EARLY forecasts for 1983 indicate that it will be the fourth consecutive year of low income for farmers. Speaking at the U.S. Department of Agriculture's (USDA) recent Outlook Conference, government and industry analysts alike agreed that the combination of large carryover stocks, declining exports and limited reductions in output will not promote significant increases in depressed grain prices, which are important determinants of net farm income. The relatively low price and reduced farm income outlook for grains is expected to be offset somewhat by modest increases in livestock prices. The retail price of food, as measured by the food component of the Consumer Price Index (CPI), is expected to increase by 3 percent to 6 percent in 1983.

This article is divided into two parts. The first section reviews and summarizes the data presented at the Outlook Conference, and discusses price and production figures for 1982 and forecasts for 1983 in primary commodity groupings. The second section analyzes the grain surplus problem that continues to keep prices and farm income at relatively low levels. The discussion indicates that current policies designed to increase farm prices while limiting surplus accumulation provide conflicting incentives that inhibit the accomplishment of either objective. Finally, provisions of the payment-in-kind (PIK) program are evaluated as a means of resolving conflicts among existing policies.

OUTLOOK SUMMARY

Retail Food Prices

The rate of increase in retail food prices, as measured by the CPI, is expected to be toward the low end of the 3 percent to 6 percent range in 1983.\(^1\) Data released in January revealed that food prices increased about 4 percent in 1982, the smallest rate of increase since 1976. Generally smaller increases in marketing costs — associated with the reduction in the rate of inflation — and relatively large supplies of most major commodities were cited as the factors behind this dampening of food price increases. Poor weather, larger-than-expected (export or domestic) demand or an unexpected acceleration of general inflation, however, could increase the growth rate of retail food prices to the upper end of the 3 percent to 6 percent forecast range. Historical and forecast data for food prices are listed in table 1.

Financial Conditions

Most financial indicators for the farm sector declined in 1982 and are not expected to show significant improvement in 1983. Although complete farm income data and forecasts were not available at the Outlook Conference, estimates released in January place 1982 net farm income at $20.4 billion with forecasts for 1983 in the $16 billion to $20 billion range. Direct government payments to farmers were about $3.5 billion. As chart 1 shows, real net farm income is about one-third of its 1972 level and is expected to decline again in 1983. Particularly important to farm income in 1983 will be the strength of export demand and the success of programs aimed at achieving reductions in grain stocks and production.\(^2\)

Actual returns to farmers in 1982 would have been even less had it not been for government price support and subsidy payments. As chart 2 indicates, commodity prices below the target prices of support programs led to a three-fold increase in the level of Commodity Credit Corporation (CCC) payments for price supports.

Contributing positively to the income outlook of farmers in 1983 are projections of continued reductions in interest rates and the prices of primary inputs relative to output prices. Although interest rates fell in 1982, the declines probably occurred too late in the year — after contracts for seed and fertilizer were written — to have reduced costs significantly. The world oil glut and lower input prices, however, did reduce costs in 1982 and are expected to reduce them further in 1983. If declining interest rates and farm input costs materialize in 1983, net farm income could be improved even in the absence of output price increases. According to the USDA, however, any major improvements in net farm income will have to come from higher prices for farm products resulting from large increases in aggregate demand — especially export demand.

Corn and Wheat

The dilemma facing grain producers in 1983 is, at least in part, the result of policy actions taken in 1982. After the record harvests of 1981, wheat and corn producers were encouraged to participate in the reduced acreage program (RAP). In return for idling a portion of their base acreage, farmers were eligible to participate in the Farmer-Owned Reserve (FOR) and to receive both price support loans and deficiency payments. The objective of these programs was to increase grain prices by reducing grain output.

Table 1

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>---------------</td>
</tr>
<tr>
<td>All Food</td>
</tr>
<tr>
<td>Food away from home</td>
</tr>
<tr>
<td>Food at home</td>
</tr>
<tr>
<td>Meats</td>
</tr>
<tr>
<td>Beef and veal</td>
</tr>
<tr>
<td>Pork</td>
</tr>
<tr>
<td>Poultry</td>
</tr>
<tr>
<td>Eggs</td>
</tr>
<tr>
<td>Dairy products</td>
</tr>
<tr>
<td>Fish and seafood</td>
</tr>
<tr>
<td>Fruits and vegetables</td>
</tr>
<tr>
<td>Sugar and sweets</td>
</tr>
<tr>
<td>Cereals and bakery products</td>
</tr>
<tr>
<td>Fats and oils</td>
</tr>
<tr>
<td>Nonalcoholic beverages</td>
</tr>
<tr>
<td>Other prepared foods</td>
</tr>
</tbody>
</table>

Forecast.

