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1 INTRODUCTION
An asset-pricing model is typically defined by its stochastic discount factor (SDF). For 

instance, Mehra and Prescott (1985) used constant-relative-risk-aversion (CRRA) preferences 
and the SDF in their model was a function of consumption growth. The validity of an SDF is 
determined by its ability to match the observed asset returns. An early test of an asset-pricing 
model with CRRA preferences was the Hansen and Singleton (1982) J-test. For U.S. stock and 
bond returns data, this test typically rejects the model. The J-test tells us whether or not an 
asset-pricing model has statistically significant pricing errors. It does not provide information 
on how to modify the SDF to improve the fit. Hansen and Jagannathan (1991) derive a vola-
tility bound (HJ bound) that is based on necessary conditions that an asset-pricing model 
must satisfy. The HJ bound characterizes the admissible set of SDFs that is consistent with 
the observed asset returns.

The HJ bound exploits two conditions: (i) the intertemporal Euler equation that connects 
the price of an asset to the covariance of the asset’s payoff with the SDF and (ii) the implication 
from linear pricing that the SDF be a linear function of payoffs. The asset-pricing model is 
said to be consistent with the data if the volatility of the proposed SDF (evaluated at the mean 
SDF) is greater than the volatility implied by the HJ bound. The HJ bound is a lower bound 
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and, hence, is a necessary but not sufficient condition that an asset-pricing model must satisfy. 
In other words, the HJ bound provides a “test” of an asset-pricing model based solely on 
necessary conditions implied by the model.

The HJ bound approach in a sense works backward: Instead of writing down a model, 
solving it, and then testing it, the HJ bound asks what a valid SDF should look like in the mean-
variance space. The HJ bound approach has several advantages. First, the bound is model-free; 
that is, it is constructed using only observed asset returns. Second, one does not need to solve 
the nonlinear asset-pricing model. Specifically, there is no need to find a partial equilibrium 
or a general equilibrium solution to the model. Third, there is no limit on the number of assets 
used in the construction of the bound. Fourth, the bound is informative on how to modify 
the SDF in order to be consistent with the data.

In this article we provide a derivation of the HJ bound and then apply the bound to examine 
a few popular SDFs. The results provide an illustration of the equity premium puzzle. We then 
check the robustness of the resolutions of the puzzle with a bootstrap experiment. Our boot-
strap results indicate that minor variations in asset return moments and consumption moments 
can yield large variations in the distance between an SDF’s volatility and the HJ bound. We 
conclude with some implications for business cycle models.

2 THE HANSEN-JAGANNATHAN BOUND
For frictionless asset-pricing models, Hansen and Jagannathan (1991) showed that the 

volatility of the SDF that satisfies the representative consumer’s Euler equation must exceed 
a lower bound that is a function of only asset returns. The derivation of the HJ bound is pre-
sented here purely for completeness. (In the appendix, we derive the Sharpe-ratio version of 
the HJ Bound; see also Ljungqvist and Sargent, 2018.)

Let R denote the n×1 (gross) return vector of risky assets. Consider an SDF m that prices 
the n assets according to 

	 Et Rt+1mt+1( ) =ι,

where Et is the expectation operator conditional on information in period t and ι is an n×1 
vector of 1s. This is the standard Euler condition, which equates the expected marginal cost 
and marginal benefit of delaying consumption one period. For example, in the case of time-
separable preferences, mt+1 is the ratio of the marginal utility of future consumption to the mar-
ginal utility of current consumption. The unconditional version of the Euler equation is then 

(1)	 E Rm( )=ι.

Note that if there is a risk-free asset, then its gross return is 1
E m( )

. In the absence of a risk-free 

asset, we cannot pin down the mean of the SDF using return data.
Suppose we compute the least-squares projection of the SDF onto the linear space spanned 

by a constant and contemporaneous returns. The projection is of the form 
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(2)	 m =mv +ε ,

where 

(3)	 mv = v + R− E R( )( )′ β ,

β  n, v = E(m) = E(mv), and ε is orthogonal to the constant as well as contemporaneous 
returns. This implies E(ε) = 0 and E(Rε) = 0. Together with the Euler equation (1), this implies 
E(Rm) = E(Rmv) = ι. Then 

	 var m( )= var mv( )+ var ε( )+ 2cov mv ,ε( ).

