>
<td>7.2</td>
</tr>
<tr>
<td>6.0</td>
<td></td>
<td>7.1</td>
</tr>
<tr>
<td>5.5</td>
<td></td>
<td>7.0</td>
</tr>
<tr>
<td>5.0</td>
<td></td>
<td>6.9</td>
</tr>
<tr>
<td>4.5</td>
<td></td>
<td>6.8</td>
</tr>
<tr>
<td>4.0</td>
<td></td>
<td>6.7</td>
</tr>
<tr>
<td>3.5</td>
<td></td>
<td>6.6</td>
</tr>
<tr>
<td>3.0</td>
<td></td>
<td>6.5</td>
</tr>
</tbody>
</table>

Chart 5
Velocities of Financial and Nonfinancial Transaction Debits

<table>
<thead>
<tr>
<th>Ratio</th>
<th>Quarterly Data</th>
<th>Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>280</td>
<td></td>
<td>23.0</td>
</tr>
<tr>
<td>250</td>
<td></td>
<td>21.5</td>
</tr>
<tr>
<td>220</td>
<td></td>
<td>20.0</td>
</tr>
<tr>
<td>190</td>
<td></td>
<td>18.5</td>
</tr>
<tr>
<td>160</td>
<td></td>
<td>17.0</td>
</tr>
<tr>
<td>130</td>
<td></td>
<td>15.5</td>
</tr>
<tr>
<td>100</td>
<td></td>
<td>14.0</td>
</tr>
<tr>
<td>70</td>
<td></td>
<td>12.5</td>
</tr>
<tr>
<td>40</td>
<td></td>
<td>11.0</td>
</tr>
</tbody>
</table>

1970	71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86	1987	
1961	63	65	67	69	71	73	75	77	79	81	83	85	87					1987
about 10 percent since 1981, somewhat below its 12 percent annual growth rate from 1970 to 1981. If this measure accurately represents total financial transactions, its velocity movement does not support the view that the velocity problem resulted from a shift from non-financial transactions to financial transactions.

A somewhat different way to assess whether a rise in financial transactions produced the fall in velocity is shown in chart 6; it compares the movement of velocity with that of the annual ratio of the value of shares sold on the New York Stock Exchange (NYSE) to GNP since 1926. While the ratio of NYSE sales to GNP has risen somewhat during the 1980s, there has been no consistent relationship between this ratio and velocity over the past 60 years.

GNP Vs. Wealth

Another potential specification problem arises from the use of GNP to calculate velocity instead of using a measure of "permanent income" or wealth. The permanent income theory of consumer demand suggests that individuals primarily base their consumption decisions on their permanent income or wealth, rather than on current income. Analogously, the demand for money may be more closely related to permanent income or wealth.

Panel A in figure 1 illustrates the theoretical relationship between permanent income and measured income during cyclical fluctuations. If the demand for money depends upon permanent income, it will fluctuate less than will current income over the business cycle. Thus, measured velocity will rise (fall) as measured income increases (decreases) relative to permanent income because the amount of money held will change less than measured income.

Chart 7 displays both the usual velocity measure and one based on permanent income estimates. Once again, it does not appear that the velocity decline in the 1980s is explained by movements in cur-

10It has been argued that the recent decline in velocity can be explained by the rise in stock market transactions, see Morgan Guarantee (1986).

11For example, see Friedman and Schwartz (1982, p. 38).

12The measure of permanent income used here was suggested by Darby (1972).
Figure 1
Cyclical Movement in Actual GNP and Measured Velocity and the Effect of a One-Time Increase in Permanent Income

Chart 7
Velocities of GNP/M1 and Permanent Income/M1
rent relative to permanent income. Although the downturns in the permanent income velocity measure are less pronounced than those in the current income velocity measure, the general downward shift in velocity during the 1980s shows up clearly in the permanent income velocity measure.

There is an explanation consistent with the permanent income or wealth approach to the demand for money and the observed decline in the income velocity of money in recent years. Suppose that a rise in permanent income or wealth relative to current income produced a sharp rise in the demand for money. In this event, depicted in panel B in figure 1, there would be an associated drop in current income velocity.