SOURCE: Historical data from Department of Labor; forecasts by U.S. Department of Agriculture, Economic Research Service.

3 "Target prices" are established by law. If market prices for a supported commodity fall below the target price, farmers meeting eligibility requirements receive a "deficiency payment" based on the difference between the target level and market price.

5 Other contributing factors to the current situation of low prices and large surpluses were the 1980 Soviet export embargo, record yields, the appreciation of the dollar and export subsidies for French and Canadian wheat.

6 An important change in the 1981 farm bill is the shift from "set-aside" programs to the RAP. Under a set-aside, farmers were asked to idle a certain percentage of their acreage without stipulations concerning what was grown on remaining land. Thus, if the reason for a set-aside was to increase wheat prices, the program may have been totally ineffective if the 10 percent of acreage idled was formerly planted in oats and wheat plantings were unchanged. The RAP attempts to overcome this problem by using "crop-specific" acreage reductions; that is, a wheat RAP now calls for a reduction in the acreage historically planted in wheat.
The programs, however, did not achieve the desired level of output reductions. Provisions of the wheat program were announced after much of the winter wheat crop had been planted. As such, the 48 percent overall participation rate in the wheat program was an unbalanced mix of low participation by producers of winter wheat and high participation by producers of spring wheat. The corn program was even less successful with about a 24 percent participation rate.

Output reductions achieved by the programs were more than offset, however, by ideal growing weather and record yields. The 2 percent reduction in corn acreage was countered by a 4 percent increase in yields to an average of 114 bushels per acre. The picture for wheat was somewhat different. The 48 percent participation rate in the acreage reduction program achieved a 1 percent decline in the total wheat crop from the level of 1981's record harvest.

The volume of wheat and corn production in the 1982 crop year had some important consequences. As the data in table 2 indicate, the United States now holds about 76 percent of world corn stocks and 39 percent of world wheat stocks; these figures are expected to increase to 85 percent and 44 percent, respectively, in 1983. These data also indicate that the United States is expected to produce almost one-half of all corn and one-sixth of all wheat grown in the world during this crop year. Although the volume of corn exports is expected to increase about 9 percent to almost 55 million metric tons, the price of corn, currently at a 10 year low, may actually decrease the value of corn exports. The volume of wheat exports is expected to decline about 8 percent to 45 million metric tons.7

Although both the wheat and corn programs have added a paid diversion as an extra incentive to program participation in 1983, the predominant view among analysts appears to be that acreage reduction alone will not increase prices significantly.8 One estimate concluded that if the corn program achieved 70 percent compliance among eligible producers (almost triple the 24 percent compliance rate of 1982), the price in the Eastern corn belt will reach only $2.80 per bushel, about equal to the target price. The same analysts, however, cautioned that a compliance rate this high is unlikely; little new storage space is being built and many producers likely will withdraw from the programs if market prices begin to strengthen. None of these analyses, however, considered the effects of the F1K program that officially was announced after the

