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Optimal Monetary Policy Under Uncertainty:
A Markov Jump-Linear-Quadratic Approach

Lars E.O. Svensson and Noah Williams

This paper studies the design of optimal monetary policy under uncertainty using a Markov jump-
linear-quadratic (MJLQ) approach. To approximate the uncertainty that policymakers face, the
authors use different discrete modes in a Markov chain and take mode-dependent linear-quadratic
approximations of the underlying model. This allows the authors to apply a powerful methodology
with convenient solution algorithms that they have developed. They apply their methods to analyze
the effects of uncertainty and potential gains from experimentation for two sources of uncertainty
in the New Keynesian Phillips curve. The examples highlight that learning may have sizable effects
on losses and, although it is generally beneficial, it need not always be so. The experimentation
component typically has little effect and in some cases it can lead to attenuation of policy. (JEL E42,
E52, E58)
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E arly in his tenure as president of the
Federal Reserve Bank of St. Louis,
William Poole laid out some of the
issues that policymakers face when

deciding on policy, as reflected in the quotations
here. In this paper we take up some of these
issues, applying a framework to help policy-
makers navigate the “sea of uncertainty.” We
focus particularly on the issue of the knowledge
and beliefs of the policymakers and the private
sector—showing how both groups of agents learn
from their observations and how this may or may
not lead to enhanced economic stability. We also
address the extent to which policymakers should
“sit back” or, instead, actively intervene in mar-
kets in order to gain knowledge to help mitigate
future uncertainty.

In previous work, Svensson and Williams
(2007a,b), we have developed methods to study
optimal policy in Markov jump-linear-quadratic

I have long been interested in the analysis of
monetary policy under uncertainty. The prob-
lems arise fromwhat we do not know; we must
deal with the uncertainty from the base of what
we do know…

The Fed faces many uncertainties, and must
adjust its one policy instrument to navigate as
best it can this sea of uncertainty. Our funda-
mental principle is that we must use that one
policy instrument to achieve long-run price
stability…

My bottom line is that market participants
should concentrate on the fundamentals. If
the bond traders can get it right, they’ll do most
of the stabilization work for us, and we at the
Fed can sit back and enjoy life.

—William Poole (1998),
President of the Federal Reserve Bank of St. Louis

(1998-2008)
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(MJLQ) models with forward-looking variables:
models with conditionally linear dynamics and
conditionally quadratic preferences, where the
matrices in both preferences and dynamics are
random. In particular, each model has multiple
modes, a finite collection of different possible
values for the matrices, whose evolution is gov-
erned by a finite-state Markov chain. In our pre-
vious work, we have discussed how these modes
could be structured to capture many different
types of uncertainty relevant for policymakers.
Here we put those suggestions into practice in a
simple benchmark policy model.

In a first paper, Svensson and Williams
(2007a), we studied optimal policy design in
MJLQ models when policymakers can or cannot
observe the current mode, but we abstracted from
any learning and inference about the current
mode. Although in many cases the optimal policy
under no learning (NL) is not a normatively desir-
able policy, it serves as a useful benchmark for
our later policy analyses. In a second paper,
Svensson and Williams (2007b), we focused on
learning and inference in the more relevant situ-
ation, particularly for themodel-uncertainty appli-
cations which interest us, in which the modes are
not directly observable. Thus, decisionmakers
must filter their observations to make inferences
about the current mode. As in most Bayesian
learning problems, the optimal policy thus typi-
cally includes an experimentation component
reflecting the endogeneity of information. This
class of problems has a long history in economics,
and it is well-known that solutions are difficult
to obtain. We developed algorithms to solve
numerically for the optimal policy.1 Due to the

curse of dimensionality, the Bayesian optimal
policy (BOP) is feasible only in relatively small
models. Confronted with these difficulties, we
also considered adaptive optimal policy (AOP).2

In this case, in each period the policymaker does
update the probability distribution of the current
mode in a Bayesian way, but the optimal policy is
computed each period under the assumption that
the policymaker will not learn in the future from
observations. In our setting, the AOP is signifi-
cantly easier to compute, and in many cases pro-
vides a good approximation to the BOP. Moreover,
the AOP analysis is of some interest in its own
right because it is closely related to specifications
of adaptive learning that have been widely studied
in macroeconomics (see Evans and Honkapohja,
2001, for an overview). Further, the AOP specifi-
cation rules out the experimentation that some
may view as objectionable in a policy context.3