Because wealth is the present value of the expected future net income, it will increase either if expected income increases or the expected real interest rate used to discount future income declines. If there was a rise in expected income without a corresponding increase in measured income during the 1980s, velocity would have fallen as the demand for money increased relative to GNP. Eventually, measured income will rise or expected income will decline as individuals realize that their expectations will be unfulfilled. Consequently, after sufficient time has elapsed, velocity will return to its former path.

If the rise in wealth is due solely to a sharp fall in society’s preference for current relative to future consumption, however, the path of measured income would be unaffected and the level of velocity would be permanently below its former path. This possibility seems unlikely, because it implies a permanent fall in the real interest rate.

Potential Problems with Using M1

Some have suggested that using M1 as the money stock measure when calculating velocity causes significant problems. They argue that the relevant monetary measure cannot be obtained simply by adding together the stocks of various “monetary” assets (currency, checkable deposits, and so on), because each component may provide different quantities of monetary services per unit. Consequently, critics have suggested that an index of the monetary “services” provided by the stock of all relevant financial assets is preferable to the use of M1 for evaluating the relationship between money and spending or prices. If this criticism is valid, changes in “simple-sum” monetary aggregates like M1 and M2 may deviate markedly from changes in their underlying monetary services whenever substantial shifts among various monetary assets occur. In such cases, the usual measure of velocity may show sizable variations, while those based on the underlying monetary services measures should be relatively stable.

Various monetary services indices (MSI1) and the MQ measure have been developed; they are currently compiled and maintained by the Federal Reserve Board on an experimental basis. The MSI1 measure is an index of the monetary services associated with components of the M1 money stock. The MQ measure is an index of all financial assets that can be directly used in transactions: it incorporates the components of M1 plus telephone transfers, money market mutual fund balances and money market deposit accounts. Chart 8 shows velocity measures based on the MSI1 and MQ. These velocity measures show the same general pattern for recent years as the usual M1 velocity measure. Similar results hold for broader monetary services indices. Consequently, despite their theoretical appeal, substituting monetary service flows for M1 in measures of velocity does not explain the recent behavior of velocity.

13

20See Batten and Thornton (1985) for a discussion of these issues.

21This need not be the case, however. See Milbourne (1986).

22The monetary services indices originally were called Divisia monetary aggregates; they were developed by William Barnett (1980). The MQ measure was developed by Paul Spindt (1985). The current monetary services indices differ from the original Divisia measures in several respects; see Farr and Johnson (1985).

23These alternative money measures are only available since 1970.

24This interpretation is invariant to alternative measures of income (permanent income or GOFD).
STRUCTURAL SHIFTS AND THE VELOCITY PUZZLE

Some analysts have suggested that there have been one or more structural shifts in the money/income relationship. Unlike the specification problems previously discussed, this explanation presumes that the fundamental relationship between money and income has changed even if the demand for money is correctly specified in terms of M1 and GNP. The reader should note the similarity between this and the specification problem. The argument here is that savings balances are now effectively hidden among transactions balances so that a given level of interest-bearing checking account balances effectively can represent different amounts of "transactions money." This is a specification problem, and results from a fundamental change in the institutional structure.

Financial Innovation and Deregulation

Several analysts have suggested that the introduction of NOWs, Super NOWs and money market deposit accounts (MMDAs) and the removal of regulation Q interest rate ceilings in recent years have produced a shift in the relationships between M1 and both spending and inflation. In particular, the redefinition of M1 to include interest-bearing checkable deposits (NOWs and Super NOWs) as well as non-interest-bearing demand deposits and currency is alleged to have altered significantly its "moneyness," now M1 is presumed to include a significant amount of savings balances. Consequently, changes in M1 resulting from changes in these savings balances are likely to have a smaller

data normalized first quarter 1970=1.
A Time Series Explanation of the Velocity Puzzle

Some analysts have argued that the decline in velocity can be explained by analyzing the statistical properties of economic time-series data. To understand this explanation for the seemingly abrupt change in velocity in recent years requires a brief discussion of the time series properties of economic variables.