7 One metric ton is equivalent to about 37 bushels of wheat or 39 bushels of corn.
8 Under a paid diversion — unlike a voluntary set-aside — producers are given a payment for not producing on a portion of their land. For example, under 1983 corn program rules, producers will be paid $1.50 per bushel on the 10 percent of their base acreage and yield that constitutes the diversion. This is in contrast to the 10 percent of their land which constitutes the voluntary acreage reduction and receives no direct payments. A possible reason for low compliance with the 1982 program is that no direct payments were made to producers for laying idle a portion of their land.
Table 2
World and U.S. Summaries for Corn and Wheat (millions of metric tons)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>CORN</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>World</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Production</td>
<td>404.4</td>
<td>426.0</td>
<td>443.4</td>
</tr>
<tr>
<td>Utilization</td>
<td>412.7</td>
<td>406.5</td>
<td>418.8</td>
</tr>
<tr>
<td>Ending Stocks</td>
<td>49.1</td>
<td>78.7</td>
<td>103.2</td>
</tr>
<tr>
<td>Stocks/Utilization (%)</td>
<td>11.9</td>
<td>19.4</td>
<td>24.6</td>
</tr>
<tr>
<td>Trade</td>
<td>78.2</td>
<td>71.5</td>
<td>68.8</td>
</tr>
<tr>
<td>United States</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Production</td>
<td>168.8</td>
<td>208.3</td>
<td>211.6</td>
</tr>
<tr>
<td>Utilization</td>
<td>123.8</td>
<td>124.5</td>
<td>129.5</td>
</tr>
<tr>
<td>Exports (October/September)</td>
<td>59.8</td>
<td>50.0</td>
<td>54.6</td>
</tr>
<tr>
<td>Ending Stocks</td>
<td>26.3</td>
<td>60.1</td>
<td>87.6</td>
</tr>
<tr>
<td>U.S. Stocks/World Stocks (%)</td>
<td>53.6</td>
<td>76.4</td>
<td>64.9</td>
</tr>
<tr>
<td>WHEAT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>World</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Production</td>
<td>439.3</td>
<td>445.8</td>
<td>461.6</td>
</tr>
<tr>
<td>Utilization</td>
<td>444.8</td>
<td>438.2</td>
<td>453.5</td>
</tr>
<tr>
<td>Ending Stocks</td>
<td>74.6</td>
<td>82.3</td>
<td>90.4</td>
</tr>
<tr>
<td>Stocks/Utilization (%)</td>
<td>16.0</td>
<td>18.8</td>
<td>19.9</td>
</tr>
<tr>
<td>Trade</td>
<td>96.5</td>
<td>105.8</td>
<td>103.0</td>
</tr>
<tr>
<td>United States</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Production</td>
<td>64.6</td>
<td>76.0</td>
<td>76.5</td>
</tr>
<tr>
<td>Utilization</td>
<td>21.1</td>
<td>23.1</td>
<td>23.5</td>
</tr>
<tr>
<td>Exports (July/June)</td>
<td>41.9</td>
<td>49.1</td>
<td>45.0</td>
</tr>
<tr>
<td>Ending Stocks</td>
<td>26.9</td>
<td>31.7</td>
<td>39.8</td>
</tr>
<tr>
<td>U.S. Stocks/World Stocks (%)</td>
<td>36.1</td>
<td>38.5</td>
<td>44.0</td>
</tr>
</tbody>
</table>

Outlook Conference. The probable impact of the PIK program is discussed later in this article.

Livestock, Poultry and Dairy

Red Meats — Despite low feed grain prices, financial considerations likely will result in a second consecutive year of lower red meat production.\(^6\) Cash flow problems have forced producers to reduce their debt and to generate internal capital. To accomplish this, producers have liquidated herds and retained a smaller than average number of animals for breeding purposes. The reduced breeding herds imply a decline in red meat production in 1983.

Some price increases for beef and pork are likely to result from the reduction in aggregate red meat supplies. Analysts are expecting a 1 percent decline in commercial beef production, which is expected to increase cattle prices by 3 percent in 1983. Prices for choice Omaha steers are expected to reach $66.25 per hundred weight (cwt.), up from $64.25 per cwt. in 1982. Commercial production is expected to be 22.3 billion pounds in 1983, down from about 22.4 last year. Average prices for barrows and gilts are expected to rise 5 percent to $58.50 per cwt. in 1983 based on an expected 6 percent drop in production.

Beef and pork producers’ incomes likely will be strengthened further by reductions in production costs, most notably in feed costs and interest rates. For instance, feed costs for hogs declined $5–$7 per 100
pounds of weight gain in 1982 while feed costs for cattle declined by about $10 per 100 pounds of gain. With the likelihood of continued low grain prices and further reductions in interest rates in 1983, producers again should face a favorable cost picture.

Poultry and Eggs — Broiler production is expected to increase slightly in 1983. This, together with slow growth in demand, is expected to moderate price increases. Growth in aggregate demand will continue at low rates as a result of the slow economic recovery and a substantial reduction in the level of exports, down 30 percent in 1982 from the previous year’s levels. In addition, demand has failed to increase in response to relatively high red meat prices.10

After poor returns in 1980 and 1981, lower feed costs increased the incomes of egg producers in 1982. Production figures for 1983 are expected to approximate 1982 levels. Some cutbacks in the number of replacement pullets will tend to limit production gains. Even with egg production at 1982 levels, however, prices in 1983 should remain near their 1982 average level of about 70 cents per dozen; a substantial drop in foreign demand is expected to offset the effects of stable production figures.