By construction of mv, the projection error ε is orthogonal to mv, so E(mv ε) = 0. Thus, 

	 var m( )= var mv( )+ var ε( )≥ var mv( ),

meaning that a lower bound on the variance of a model’s SDF m is the variance of mv. To 
find this lower bound, we need to know var(mv).

From (3) it is easy to see that var (mv) = βʹΩβ, where Ω is the variance-covariance matrix 
of asset returns. Since (2) and (3) describe a linear least-squares projection, we can estimate 
the projection coefficient β via OLS as β = Ω–1cov(R,m). Rewriting cov(R,m), we have  
β = Ω–1(E(Rm) – E(m)E(R)). Since the model implies E(Rm) = ι, we can solve for β with 

	 β =Ω−1 ι − E m( )E R( )( ).

Thus, we can write var(mv) = (ι – E(m)E(R))ʹΩ–1(ι – E(m)E(R)). In terms of standard deviations, 
we can write the lower bound as 

(4)	 std m( )≥ ι − E m( )E R( )( )′Ω−1 ι − E m( )E R( )( ){ }
1
2
.

The right-hand side is the HJ bound. Note that the lower bound on the standard deviation 
of a model’s SDF is a function of the mean of the model’s SDF; so, it would seem like the lower 
bound depends on the model. However, we can generate a lower-bound frontier by picking 
different means. It is easy to see that the bound is a quadratic function of the mean SDF. A 
necessary condition for an SDF with mean E(m) to be consistent with asset-return data is that 
it satisfies the inequality (4).

Computing the HJ bound frontier is straightforward. First, we calculate the sample mean 
of gross returns to use as a proxy for E(R). Second, we calculate the variance-covariance matrix 
of the gross returns. Third, we choose a set of values for E(m). For each value we compute the 
right-hand side of (4) to trace out a bound frontier.

Figure 1 illustrates the HJ bound using two asset returns from 1959:Q2 to 2019:Q2: the 
return on a 3-month Treasury bill and the return on the S&P 500. Both returns are transformed 
into real returns using the price deflator for personal consumption expenditures. (We use 
this deflator because when we conduct model evaluations later, we will be using personal 
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consumption data.) The horizontal axis is E(m), and the vertical axis is the HJ bound. The 
frontier is U-shaped, implying that SDFs with means far from the one associated with the least 
volatility will need to have higher volatility to satisfy the bound.1

3 EQUITY PREMIUM PUZZLE

In this section, we use the HJ bound to illustrate the equity premium puzzle. To “test” a 
model using the HJ bound, we need the SDF implied by the model. As an example, suppose 
we want to check whether the Mehra and Prescott (1985) model is consistent with asset-return 
data. The preferences in their model are described by 

	 E0
t=0

∞

∑β t ct
1−σ

1−σ
, σ > 0,

where E0 is the conditional expectation given information at time 0, ct is the representative 
agent’s consumption at time t, β  (0,1) is the subjective discount factor, and σ is the coeffi-
cient of relative risk aversion. (The preferences are assumed to be logarithmic when σ = 1.) 
The SDF for these preferences is given by 
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Figure 1
HJ Bound Frontier

NOTE: The figure depicts the set of admissible SDFs in mean-standard deviation space implied by stock and bond 
returns from 1959:Q2-2019:Q2. 
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	 mt+1 = β
ct+1
ct

⎛
⎝⎜

⎞
⎠⎟

−σ

.

We can compute the time series of mt+1 using consumption data and parameter values for β 
and σ. Different values of β and σ imply different means, E(m), and different volatilities, std(m). 
The question is whether there are any empirically plausible β and σ such that the pair (E(m), 
std(m)) is inside the frontier. That is, given the mean of the model’s SDF, the test is whether 
std(m) satisfies the bound in (4).

Figure 2 plots the same bound as in Figure 1 for the stock and bonds returns data. Figure 2 
also plots the pairs (E(m), std(m)) using quarterly nondurables and service consumption data 
from 1959:Q2 to 2019:Q2, for β = 0.99 and values of σ from 1 to 10. These values of β and σ 
are in the range investigated by Mehra and Prescott. The volatility for σ = 1 is the right most 
“x.” As risk aversion is increased, the x’s move to the left, but the increases in volatility are 
small.