The time series properties of a variable describe how it behaves over time. A variable that tends to return to its mean (average) level through time is said to be "stationary." Many economic time series are not stationary in this sense; instead, they show positive or negative growth over time. Time series that display such growth patterns are often said to be "trend stationary" and many economic series, including GNP, prices, the money stock and velocity, have long been viewed as trend stationary, or TS processes.

In addition to the TS process, there is an alternative stationary time series process that describes variables whose first, or higher-order differences are stationary; these are called "differenced stationary (DS) processes." The simplest DS process is the well-known random walk. Unlike TS variables, a variable whose behavior fits the random walk has no trend to which it returns as it moves over time.

Recently, Nelson and Plosser (1982) and Hitot (1985) have concluded that velocity is better represented by the DS than the TS model. According to this view, the recent change in velocity could have been produced by a large shock that caused velocity to wander off in a new direction; the probability it will wander back is very small.

As Rasche (1986), McCallum (1986) and others have pointed out, however, it is extremely difficult to determine whether velocity is a TS or DS process; the test used to discriminate between the competing representations is not powerful when used on time series data like velocity. Consequently, there can be reasonable disagreement about which representation is more accurate.

Unfortunately, knowing whether velocity is better characterized by a TS or DS process does not tell us what we would like to know. Suppose velocity has a DS time series. While this might indicate that an unusually large shock caused velocity to wander off in a new direction in recent years, it leaves a more interesting and more important longer-run velocity puzzle: Why was velocity's growth rate stable for the past 30 years? Is it plausible that, for such a long period, there were no shocks large enough to make velocity walk away from its apparent trend before 1982? Moreover, and more importantly, what economic factors determine velocity's DS process and what was the nature of the shock that caused velocity to wander off in a new direction? Even if economists could be completely certain about the time series process that generates velocity, these fundamental economic questions would remain.

A random walk may be said to drift; however, this drift parameter is not related to time as it would be in a trend stationary process.

impact on output and prices than previously. Specifically, there may be extended periods when significant increases in M1 produce little or no associated growth in spending or inflation; on these occasions, velocity would decline substantially. Moreover, if the savings portion of M1 is related to GNP differently than its transaction components, the relationship between the growth rates of M1 and GNP may be permanently altered.

These savings balances appear only in the "other checkable deposits" (OCD) component of M1. Thus, the validity of this explanation can be examined by comparing the behavior of velocity measures using M1A (which consists of currency and non-interest-bearing checkable deposits) or currency alone with that of the M1 velocity measure during the 1980s. By increasing the cost of holding currency and demand deposits, the introduction of interest-bearing checkable deposits (NOWs and Super NOWs) should have induced a relative shift from demand deposits and currency into these new accounts; this, in turn, should produce a significant rise in currency and M1A velocity measures. Once individuals' portfolios are

From another perspective, the growth rate of old M2 velocity had a trend growth rate of zero; see Ott (1982). Some have argued that new M1 is close to old M2 — old M1 plus time and savings deposits, so perhaps the trend growth rate of its velocity, too, will be about zero. While the period since 1981 is too short to establish a trend, the growth rate of the new M1 velocity over this period has been about —2.4 percent. While the experimental monetary aggregates should reduce or eliminate such problems, this does not seem to be the case. See Batten and Thornton (1985, pp. 32—33) for a discussion of this point.
realigned, however, the prior currency and M1A velocity relationships should be restored.

Charts 9 and 10 show the M1A- and currency-velocity measures. The M1A-velocity measure and, to a lesser extent, the currency-velocity measure rose sharply in the first quarter of 1981 when NOWs were introduced nationwide. Contrary to this structural shift explanation, however, both measures subsequently declined.\(^{25}\)

Another explanation for the change in M1 velocity is an increased responsiveness of various M1 components to changes in the interest rate. According to this explanation, the financial innovations of the 1980s did not necessarily cause a downward shift in velocity due to a shift of savings balances into transactions accounts; instead, they altered the sensitivity of M1 balances to interest rates. Since the demand for money is inversely related to the interest rate, a decline in the interest rate will cause the demand for money to rise relative to GNP and, hence, velocity will decline.