Dairy — Milk production is expected to be 135.8 billion pounds in 1982, 2 percent above year-earlier levels. Although producer reaction to the 50-cent deductions imposed by the Secretary of Agriculture is still uncertain, production is expected to increase another 1.9 percent in 1983. These increases in production will occur despite reductions in average prices from 1981 levels. Prices declined an average of 1.8 percent in 1982 due to a “roll-back” in the level of price support to $13.10 per cwt. and continued surplus production.11 The effects of output price declines on producers’ incomes, however, were offset somewhat by reductions in feed costs paid by producers.

The dairy outlook necessarily reflects the assumptions about specific policy provisions that will be in effect during 1983. If the support price remains at $13.10 per cwt. and the Secretary of Agriculture imposes both of the authorized 50-cent deductions, the following results are likely this year.12 Production will increase by 1.9 percent and USDA purchases of surplus products will increase by 8.8 percent (milk equivalent).13 The average price received for all milk will decline by 1.8 percent, but cash receipts (including direct payments) will increase by 9.7 percent. The number of cows used in production will increase by 1.0 percent.

PROBLEM AREAS FOR 1983

The 1982 price and production estimates presented at the USDA Outlook Conference indicate that low relative prices and large grain surpluses continue to be the primary sources of conflict in agricultural policy. The following discussion argues that conflicting incentives in U.S. agricultural programs, on balance, have promoted expansions in grain production that increased surpluses and lowered relative prices and farm income. Though many programs are similar in design, only corn and wheat are discussed in detail.

To understand the current structure of grain policies and the results they have fostered, it is necessary to know something about the price and production history of the major commodities, corn and wheat. Until the mid-1970s, it commonly was agreed that ongoing technological improvements and a slow transition of excess labor from agriculture created an environment in which “chronic surpluses,” low or declining relative prices and lower farm incomes were the norm. Since the 1930s, when price support programs were established, government’s response to this situation has been to legislate “fair” prices for farm products and to purchase surplus production at these prices.

In the mid-1970s, however, there was a perceptible change in expectations. For a variety of reasons — the beginning of the first Russian grain sales in 1972, price support programs that idled one-fifth of U.S. cropland, and large increases in total export demand — real farm income reached a record high in 1973 and remained above historical levels in 1974 and 1975. Many analysts and farmers believed that these events signalled an end to the era of low prices and commodity surpluses.

11The support had been raised to $13.49 per cwt. — 75 percent of parity — on October 1, 1981. Special legislation enacted on October 20, 1981, “rolled back” the support level to $13.10. When the 1981 Food and Agriculture Act was adopted in December 1981, the $13.10 figure was maintained for the remainder of the 1981-82 marketing year. The Farm Bill also scheduled an increase to $13.25 per cwt. for the 1982-83 marketing year. However, with production surpluses continuing, special legislation enacted in September 1982 held the support price at $13.10 until October 1, 1984. The new support then will be set at the level of parity $13.10 represented on October 1, 1983.

13U.S. Department of Agriculture purchases surplus products in several forms: butter, American cheese, nonfat dry milk and evaporated milk.
the prevailing opinion was that a combination of many factors finally had solved the agricultural "problem":

"The secular income problem in agriculture is now largely behind us. The emerging equilibrium in the labor market is of major significance in this respect. When this equilibrium is combined with the decline in the rate of productivity growth, the release of most of the idled land back to production, and the shift to the right in the demand for agricultural products as a result of devaluation, the result is an almost total disappearance of the excess capacity that existed at prevailing price ratios for such a long time." 14

This view has led some analysts recently to argue that unabated increases in world food demand and limitations on U.S. productive capacity likely are to make the 1980s a decade of commodity shortages and rising food prices.15 Within this view, a major development in agricultural policy during the 1980s will be "[t]he declining role of price and income supports and production adjustment programs." 16

Although this brief history gives short shrift to the political and economic complexities that have shaped agricultural policies, it does provide a flavor for the attitudes that have led to the current policy mix. On the one hand, legislators have persisted in their belief that minimum levels of some commodity prices should be established by law to provide a "fair" return to producers of those products. On the other hand, the crop shortages and volatile prices of the early 1970s have spawned new grain storage programs that simultaneously attempt to stabilize prices and provide an adequate reserve stock in the event of further shortages. This policy mix, general macroeconomic activity and random events in nature have produced the current production and price situation in agriculture.