In this paper, we apply our methodology to
study optimal monetary policy design under
uncertainty in dynamic stochastic general equi-
librium (DSGE) models. We begin by summarizing
the main findings from our previous work, lead-
ing to implementable algorithms for analyzing
policy in MJLQmodels. We then turn to examples
that highlight the effects of learning and experi-
mentation for two sources of uncertainty in the
benchmark New Keynesian Phillips curve. In this
model we compare and contrast optimal policies
under NL, AOP, and BOP. We analyze whether
learning is beneficial—it is not always so, a fact
which at least partially reflects our assumption
of symmetric information between the policy-
makers and the public—and then quantify the
additional gains from experimentation.4 We find
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1 In addition to the classic literature (on such problems as a
monopolist learning its demand curve), Wieland (2000 and 2006)
and Beck and Wieland (2002) have recently examined Bayesian
optimal policy and optimal experimentation in a context similar
to ours but without forward-looking variables. Tesfaselassie,
Schaling, and Eijffinger (2006) examine passive and active learning
in a simple model with a forward-looking element in the form of
a long interest rate in the aggregate-demand equation. Ellison and
Valla (2001) and Cogley, Colacito, and Sargent (2007) study situa-
tions like ours but where the expectational component is as in the
Lucas-supply curve (Et–1πt, for example) rather than our forward-
looking case (Etπt+1, for example). More closely related to our pres-
ent paper, Ellison (2006) analyzes active and passive learning in a
New Keynesian model with uncertainty about the slope of the
Phillips curve.

2 What we call optimal policy under no learning, adaptive optimal
policy, and Bayesian optimal policy have in the literature also
been referred to as myopia, passive learning, and active learning,
respectively.

3 In addition, AOP is useful for technical reasons because it gives
us a good starting point for our more intensive numerical calcula-
tions in the BOP case.

4 In addition to our own previous work, MJLQ models have been
widely studied in the control-theory literature for the special case
when the model modes are observable and there are no forward-
looking variables (see Costa, Fragoso, and Marques, 2005, and the
references therein); do Val and Başar (1999) provide an application
of an adaptive-control MJLQ problem in economics. More recently,
Zampolli (2006) has used such an MJLQ model to examine mone-



that the experimentation component is typically
small. Recognizing the informational component
of policy actions often leads policy to be slightly
more aggressive, but, somewhat surprisingly, in
one example here it leads to a less aggressive
optimal policy.

The paper is organized as follows: The next
section presents the MJLQ framework and sum-
marizes our earlier work. The third section presents
our analysis of learning and experimentation in
a simple benchmark New Keynesian model. The
fourth section presents some conclusions and
suggestions for further work.

MJLQ ANALYSIS OF OPTIMAL
POLICY

This section summarizes our earlier work,
Svensson and Williams (2007a,b).

An MJLQ Model

We consider an MJLQ model of an economy
with forward-looking variables. The economy has
a private sector and a policymaker. We let Xt
denote an nx vector of predetermined variables
in period t, xt an nx vector of forward-looking
variables, and it an nx vector of (policymaker)
instruments (control variables).5 We let model
uncertainty be represented by nj possible modes
and let jt � Nj� {1,2,…,nj} denote the mode in

period t. The model of the economy can then be
written

(1)

(2)

where εt is a multivariate normally distributed
random i.i.d. nε vector of shocks with mean zero
and contemporaneous covariance matrix Inε. The
matrices A11j,A12j,…,C2j have the appropriate
dimensions and depend on the mode j. Because
a structural model here is simply a collection of
matrices, each mode can represent a different
model of the economy. Thus, uncertainty about
the prevailing mode ismodel uncertainty.6

Note that the matrices on the right side of (1)
depend on the mode jt+1 in period t+1, whereas
the matrices on the right side of (2) depend on the
mode jt in period t. Equation (1) then determines
the predetermined variables in period t+1 as a
function of the mode and shocks in period t+1
and the predetermined variables, forward-looking
variables, and instruments in period t. Equation
(2) determines the forward-looking variables in
period t as a function of the mode and shocks in
period t, the expectations in period t of next
period’s mode and forward-looking variables, and
the predetermined variables and instruments in
period t. The matrix A22j is nonsingular for each
j � Nj.