The theoretical basis for this argument stems from basic consumer demand theory, which argues that the responsiveness of the demand for a commodity to changes in its price increases with the number and closeness of substitute goods. The financial innovations of the 1980s produced new and close substitutes for traditional demand deposit and currency components of M1. While the interest rate is not the price of money, it represents a significant opportunity cost for holding it. Consequently, the financial innovations of the 1980s should have increased the responsiveness of some of the components of M1 to changes in the interest rate. The "other-checkable-deposit" component of M1 bears interest, and the interest rate paid on these deposits is now free to change with market rates.\(^{26}\) Consequently, this component of M1 should be

\(^{25}\)This is the basis for Rasche's (1986) rejection of this explanation. The introduction of these new accounts, however, may have increased the interest elasticity of the demand for the M1A components.

\(^{26}\)Businesses cannot hold interest-bearing checking accounts. See Gilbert and Holland (1984) for a summary of the major innovations and deregulations of the 1980s. Also, the currency component of M1 generally is more closely tied to real income than to interest rate movements.
relatively unresponsive to interest rate movements. This could be mitigated by the fact that rates on these deposits appear to have been slow to adjust to changes in other market interest rates.

This view suggests that the relationship between velocity and interest rates should have strengthened since the financial innovations of the 1980s. Indeed, this pattern is reflected in Chart 11, which shows M1 velocity and the three-month Treasury bill rate. Prior to 1981, velocity appears to be unrelated to movements in the T-bill rate. Since 1981, however, the two have similar patterns. This is consistent with a number of studies which report an increased interest sensitivity of M1 balances during the 1980s.22 Additional analysis is provided in the appendix. It remains to be seen whether the apparent change in M1's interest sensitivity alone can account for the aberrant behavior of M1 velocity.

CYCLICAL EXPLANATIONS OF THE VELOCITY PUZZLE

Until now, we have assumed implicitly that the supply of money passively expands to meet society's demand. Another interpretation argues that substantial exogenous changes in the supply of M1 can induce cyclical swings in measured velocity because of their lagged effect on the economy. For example, an acceleration in the growth rate of M1 initially may produce a less than proportionate rise in the level of nominal GNP, and, thus, an initial decline in velocity. Eventually, however, when the monetary change has worked its way throughout the economy fully, the longer-run relationship between M1 growth and the rate of spending is reestablished, and velocity returns to its long-run path.

This analysis can explain a continuous fall in velocity relative to its underlying trend only if M1 growth is continuously accelerating. The "ever-and-ever-faster M1 growth" explanation for the velocity decline in the
1980s is examined in chart 12. Although money growth has been rapid since 1982, it does not appear to have been accelerating fast enough relative to previous years to produce the recent sharp decline in velocity.26

Expected Inflation and Velocity

Another explanation is that velocity's recent behavior results from changes in the public's expectations of inflation. According to this view, the demand for money is inversely related to the expected rate of inflation. Thus, when inflation (and presumably inflationary expectations as well) is declining, the demand for money should rise, and the velocity of money should fall. Since the nominal interest rate can be thought of as composed of the real rate plus a premium for the expected rate of inflation, this explanation is closely aligned to the interest sensitivity argument. The principal difference between them is that proponents of the expected-inflation explanation do not argue that the relationship has undergone a structural change.26 Judd (1983), Tatam (1983a, 1983b) and Friedman (1983) have argued that the decline in velocity in the 1981–83 period can be attributed primarily to disinflation and the associated decline in market interest rates that substantially lowered the opportunity costs of holding money relative to GNP.

In one sense, this explanation is specious or, at the very least, suspicious if extended to velocity movements in more recent years. If inflationary expecta-

26There is a 4 percentage point spread between peak trend-M1 growth in the 1980s and the late 1970s. Hence, even if there were no nominal output response to the more rapid M1 growth over the entire period, the acceleration in M1 growth, at most, could account for a 4 percentage point decline in trend velocity growth; that is, from about 3 percent to about \(-1\) percent. In addition, this explanation implies a significant lengthening in the estimated lag on money growth in the St. Louis equation during the 1980s, which has not been confirmed.