For no value of σ is the bound satisfied. In fact, the volatilities of the SDF are far below 
the bound. We conclude that the model with this parameterization is rejected. A natural ques-
tion is whether or not there exists a parameterization of the model that satisfies the bound. 
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Figure 2
Mehra and Prescott (1985)

NOTE: Sample: 1959:Q2-2019:Q2. The HJ bound frontier in this figure is the same as in Figure 1. It also has the means 
and standard deviations of the Mehra-Prescott SDF for the range of the risk-aversion parameter (σ), from 1 to 10.
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To do so we increase risk aversion and find that the Mehra-Prescott model generates enough 
volatility to satisfy the bound when σ = 460; see Figure 3.

The high value of σ is unreasonable for two reasons. First, it implies an extreme aversion 
to risk. Second, it implies a high risk-free rate of 36 percent annually.2 Figure 3 thus demon-
strates the risk-free rate puzzle as well: The level of risk aversion that matches the observed 
equity premium comes at the cost of unreasonable values for the risk-free rate.

In sum, the Mehra-Prescott model of asset pricing is rejected for reasonable parameter-
izations of risk aversion. One needs implausibly high values of risk aversion to generate suffi-
cient volatility to satisfy the bound. Moving forward, we need to find an SDF that generates 
higher volatility without high risk aversion.

Note that the above evaluation of the Mehra-Prescott model did not require us to solve 
the model or compute equilibrium asset returns. The test involved merely checking whether 
a necessary implication of the model was satisfied. We learned the same lessons that emerge 
from a full solution of the model. Another alternative to testing models using just the first-order 
conditions would be to estimate the Euler equation via GMM (generalized method of moments) 
as in Hansen and Singleton (1982) and then apply a J-test to the overidentifying restrictions. 
As is well known, this would lead to a statistical rejection of the Mehra-Prescott model. It 

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.1

Mean SDF

0

2

4

6

8

10

12

14
Standard deviation SDF

HJ bound
Mehra-Prescott

1.0

Figure 3
High Risk Aversion in Mehra and Prescott (1985)

NOTE: Sample: 1959:Q2-2019:Q2. The figure illustrates the means and standard deviations of the Mehra-Prescott SDF 
for a wider range of the risk-aversion parameter (σ), relative to Figure 2, from 1 to 460. 
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would not, however, provide any guidance as to why the model was rejected and what to do 
to fix the model.

4 RESOLUTIONS
A similar procedure can be applied to two other popular asset-pricing models. Both are 

based on relaxing separability in the utility function: in one case state separability and in the 
other case time separability. Both add just one parameter to the Mehra-Prescott model, and 
both increase the volatility of the SDF.

Epstein and Zin (1991) and Weil (1989) generalize the time-separable preferences to allow 
for an independent parameterization of attitudes toward risk and intertemporal substitution. 
Following Weil (1989), these state-nonseparable preferences have a recursive representation: 

	 Vt =U ct ,EtVt+1[ ],
where V is a von-Neumann-Morgenstern utility index and 

	 U c,V[ ]=
1−β( )c1−ρ + β 1+ 1−β( ) 1−σ( )V⎡⎣ ⎤⎦

1−ρ
1−σ

⎛
⎝⎜

⎞
⎠⎟

⎧
⎨
⎩

⎫
⎬
⎭

1−σ
1−ρ

⎛
⎝⎜

⎞
⎠⎟

−1

1−β( ) 1−σ( ) .

The elasticity of intertemporal substitution is 1/ρ, and σ is the coefficient of relative risk aver-
sion. As shown by Weil (1989), the SDF for these preferences simplifies to 

	 β ct+1
ct

⎛
⎝⎜

⎞
⎠⎟

−σ⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

1−σ
1−ρ

⎛
⎝⎜

⎞
⎠⎟

Rt+1[ ]
1−σ
1−ρ

⎛
⎝⎜

⎞
⎠⎟
−1 ,

 where Rt+1 is the return on the market portfolio.
Constantinides (1990) models consumers as habitual, in that levels of consumption in 

adjacent periods are complementary. That is, the time-nonseparable preferences of consumers 
(in a discrete-time, one-lag version of Constantinides, 1990) are given by

	 U0 = E0
t=0

∞

∑nβ t ct −δct−1[ ]1−σ
1−σ

,

where δ > 0. The representative agent’s SDF is given by 

	 mt+1 = β
ct+1 −δct( )−σ + βδEt+1 ct+2 −δct+1( )−σ
ct −δct−1( )−σ + βδEt ct+1 −δct( )−σ

.