The mode jt follows a Markov process with
the transition matrix

.7

The shocks εt are mean zero and i.i.d. with prob-
ability density ϕ; and without loss of generality
we assume that εt is independent of jt.8 We also
assume that c1jεt and c2kεt are independent for

P Pjk;  

Εt j t j t j t j t j tH x A X A x B i C
t t t t t+ + = + + +

1 1 21 22 2 2 ε ,

X A X A x B i Ct j t j t j t j tt t t t+ += + + +
+ + + +1 11 12 1 11 1 1 1

ε 11,
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tary policy under shifts between regimes with and without an
asset-market bubble. Blake and Zampolli (2006) provide an exten-
sion of the MJLQmodel with observable modes to include forward-
looking variables and present an algorithm for the solution of an
equilibrium resulting from optimization under discretion. Svensson
andWilliams (2007a) provide a more general extension of the MJLQ
framework with forward-looking variables and present algorithms
for the solution of an equilibrium resulting from optimization
under commitment in a timeless perspective as well as arbitrary
time-varying or time-invariant policy rules, using the recursive
saddlepoint method of Marcet and Marimon (1998). They also
provide two concrete examples: an estimated backward-looking
model (a three-mode variant of Rudebusch and Svensson, 1999)
and an estimated forward-looking model (a three-mode variant of
Lindé, 2005). Svensson andWilliams (2007a) also extend the MJLQ
framework to the more realistic case of unobservable modes,
although without introducing learning and inference about the
probability distribution of modes. Svensson and Williams (2007b)
focus on learning and experimentation in the MJLQ framework.

5 The first component of Xtmay be unity, in order to allow for
mode-dependent intercepts in the model equations.

6 See also Svensson and Williams (2007a), where we show how
many different types of uncertainty can be mapped into our MJLQ
framework.

7 Obvious special cases are P = Inj, when the modes are completely
persistent, and Pj = p

–′ ( j � Nj), when the modes are serially i.i.d.
with probability distribution p–.

8 Because mode-dependent intercepts (as well as mode-dependent
standard deviations) are allowed in the model, we can still incor-
porate additive mode-dependent shocks.



all j,k � Nj. These shocks, along with the modes,
are the driving forces in the model. They are not
directly observed. For technical reasons, it is
convenient but not necessary that they are inde-
pendent. We let pt = �p1t,…,pnjt�′ denote the true
probability distribution of jt in period t. We let
pt+τ|t denote the policymaker and private sector
estimate in the beginning of period t of the prob-
ability distribution in period t+τ. The prediction
equation for the probability distribution is

(3)

We let the operator Et[.] in the expression
EtHjt+1xt+1 on the left side of (2) denote expecta-
tions in period t conditional on policymaker and
private sector information in the beginning of
period t, including Xt, it, and pt|t but excluding jt
and εt. Thus, the maintained assumption is sym-
metric information between the policymaker and
the (aggregate) private sector. Because forward-
looking variables will be allowed to depend on jt,
parts of the private sector, but not the aggregate
private sector, may be able to observe jt and parts
of εt. Note that although we focus on the determi-
nation of the optimal policy instrument, it, our
results also show how private sector choices as
embodied in xt are affected by uncertainty and
learning. The precise informational assumptions
and the determination of pt|twill be specified
below.

We let the policymaker intertemporal loss
function in period t be

(4)

where δ is a discount factor satisfying 0 < δ < 1,
and the period loss, L�Xt,xt, it, jt�, satisfies

(5)

where the matrixWj(j � Nj) is positive semidefi-
nite. We assume that the policymaker optimizes
under commitment in a timeless perspective. As
explained below, we will then add the term
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to the intertemporal loss function in period t. As
we shall see below, the nx vector Ξt–1 is the vector
of Lagrange multipliers for equation (2) from the
optimization problem in period t–1. For the spe-
cial case when there are no forward-looking
variables (nx = 0), the model consists of (1) only,
without the term A12jt+1xt; the period loss function
depends on Xt, it, and jt only; and there is no role
for the Lagrange multipliers, Ξt–1, or the term (6).

Approximate MJLQ models

Although in this paper we start with an MJLQ
model, it is natural to ask where such a model
comes from, as usual formulations of economic
models are not of this type. However, the same
type of approximation methods that are widely
used to convert nonlinear models into their linear
counterparts can also convert nonlinear models
into MJLQ models. We analyze this issue in
Svensson and Williams (2007a) and present an
illustration as well. Here we briefly discuss the
main ideas. Rather than analyze local deviations
from a single steady state as in conventional linear-
izations, for an MJLQ approximation we analyze
the local deviations from (potentially) separate,
mode-dependent steady states. Standard lineariza-
tions are justified as asymptotically valid for small
shocks, as an increasing time is spent in the vicin-
ity of the steady state. Our MJLQ approximations
are asymptotically valid for small shocks and
persistent modes, as an increasing time is spent
in the vicinity of each mode-dependent steady
state. Thus, for slowly varyingMarkov chains, our
MJLQ model provides accurate approximations
of nonlinear models with Markov switching.