Another cyclical explanation not considered explicitly in the text has been suggested by Friedman (1983), Mascaro and Meltzer (1983) and Tatam (1983a, 1983b); in their view, an important influence on the demand for money is monetary uncertainty. Suppose that people increase their money holdings relative to their current income when they become more uncertain about their future incomes. If monetary uncertainty increased sufficiently in recent years, this could explain the velocity puzzle.

26The expected rate of inflation also could have an independent effect on the demand for money, e.g., \(m_t = f \left(\tilde{i}, \pi^* \right) \), where \(\pi^* \) is the expected rate of inflation. This issue has not been resolved.
tions have fallen over the past five years, they must have done so for non-monetary reasons: as chart 2 shows, trend M1 growth has risen rapidly since 1983. These non-monetary factors must have been sufficiently powerful to have swamped the usual influence that rapid trend money growth has on inflation and inflationary expectations.

Furthermore, if disinflation and declining nominal interest rates caused velocity to decline, then, by the same argument, velocity should have risen sharply when inflation accelerated and nominal interest rates rose during the 1970s. Unfortunately, this is not the case. Chart 13 shows M1-velocity and the ex post inflation rate. While velocity moves with the inflation rate after 1981, it does not appear to be affected substantially by the inflation rate over the pre-financial-innovations period. Velocity growth during the 1970s is not rapid enough to support this explanation.

Hetzel and Mehra (1985) suggest that the demand for money balances varies positively with the real value of the dollar in foreign exchange markets. Their explanation is based on the currency-substitution hypothesis, which states that different currencies are close substitutes for each other. In this explanation, the rise in the real exchange value of the dollar during the early 1980s made holding dollars relatively more attractive, increasing the demand for money relative to income and reducing velocity. Since the real exchange value of the dollar has generally moved with changes in the U.S. inflation rate, this argument is closely related to the inflation argument.

This explanation is examined in chart 14, which shows the movements in velocity and the nominal trade-weighted exchange rate since 1973. The nominal rather than the real exchange rate is used for two reasons. First, movements in the nominal exchange rate are more appropriate in assessing the relative returns on two different monies. Second, movements in the nominal and real trade-weighted exchange rates have been highly correlated since 1973. Thus, the

Chart 12

Short-Run and Trend Growth of M1

Quarterly Data

![Chart of Short-Run and Trend Growth of M1](image_url)
Chart 13

Velocity of GNP/M1 and Inflation

Chart 14

Velocity of GNP/M1 and Trade-Weighted Exchange Rate
general pattern of exchange rate movements is the same whether the nominal or real exchange rate is used.

Chart 14 shows that the exchange rate explanation does not provide a satisfactory answer to the velocity puzzle. From 1973 to 1981, exchange rate movements appear to have no influence on velocity. While velocity did decline from 1981 to 1983, when the exchange rate was rising, it also fell sharply in 1985 and 1986 when the exchange rate was plummeting.

TWO EXPLANATIONS MAY BE BETTER THAN ONE

Darby, Mascaro and Marlow (1987) have recently suggested that the velocity puzzle of the 1980s is a product of financial innovation and cyclical effects in measured velocity. Incorporating both effects, chart 15 compares the usual velocity measure with a measure derived by dividing permanent income by M1A. There is a sharp rise in the permanent income/M1A velocity measure beginning with the nationwide introduction of NOW accounts. The movement in this measure following that event is consistent with a gradual adjustment to the initial and subsequent innovations that increased the cost of holding M1A, such as the introduction of Super NOWs in January 1984 and the reduction of the minimum balance requirements on these accounts in January 1985.

The permanent income/M1A velocity measure, unlike virtually all velocity measures shown in the previous charts, does not decline during the bulk of the 1980s. This measure does not decline until the last three quarters of 1986; however, it turns up again during the first half of 1987. Darby, Mascaro and Marlow suggest that the 1986 decline can be explained by the extremely rapid M1A growth during the last three quarters of the year. Consequently, a combination of the effects of financial innovations, cyclical movements in GNP and sharp acceleration in M1A growth could account for much of the velocity puzzle of the 1980s.