Figure 4 plots the bound and the SDF volatilities for the two models. Again, the HJ bound 
is the solid curve, as in Figure 1; the “x” represents the habit SDF, while the “o” the Epstein-
Zin SDF. For state-nonseparable preferences, the parameters are β = 0.99, ρ = 0.9, and σ = 1.7. 
For time-nonseparable preferences, the parameters are β = 0.99, δ = 0.8, and σ = 1.61.3 Both 
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models satisfy the HJ bound by increasing the volatility of the SDF. In the case of the Epstein-
Zin model, wealth, which is volatile, is part of the SDF. In the case of the time-nonseparable 
models, consumption growth is operated on by a difference operator, which increases vola-
tility when raised to moderate powers.

4.1 Are the Resolutions Robust?

Our model evaluation shows that both Epstein-Zin and habit-formation models satisfy 
the HJ bound for apparently reasonable parameter values.4 The evaluation was simple: It com-
pared just two points—the volatility of the SDF and the HJ bound at the mean of the same 
SDF. The evaluation does not account for sampling variability in (i) asset-return data and (ii) 
consumption data. The sampling variability in (i) and (ii) might affect our inference on the 
model since the HJ bound is affected by (i) and the SDF is affected by (ii).

We now conduct a bootstrap experiment to take into account the two sampling variabilities 
and check whether the resolutions are robust to changes in the data sample. We adopt a variant 
of the bootstrap procedure in Otrok, Ravikumar, and Whiteman (2004): They first find param-
eters of the asset-pricing models that satisfy the HJ bound for the whole post-WWII sample. 
Using these parameters, they then show that the models do not satisfy the bound for subsamples.
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Figure 4
Epstein-Zin and Habit-Formation Models

NOTE: Sample: 1959:Q2-2019:Q2. The figure illustrates the means and standard deviations of the SDFs for the Epstein-
Zin and habit-formation preferences that satisfy the HJ bound. The HJ bound is the same as in Figure 1.
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Our bootstrap experiment here, however, investigates how the HJ bound and the volatil-
ity of the SDF vary across artificial samples drawn from the full data set (1959:Q2-2019:Q2). 
To do this we compute the time series for the representative agent’s SDF for the two successful 
asset-pricing models in Section 3 using consumption growth data. We then use a bootstrap 
procedure to sample a vector of asset returns and the SDF. We bootstrap the entire vector—
consumption, equity return, and bond return—so that the observed correlation properties 
between the two returns and the SDF are maintained in our experiment.

The bootstrap procedure is as follows: 

(i)			 Use the parameters from Section 3 and observed consumption growth data to get 		
	 time series for the SDFs of the models. (The parameters are β = 0.99, ρ = 0.9, and σ = 1.7 	
	 for the Epstein-Zin SDF and β = 0.99, δ = 0.8, and σ = 1.61 for the habit SDF.)

(ii)	 Draw (with replacement) a time series of length 241 from the joint “empirical”  
	 distribution of the SDFs, equity returns, and T-bill returns. That is, for each period 	
	 we draw a 3-tuple (SDF, Requity, RT-bill).

(iii)	Calculate the mean and volatility of the SDF.
(iv)	Calculate the HJ bound using the time series for equity and T-bill returns at the 		

	 mean SDF.
(v)	 Repeat steps ii-iv 1,000 times. 

Figure 5 is a scatter plot of the distance between the HJ bound and SDF volatility, calcu-
lated as the SDF volatility minus the HJ bound, for each of the 1,000 bootstrap simulations. 
Panel A plots the habit-formation model, while Panel B plots the Epstein-Zin model. The 
striking feature of these figures is that the distance is almost always negative, implying that 
the models miss the bound in most simulations. In fact, the habit model misses in 96 percent 
of the simulations and the Epstein-Zin model misses in 95 percent of the simulations.

Burnside (1994) casts the distance to the bound in a GMM framework. He studies statis-
tical measures of the distance between the HJ bound and SDF volatility in the time-separable 
model and argues that the over rejection is partly due to variations in the mean of the SDF. 
Cecchetti, Lam, and Mark (1994) also show that in the context of models with time-separable 
preferences and habit formation preferences, much of the variability in the distance is due to 
the uncertainty in estimating the mean of the SDF. To their point, even if we consider only 
the lowest possible bound from the bootstrap simulations, we will reject the models most of 
the time. The reason is that the mean of the SDF varies greatly across bootstrap samples. Since 
the bound itself rises rapidly for E(m) different from 0.99, the distance to the bound becomes 
large and leads to a rejection.5