As 1983 begins, three sets of major grain programs are in place: the reduced acreage program (RAP), price support programs and the Farmer-Owned Reserve (FOR). Each program attempts to manage the supply of grains to achieve either stable prices above some minimum level or adequate reserve stocks in the event of new commodity shortages.17 Because these goals are not always compatible, however, existing policies often work against each other; the results are thus often contrary to stated objectives.

MAJOR GRAIN PROGRAMS18

Acreage Reduction Programs

Farmers are encouraged to reduce production through two types of programs. One is the reduced acreage program (RAP) in which a farmer "voluntarily" agrees to idle a portion of his acreage; the actual amount is based on the acreage planted in the past (called the historical base acreage). A farmer has an economic incentive to comply, however, only if the benefits of compliance exceed their costs. Typically, these benefits include eligibility for price support loans, income support payments and participation in the FOR; the cost of not complying is the income foregone by not producing on the idled land. A paid diversion, which represents a portion of the RAP, provides a cash payment for farmers who idle the required percentage of their base acreage.19

Price Supports

Grain prices are supported primarily by loan rates while income is supported by target prices. Under provisions of the price support loan-rate program, producers who comply with grain program requirements (for instance, reduced acreage) are eligible for a noncourse loan. Producers then have two options: they can hold their grain and market it at their discretion or they can obtain a loan. The value of a loan is determined by the loan rate multiplied by the number of bushels

17These programs focus on supply strategies because previous attempts to increase private demand for food have had limited impact on food prices. See, for example, M. Belongia, "Domestic Food Programs and Their Related Impact on Food Prices," American Journal of Agricultural Economics (May 1979), pp. 358—62.

18A more detailed discussion of these programs and their impacts on economic activity can be found in Bruce L. Gardner, The Governing of Agriculture, The Regents Press of Kansas, Lawrence, Kansas, 1981.

19The 1983 corn and wheat RAP both require a 20 percent reduction in base acreage. The corn program includes a 10 percent paid diversion; 5 percent of the wheat program is a paid diversion.
placed in storage. The loan rate is a legislatively determined price per bushel that serves, essentially, as a price floor.

The loan is in effect for less than one year. If market prices do not rise to levels substantially above the loan rate over the period of the loan, farmers can forfeit their grain to the CCC as full payment for the loan. Forfeiture of grain in this manner contributes to CCC grain stocks — government stocks separate from those in the FOR. In contrast, if market prices should rise above loan rates, farmers may elect to repay the loan, remove their grain from storage and sell it.

Producer income is supported directly by target prices and deficiency payments. If market prices are below the target price established by law, farmers receive a transfer payment from the government for the size of the price differential. An advantage to this program is that deficiency payments effectively raise farmers’ incomes without generating higher prices to consumers or the purchase of large surplus stocks by the government. A disadvantage is that deficiency payments can become very expensive to the government — and taxpayers — if large quantities of grain are eligible for the maximum payment.

To illustrate how the program works, consider the 1982 wheat crop when the June-October average wheat price was $3.34 per bushel, the target price was $4.05 per bushel and the loan rate was $3.55 per bushel. The deficiency payment is calculated as the difference between the target price and the higher of the loan rate or average market price for the first five months of the marketing year (June-October). Because market prices were below the loan rate — the effective price floor — deficiency payments last year were based instead on the difference between the target price and loan rate ($4.05 — $3.55 = $.50). The 48 percent of wheat producers who complied with acreage reduction provisions then were eligible for a 50-cent per bushel income support or deficiency payment. These producers received $475 million in deficiency payments for the 1982 wheat crop.

The initial CCC loan has a typical duration of nine months at which time the participant must either repay the loan or forfeit his grain to the CCC. Under the FOR a farmer has a third option. He can receive a prepaid subsidy (26.5 cents per bushel annual payment) to store his grain for a longer period and extend the length of his loan at below-market interest rates; the interest rate for the last two years of the loan is zero. Loan extensions typically have covered three years; thus, a participant must keep his grain off the market for a three-year period unless market prices increase to a predetermined level; by repaying the loan, farmers then can remove grain from the FOR and sell it. A farmer must repay storage costs and other penalties if the loan is redeemed under conditions that do not satisfy the requirements established by program formula.