Types of Optimal Policies

We will distinguish three cases: (i) optimal
policy when there is no learning (NL), (ii) adap-
tive optimal policy (AOP), and (iii) Bayesian opti-
mal policy (BOP). By NL, we refer to a situation
when the policymaker and the aggregate private
sector have a probability distribution pt|t over
the modes in period t and update the probability

Ξ Εt t j tH x
t−1

1
δ
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distribution in future periods using the transition
matrix only, so the updating equation is

(7)

That is, the policymaker and the private sector
do not use observations of the variables in the
economy to update the probability distribution.
The policymaker then determines optimal policy
in period t conditional on pt|t and (7). This is a
variant of a case examined in Svensson and
Williams (2007a).

By AOP, we refer to a situation when the
policymaker in period t determines optimal policy
as in the NL case, but then uses observations of
the realization of the variables in the economy to
update the probability distribution according to
Bayes’s theorem. In this case, the instruments will
generally have an effect on the updating of future
probability distributions and through this channel
separately affect the intertemporal loss. However,
the policymaker does not exploit this channel in
determining optimal policy. That is, the policy-
maker does not do any conscious experimentation.
By BOP, we refer to a situation when the policy-
maker acknowledges that the current instruments
will affect future inference and updating of the
probability distribution and calculates optimal
policy taking this separate channel into account.
Therefore, BOP includes optimal experimenta-
tion, where for instance the policymaker may
pursue policy that increases losses in the short
run but improves the inference of the probability
distribution and therefore lowers losses in the
longer run.

Optimal Policy with No Learning

We first consider the NL case. Svensson and
Williams (2007a) derive the equilibrium under
commitment in a timeless perspective for the case
when Xt, xt, and it are observable in period t, jt is
unobservable, and the updating equation for pt|t
is given by (7). Observations of Xt, xt, and it are
then not used to update pt|t.

It will be useful to replace equation (2) with
the two equivalent equations,

(8) Εt j t tH x z
t+ + =

1 1 ,

p P pt t t t+ + = ′1 1| | .

(9)

where we introduce the nx vector of additional
forward-looking variables, zt. Introducing this
vector is a practical way of keeping track of the
expectations term on the left side of (2).
Furthermore, it will be practical to use (9) and
solve xt as a function of Xt, zt, it, jt, and εt:

(10)

We note that, for given jt, this function is linear
in Xt, zt, it, and εt.

In order to solve for the optimal decisions, we
use the recursive saddlepoint method (see Marcet
and Marimon, 1998, Svensson and Williams,
2007a, and Svensson, 2007, for details of the recur-
sive saddlepoint method). Thus, we introduce
Lagrange multipliers for each forward-looking
equation, the lagged values of which become
state variables and reflect costs of commitment,
while the current values become control variables.
The dual period loss function can be written

where X̃t � �Xt′, Ξ′t–1�′ is the �nx + nx� vector of
extended predetermined variables (that is, includ-
ing the nx vector Ξt–1), γt is an nx vector of Lagrange
multipliers, ϕ �.� denotes a generic probability
density function (for εt, the standard normal
density function), and

(11)

As discussed in Svensson and Williams
(2007a), the failure of the law of iterated expecta-
tions leads us to introduce the collection of value
functions, V̂�st,j �, that condition on the mode,
whereas the value function Ṽ�st� averages over
these and represents the solution of the dual
optimization problem. The somewhat unusual

% % %L X z i j L X x X zt t t t t t t t t, , , , , , , ,γ ε( ); ii j i j
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t t t t t

t t t jt
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Εt t t t t t t
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jt t t t

L X z i j

p L X z i
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ε ,
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Bellman equation for the dual problem can be
written

(12)

where st � �X̃t′,p′t|t�′ denotes the perceived state
of the economy (it includes the perceived proba-
bility distribution, pt|t, but not the true mode) and
�st, jt� denotes the true state of the economy (it
includes the true mode of the economy). As we
discuss in more detail below, it is necessary to
include the mode jt in the state vector because
the beliefs do not satisfy the law of iterated expec-
tations. In the BOP case, beliefs do satisfy this
property, so the state vector is simply st. Also note
that, in the Bellman equation, we require that all
the choice variables respect the information con-
straints and thus depend on the perceived state,
st, but not the mode jt directly.