Statistically speaking, for the HJ bound to be a useful evaluation device, the test should 
not reject a true model. Specifically, suppose one uses observed consumption data to solve an 
asset-pricing model, that is, compute the equilibrium asset returns implied by the model. Then 
the test based on the distance between the HJ bound associated with the equilibrium returns 
and the volatility of the model SDF should not reject the true model. One can judge the test 
by simulating the true model many times and counting the number of times the the HJ bound 
is violated. Gregory and Smith (1992) conduct this exercise for time-separable preferences 
and conclude that the true model is rejected frequently.
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A. Habit-formation model
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B. Epstein-Zin model
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Figure 5
Bootstrap Simulations

NOTE: Sample: 1959:Q2-2019:Q2. The figure plots the distance between the standard deviation of the SDF and the HJ 
bound evaluated at the mean of the SDF for each draw of the bootstrap. The parameters for the Epstein-Zin SDF are  
β = 0.99, ρ = 0.9, and σ = 1.7; the parameters for the habit SDF are β = 0.99, δ = 0.8, and σ = 1.61.
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A formal statistical evaluation involves calculating rejection rates based on critical values 
of the test statistic, as in Burnside (1994) and Cecchetti, Lam, and Mark (1994). However, 
Otrok, Ravikumar, and Whiteman (2002) show that tests based on the distance to the HJ 
bound are non-pivotal in finite samples: The finite-sample critical values depend upon the 
SDF parameters: risk aversion and the discount factor. Therefore, one has to calculate parameter-
specific critical values for each point in the null hypothesis of interest. Nevertheless, for the 
case of time-separable preferences, Otrok, Ravikumar, and Whiteman (2002) show that the 
finite-sample distribution of the test statistic associated with the risk-neutral case is extreme. 
The critical values for the risk-neutral case deliver type-I errors no larger than intended, regard-
less of risk aversion or the discount factor. They also show that the maximal type-I error crit-
ical values for time-separable preferences are appropriate for habit formation as well as state 
nonseparable preferences. Their conclusion is that the HJ bound is indeed a useful statistical 
evaluation device, in that type-I errors can be controlled, while type-II error rates are accept-
ably small. Using their finite-sample critical values, they report evidence against time-separable 
preferences and mixed evidence for Epstein-Zin and habit preferences.

5 ASSET-PRICING IMPLICATIONS OF BUSINESS CYCLE MODELS
Our focus so far in this article has been on asset-pricing models and financial returns 

data typically used in the asset-pricing literature. The HJ bound is also useful for analyzing 
the asset-pricing implications of business cycle models. Such an approach is useful since a 
business cycle model is typically solved with a first-order approximation, which eliminates 
risk premia. Higher-order solutions are possible but costly for moderate-sized models. An 
early approach to using the HJ bound in the context of a business cycle model was Tallarini 
(2000). That paper first showed that risk-aversion per se did not affect the business cycle 
behavior of standard macroeconomic aggregates. It then showed that the SDF from that model 
did satisfy the HJ bound with sufficiently high risk aversion.

Typically, in business cycle models that study asset-pricing implications, asset return is 
measured by the S&P 500. Gomme, Ravikumar, and Rupert (2011) argue that business cycle 
theory does not necessarily imply using financial return to measure the return to capital. They 
construct the return to capital in the United States using NIPA statistics on capital income 
and capital stock. They show that while the mean return is roughly the same for equity returns 
and the return to capital, the NIPA return to capital is less volatile.

In Figure 6 we construct the HJ bound using the return to capital as in Gomme, Ravikumar, 
and Rupert (2011) and the return to the 3-month Treasury bill. We also plot the HJ bound 
from Figure 1 for comparison. The sample period here is 1959:Q2-2008:Q4. The bound for 
the return to capital is significantly higher. This follows from the fact that the return to capital 
is less volatile than the return to equity, which leads to a sharper set of restrictions on the set 
of admissible SDFs.

The implication for business cycle models is that the asset-pricing puzzle is in fact more 
challenging than the one we see with financial return data. As in Figure 2, the time-separable 
model does not generate enough volatility to satisfy the HJ bound with equity returns, so it 

Otrok and Ravikumar
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certainly will not satisfy the bound with return to capital. While it may be possible to find time- 
or state-nonseparable preferences that satisfy this bound, they will still suffer from the stability 
problem we documented earlier with these resolutions. In addition, in the case of time-non-
separable preferences, Otrok (2001) shows that the data prefer only moderate amounts of 
habit formation, which will not generate much volatility in the SDF.