GRAIN PROGRAMS AND ECONOMIC ACTIVITY

The major grain programs have had a substantial effect on economic behavior. On a purely descriptive level, the data show that grain prices have persisted at relatively low levels and real farm income has fallen to historic lows; at the same time, the costs of government support programs have reached record highs. On a more analytic level, however, it is interesting to investigate the economic incentives that have produced these results. Thus, rather than attribute the low prices and income to unusually good weather or other random events, as many analysts have done, one should examine the program’s incentives to see if they reveal conflicts that could account for the observed results, especially those that seem contrary to the stated objectives of the programs.

Programs That Increase Production

Farmers will increase their grain production if they expect grain prices to increase, if they expect their costs to decline or both. Although grain programs do reduce costs of farmers through free crop insurance and the interest subsidies mentioned earlier, their most important influence is on the distribution of expected output prices.30 By increasing the average

30Government programs affect farmers’ costs in a variety of ways. In the longer run, USDA research produces technological innovations (e.g., disease resistant crops) and information (e.g., outlook reports, budgeting and business methods) that help lower costs. Conversely, price support programs tend to increase costs because increases in expected output prices will tend to cause increases in the prices of inputs, especially land. The net effect of government programs on farmers’ costs would be difficult to determine.
(mean) price expected by producers and reducing the variability of expected market prices, programs that establish a price floor tend to encourage farmers to increase production.

Figure 1 shows how. For simplicity, grain prices are assumed to be distributed normally around some average value, $E(P)$, with a given variance, σ^2, in the absence of government programs. The mean price represents the "best guess" of what actual prices will be at harvest; it is the price upon which production decisions will be based. In practice, $E(P)$ could be the cash price at the time of planting or the futures price dated for end-of-season delivery minus the cost of storage.

The effects of a price support program also are shown in figure 1. First, an effective support must be set at a level greater than P_o to affect economic activity. If no one believes that prices will be less than P_o, a support

\[E(P) = \int P \Psi(P) dP. \]

After a price support program is imposed, however, the left-hand tail of the distribution is reallocated over the area to the right of P_s. The most basic representation of this change is to "stack" the shaded area at P_s; the expected price would then be calculated as:

\[E(P^*) = P_s \int P \Psi(P) dP + \int P_s^{P} \Psi(P) dP. \]

A more mathematical analysis of this example and simulation results can be found in Michael Boehlke and Steven Griffin, "Financial Impacts of Government Support Price Programs," American Journal of Agricultural Economics (May 1979), pp. 285-96.

Footnotes:

21 The same general argument applies to target prices and direct income transfers made via deficiency payments. That is, eligible producers are guaranteed at planting a minimum harvest price equal to the market price plus a direct payment equal to the minimum of the difference between the target price and either the loan rate or market price.

22 Without a price support program, the expected price would be calculated as:

\[E(P) = \int P \Psi(P) dP. \]
at \(P_0 \) or below would be viewed as irrelevant. But, an effective price support, at say, \(P_0 \), increases the expected price from \(E(P) \) to \(E(P^*) \). The shaded area of the price distribution to the left of \(P_0 \) represents the portion of the old price distribution that is now eliminated; the probabilities attached to this range of prices are now "reassigned" to \(P_0 \). This shift in the expected price distribution must increase \(E(P) \) which, ceteris paribus, will tend to increase production. 23

This reshaping of the expected price distribution by a price support may have an even greater impact on production through its impact on the variability of expected prices. 24 If the new price distribution facing farmers has a lower variance, farmers face less price risk than they did before. 25 Farmers' output decisions will be based on a higher expected price and lower risk of price fluctuations. If farmers are generally risk-averse, the reduced price risk also will generate greater production.

Programs That Decrease Production

As the foregoing suggests, programs designed to increase commodity prices also tend to increase production. The unfortunate side effect of this response is that increased production tends to decrease prices. In recognition of this, price support programs often require compliance with a reduction of the number of acres planted under programs of the form described earlier.