SUMMARY AND CONCLUSIONS

This article reviews a number of suggested explanations of the puzzling downturn in M1 velocity during
the 1980s and attempts to assess the credibility of each. Alone, none of these explanations can account for the behavior of M1 velocity. Perhaps, instead, several influences have combined to produce the anomalous velocity behavior that has puzzled many researchers.

If there are several influences at work, financial innovations and cyclical variations in measured income seem to be among the best candidates. This combination works well in explaining the velocity puzzle through the first quarter of 1986. When combined with cyclical variation in velocity induced by rapid money growth, it may explain the behavior of velocity through last year. Another explanation that deserves further scrutiny is the possible increased interest sensitivity of M1 balances as a result of monetary innovations during the 1980s.

REFERENCES

Friedman, Milton. "Why a Surge in Inflation is Likely Next Year," Wall Street Journal (September 1, 1983).

Holland, A. Steven. "Real Interest Rates: What Accounts for Their Recent Rise?" this Review (December 1984), pp. 18–29.

Appendix

To examine whether velocity has become more interest sensitive in the 1980s, the growth rate of M1 velocity was regressed on distributed lags of its own past growth rate and changes in the three-month Treasury bill rate for three alternative periods from 1/1960 to II/1987. The results are presented in table 1. The lag length was determined separately for each period using the final prediction error criterion; see Thornton and Batten (1985). The maximum lag length considered was 12 for the two longer periods and four for the shorter one. The pre-1980 results indicate that neither its own past growth nor that of short-term interest rates significantly influenced M1 velocity growth. The lag lengths selected were zero for velocity growth and the contemporaneous and first lag for the change in the Treasury bill rate. However, even though the lag coefficient on the change in the T-bill rate is both positive as expected and statistically significant at the 5 percent level, the hypothesis that the contemporaneous and lag coefficients are jointly insignificant cannot be rejected at the 5 percent level.

A considerably different result emerges when the regression is extended to include the 1980s. The lag-length selection procedure now chose a sixth-order lag for velocity growth and a fourth-order lag for the change in the T-bill rate. Moreover, the hypothesis that these coefficients are jointly insignificant is rejected at the 5 percent level; contemporaneous and past changes in the Treasury bill rate exert a significant influence on current M1 velocity growth.

When the equation is estimated only for the period of the 1980s, there is again evidence of a statistically significant effect of interest rates on M1 velocity. Indeed, the sum of the distributed lag coefficients on the Treasury-bill rate is positive and significant, indicating a longer-run positive relationship between M1 velocity and interest rates that does not appear to have existed in the prior period. Hence, these results are consistent with the hypothesis that the interest sensitivity of M1 balances changed significantly following the monetary deregulation and financial innovations of the 1980s. It will take more research, however, to determine how much of the velocity puzzle can be attributed to this factor.

| Table 1 |
|---|---|---|
| Intercept | 3.138* (7.36) | 0.378 (0.71) | 0.217 (0.31) |
| VDOT-1 | 0.262* (2.70) | 0.512* (3.07) |
| VDOT-2 | -0.019 (0.20) | |
| VDOT-3 | 0.132 (1.32) | |
| VDOT-4 | 0.214* (2.34) | |
| VDOT-5 | -0.095 (1.06) | |
| VDOT-6 | 0.202* (2.31) | |
| ΔTBR-0 | -0.025 (0.04) | 0.740 (1.58) | 0.689 (1.73) |
| ΔTBR-1 | 1.579* (2.07) | 2.999* (6.19) | 3.066* (5.68) |
| ΔTBR-2 | -1.354* (2.28) | -1.775* (2.35) |
| ΔTBR-3 | 0.774 (1.35) | 0.806 (1.65) |
| ΔTBR-4 | -1.117* (2.01) | |
| ΣΔTBR | 1.554 (1.80) | 2.041 (1.83) | 2.986* (2.25) |
| R² | 0.033 | 0.418 | 0.711 |
| SEE | 3.759 | 4.014 | 3.747 |
| F-VDOT | — | 4.204* | 9.437* |
| F-TBR | 2.359 | 11.315* | 15.710* |
| DW | 1.968 | 2.029 | 2.096 |

¹ | t | statistics in parentheses.
*Indicates statistical significance at the 5 percent level.

23