6 CONCLUSION
The Hansen-Jagannathan bound is a helpful tool for understanding asset-pricing impli-

cations. By characterizing the admissible set of SDFs, we can use the bound to test proposed 
SDFs. Further, we can understand what types of asset-return data will pose greater difficulty 
for an asset-pricing model. Lastly, the bound can be constructed with only the first and second 
moments of asset-return data, hence implementation of the bound requires no computing 
power beyond a spreadsheet program.

The HJ bound uses the means, variances, and contemporaneous correlations of asset- 
return data to construct the lower bound that an SDF must satisfy. Otrok, Ravikumar, and 
Whiteman (2007) develop a volatility bound that uses serial correlation properties of the 
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Figure 6
Return to Capital: Gomme, Ravikumar, and Rupert (2011)

NOTE: Sample: 1959:Q2-2008:Q4. The figure depicts the set of admissible SDFs in the mean-standard deviation space 
implied by stock and bond returns as in Figure 1. It also depicts the set of admissible SDFs implied by return to capital 
from Gomme, Ravikumar, and Rupert (2011) and bond return.
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return data as well. This generalization allows for an evaluation of whether models fail to 
match the data in the long run, at business cycle frequencies, etc. That is, the generalized 
bound can help identify the frequencies at which a model violates the necessary conditions. 
A business cycle model that violates the bound at business cycle frequencies might be unac-
ceptable, but violations at other frequencies might not be a cause for concern. The generaliza-
tion involves projecting the SDF onto the space of current, past, and future returns. Because 
the projection is onto a larger space than that for the HJ bound, the generalized bound is tighter 
than the HJ bound. They find that the state-nonseparable SDF satisfies the bound at business 
cycle frequencies, while the time-nonseparable SDF does poorly at those frequencies. Open 
questions for future research are whether the resolutions at those frequencies are stable and 
whether these SDFs can satisfy the generalized bound at business cycle frequencies when the 
bound is constructed with Gomme, Ravikumar, and Rupert (2011) capital-return data. n

Otrok and Ravikumar
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APPENDIX: HJ BOUND AND THE SHARPE RATIO
The Sharpe ratio is the mean excess return on an asset (relative to the risk-free rate) 

divided by the standard deviation of that asset’s return. The Sharpe ratio measures how the 
market views risk: A higher Sharpe ratio implies that the market demands a higher return for 
a given level of risk. The connection between the HJ bound and the Sharpe ratio presented 
here follows Cochrane (2001).

Consider the unconditional Euler equation used to price assets:

	 ι = E Requitym( ).
For the sake of exposition we will assume that the only asset is equity, with return Requity, 

and there is a risk-free rate such that R f = 1
E m( ). We can write the right-hand side of the 

equation as 

	 E Requitym( ) = E m( )E Requity( )+ ρRequity,mσ Requityσm ,

where ρRequity,m is the correlation of equity returns with m and σs represent standard deviations. 
Next, divide through by E(m) to get 

	 1
E m( ) = E Requity( )+ ρRequity,mσ Requityσm

E m( ) .

Replacing 
1

E m( ) with Rf, dividing by σRequity, and rearranging terms yields

	
E Requity( )−R f

σ Requity

= −
ρRequity,mσm

E m( ) .

Since –1 ≤ ρRequity,m ≤ 1, we have the inequality

	
E Requity( )− r f

σ Requity

≤ σm

E m( ) .

The left-hand side is the Sharpe ratio. For given E(m), a higher Sharpe ratio implies that 
the lower bound on SDF volatility is higher.

NOTES
1	 Matlab code and data used for this and all subsequent examples in this article can be found on Christopher Otrok’s 

REPEC webpage: https://ideas.repec.org/e/pot2.html.

2	 For the value of σ that satisfies the bound, Em = 0.9258, or a quarterly return of 1/Em = 1.0801.

3	 Note that σ is not the coefficient of risk aversion in the habit model, though it is proportional to various measures 
of risk aversion. See Boldrin, Christiano, and Fisher (1997).

4	 Since we can dismiss the Mehra-Prescott model for achieving the bound with only unreasonable amounts of risk 
aversion, we will focus on only these two models in this section.

5	 The value 0.99 is in the lower part of the bound in Figure 1.
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