But, will the reduction in the number of acres planted necessarily support prices at levels desired by the legislation? It is unlikely unless more acreage is idled than is typically the case, for the following reasons. First, because farmers can select the land they idle, they will designate the poorest quality land for participation in the RAP. Thus, the reduction in quantity produced will be proportionately smaller than that suggested by the number of acres idled. Second, depending upon individual circumstances, farmers also may attempt to raise yields on the remaining land by using fertilizer and pesticides more intensively.

Existing evidence suggests that these practices can offset about one-half of the impact of an acreage reduction. 26

Most important, however, is the recognition that grain is an internationally traded good and, hence, grain prices are determined in the world market. 27 Therefore, in the absence of tariffs or quotas, attempts to reduce U.S. production will have to increase the world price of grain in order to raise grain prices for U.S. farmers. Because world grain supplies affect grain prices in the United States and abroad, far more acreage must be idled in the United States than would be necessary if U.S. grain supplies alone affected the U.S. grain price. For example, if the U.S. elasticity of demand for grain were \(-0.2\) but the elasticity of total (U.S. domestic plus export) demand were \(-1.5\), the influence of a world market would require the idling of over 600 percent more land to achieve a 10 percent increase in grain prices. 28 Without cooperative agreements for output reductions by other countries, U.S. attempts to increase grain prices by idling acreage are likely to be unsuccessful. 29

Storage Programs

Because price supports encourage increased production and current acreage reduction programs are insufficient to offset this effect, "surplus" stocks are likely to accumulate in government storage. Historically, the CCC loan program has acquired this surplus

23 This example represents a partial analysis. The distribution itself will shift to the left if the support program increased production. Higher expected output would lower the probabilities of obtaining relatively high prices and offset some of the increase in the expected price.

24 This argument has been made for a number of years; dating back at least to Holbrook Working, "Price Supports and the Effectiveness of Hedging," Journal of Farm Economics (December 1953), pp. 811–18.

25 Under reasonable assumptions, truncating the lower tail of the distribution at \(P_0 \) also will reduce its variance.

27 In many years, U.S. policy has ignored this fact and set loan rates above world prices. Because the loan rate is a floor for U.S. prices, minimum U.S. prices were maintained above the world price. Such a policy, however, effectively removed the United States from international trade unless other producing nations could not fully satisfy world demand, thereby making the United States the "supplier of the last resort." That is, U.S. grain was not traded internationally because U.S. producers could receive returns higher than the world price by selling grain domestically or placing it under CCC loan. Conversely, importers would buy U.S. grain only if all other trading partners could not supply it at the lower world price.

28 This example and a more detailed analysis can be found in Gardner, Governing of Agriculture, p. 38–9. His example shows that a 10 percent increase in price can be achieved by a 2 percent output reduction if the elasticity of demand is \(-0.2\). If it is \(-1.5\), however, the same 10 percent increase in price requires a 15 percent reduction in output. The approximate difference between these output reductions is 600 percent.

29 In fact, the lack of such an agreement has allowed other producing nations to be "free-riders" with respect to U.S. grain programs. That is, other countries benefit from U.S. price support and storage programs without paying any direct costs. This is partially why the U.S. will hold 85 percent of the world's corn stocks and 44 percent of its wheat stocks in 1983.
production. More recently, however, the FOR has been introduced to build even greater reserve stocks. The stated intention of the program is to promote greater price stability by increasing and manipulating the mean level of reserve stocks. To be successful, then, the FOR must accomplish two objectives: First, it must increase the level of reserve stocks. Second, this increase in stock levels and the handling of the reserve itself must dampen the variability of grain prices. The evidence to date, however, suggests that neither objective has been achieved.

With respect to stock levels, the most current estimate is that each additional bushel of grain in the FOR represents only a 0.2 to 0.4 bushel addition to total, privately owned stocks. The closer this estimate is to zero, the more strongly it suggests that farmers have viewed the publicly-controlled FOR as a subsidized alternative to private storage. That is, rather than paying to keep grain in private storage, eligible farmers can place grain in the FOR, receive a 26.5 cent per bushel prepaid storage subsidy and pay no interest on the last two years of a three-year loan. The substitution estimate of 0.2 to 0.4 might be closer to zero if participation in the FOR did not require a three-year contract during which the grain cannot be sold unless market prices rise to a specified multiple of the loan rate. As one analyst has remarked, however, “It is not clear that the FOR program has added significantly more to either corn or wheat stocks than would have been achieved by the CCC loan program without it.”

Evidence to date also suggests that the FOR’s effects on price stability have been contrary to the program’s presumed objectives. Frequent changes in program rules — especially changes in trigger prices and other factors that affect the release of FOR grain to the market — have increased the uncertainty associated with participation in the FOR. This uncertainty, it is argued, also tends to increase the variability of market prices. In a study of daily wheat and corn prices before and after the establishment of the FOR, Gardner found that the program, in fact, was associated with increased variability of grain prices. Another study using monthly data yields results consistent with Gardner’s. This evidence suggests that the FOR has been more successful in transferring income to farmers through storage subsidies than it has in increasing stocks or stabilizing grain prices.

The Payment-in-Kind Program (PIK)

In an effort to reconcile the results produced under conflicting incentives, the USDA has implemented the PIK program for 1983. Under its provisions, producers who have reduced acreage by the 20 percent of base stipulated by the RAP may idle up to an additional 30 percent of base acreage under PIK; in some cases, farmers may bid to idle their entire acreage. Participating corn producers will be given corn from CCC or FOR reserves in an amount equal to 50 percent of the normal yield on the number of acres idled.

Because wheat producers already have planted their winter crop, they will be given 95 percent of normal yield if they plow it under to participate. Participating farmers are then free to sell the grain they receive or feed it to livestock. While participants will avoid the costs of planting and harvesting acreage declared to PIK, they probably will have to plant some cover on this land to prevent erosion.

The motivation behind PIK is twofold. On one hand, it attempts to remove more land from production than has been possible under existing programs. On the other hand, the distribution of reserve grain to farmers will reduce surplus stocks. It is hoped this payment-in-kind will reduce the costs of support programs — now at record highs — and reduce the depressing effects that large surplus stocks exert on market prices.

WILL PIK WORK?

Preliminary estimates by the USDA indicated that PIK would idle about 23 million acres of land over and above land already taken from production by other programs. Other estimates ranged as high as 50 million acres. The actual figures exceeded both estimates, however, showing that over 69 million acres had been committed to the program; this acreage is in addition to the 13.2 million acres idled by the RAP alone.

34Farmers currently without grain in CCC or FOR stocks must put their current crop under CCC loan to participate in PIK.
Although the 82.3 million acres to be idled this year are spread across seven crops, corn and wheat are expected to show the largest reductions. In fact, about 87 percent of all acreage idled has a base in corn or wheat. But, because some uncertainty still exists about the overall quality of land planted and growing season weather, yields may reinforce or offset the effects of a reduction in acres planted. Based on reasonable assumptions about increases in yields, however, it appears as if 1983 programs will cause output reductions on the order of 20 percent for wheat and 30 percent for corn.

The effects of 1983 crop programs on commodity prices can be estimated by using cash prices at the time PIK was announced and the total elasticity of demand cited in an earlier example. That is, in January, when PIK was announced as a new program option, cash prices for corn and wheat were $2.58 and $4.08 per bushel, respectively. The estimated total elasticity of demand of 1.5 also suggests that a 1 percent decline in production will raise prices by 0.67 percent. Therefore, for these estimates, a 30 percent reduction in corn production implies a 20 percent increase in price. Based on a January price of $2.58, this simple analysis suggests corn prices, at time of harvest, will be near $3.12 per bushel. A similar analysis for wheat shows prices reaching $4.60 per bushel. These prices compare to 1983 target prices of $2.86 for corn and $4.30 for wheat.

SUMMARY AND CONCLUSIONS

Programs to manage farm production and prices have been in existence since the 1930s. An analysis of current programs intended to limit surplus accumulation and raise farm prices indicates, however, that they have failed to achieve either objective. Specifically, supply reductions resulting from some programs targeted at output reductions have been offset by incentives to increase production contained in other programs. The result has been a continuation of the "farm problem": chronic surpluses and relatively low prices.

The PIK program, the latest effort to reconcile these conflicts, could increase corn and wheat prices marginally above their support levels only if the most optimistic estimates of farmer participation are realized. Estimates based on USDA projections, however, indicate that surplus removal under PIK will not increase corn or wheat prices substantially above their target prices. With surplus conditions prevailing for at least two more years, the 1980s are unlikely to become the decade of increasing commodity shortages and rising relative prices that many analysts forecast just a few years ago.

30The PIK program covers corn, wheat, sorghum, cotton and rice. Barley and oats are not included in PIK.