The optimization is subject to the transition
equation for Xt,

(13)

where we have substituted x̃ �Xt,zt, it, jt,εt� for xt;
the new dual transition equation for Ξt,

(14)

and the transition equation (7) for pt|t. Combining
equations, we have the transition for st:

Ξt t= γ ;
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B
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It is straightforward to see that the solution of
the dual optimization problem (12) is linear in
X̃t for given pt|t, jt:

(16)

(17)

This solution is also the solution to the original
primal optimization problem. We note that xt is
linear in εt for given pt|t and jt. The equilibrium
transition equation is then given by

(18)

As can be easily verified, the (unconditional)
dual value function Ṽ�st� is quadratic in X̃t for
given pt|t, taking the form

The conditional dual value function, V̂�st,jt�,
gives the dual intertemporal loss conditional on
the true state of the economy, �st,jt�. It follows
that this function satisfies

V̂ s j
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The function V̂�st,jt� is also quadratic in X̃t for
given pt|t and jt:

It follows that we have

Although we find the optimal policies from
the dual problem, in order to measure true
expected losses, we are interested in the value
function for the primal problem (with the original,
unmodified loss function). This value function,
with the period loss function EtL�Xt,xt, it, jt�,
rather than EtL̃ �X̃t,zt, it,γt, jt,εt�, satisfies

(19)

where the second equality follows because
x�st, jt,εt� is linear in εt for given st and jt. It is qua-
dratic in X̃t for given pt|t:

(the scalar w�pt|t� in the primal value function is
obviously identical to that in the dual value
function). This is the value function conditional
on X̃t and pt|t after Xt has been observed but before
xt has been observed, taking into account that jt
and εt are not observed. Hence, the second term
on the right side of (19) contains the expectation
of Hjtxt conditional on that information.

9

Svensson and Williams (2007a,b) present
algorithms to compute the solution and the pri-
mal and dual value functions for the NL case.
For future reference, we note that the value func-
tion for the primal problem also satisfies

%
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where the conditional value function, V̆�st,jt�,
satisfies

(20)

Adaptive Optimal Policy

Consider now the case of AOP, where the
policymaker uses the same policy function as in
the NL case but each period updates the probabili-
ties that this policy is conditioned on. This case
is thus simple to implement recursively, as we
have already discussed how to solve for the opti-
mal decisions and below we show how to update
probabilities. However, the ex ante evaluation of
expected loss is more complex, as we show below.
In particular, we assume that C2jt �/ 0 and that both
εt and jt are unobservable. The estimate pt|t is the
result of Bayesian updating, using all information
available, but the optimal policy in period t is
computed under the perceived updating equation
(7). That is, the fact that the policy choice will
affect future pt+τ|t+τ and that future expected loss
will change when pt+τ|t+τ changes is disregarded.
Under the assumption that the expectations on
the left side of (2) are conditional on (7), the
variables zt, it, γt, and xt in period t are still deter-
mined by (16) and (17).

In order to determine the updating equation
for pt|t, we specify an explicit sequence of infor-
mation revelation as follows, in no less than nine
steps. The timing assumptions are necessary in
order to spell out the appropriate conditioning
for decisions and updating of beliefs.

(i) The policymaker and the private sector
enters period t with the prior pt|t–1. They know
Xt–1, xt–1 = x�st–1, jt–1,εt–1�, zt–1 = z�st–1�, it–1 = i�st–1�,
and Ξt–1 = γ �st–1� from the previous period.

(ii) In the beginning of period t, the mode jt
and the vector of shocks εt are realized. Then the
vector of predetermined variables Xt is realized
according to (1).
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9 To be precise, the observation of Xt, which depends on C1jtεt, allows
some inference of εt, εt|t. xtwill depend on jt and on εt, but on εt
only through C2jtεt. By assumption C1jεt and C2kεt are independent.
Hence, any observation of Xt and C1jtεt does not convey any infor-
mation about C2jεt, so EtC2jεt = 0.



(iii) The policymaker and the private sector
observe Xt. They then know X̃t � �Xt′,Ξ′t–1�′. They
do not observe jt or εt.

(iv) The policymaker and the private sector
update the prior pt|t–1 to the posterior pt|t accord-
ing to Bayes’s theorem and the updating equation

(21)

where again ϕ �.� denotes a generic density func-
tion.10 Then the policymaker and the private
sector know st � �X̃t′,p′t|t�′.

(v) The policymaker solves the dual optimiza-
tion problem, determines it = i�st�, and imple-
ments/announces the instrument setting, it.

(vi) The private sector (and policymaker)
expectations,

are formed. In equilibrium, these expectations
will be determined by (16). In order to understand
their determination better, we look at this in some
detail.

These expectations are by assumption formed
before xt is observed. The private sector and the
policymaker know that xtwill in equilibrium be
determined in the next step according to (17).
Hence, they can form expectations of the soon-to-
be determined xt conditional on jt = j,11
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The private sector and the policymaker can also
infer Ξt from

(23)

This allows the private sector and the policymaker
to form the expectations

(24)

where

where we have exploited the linearity of xt =
x�st, jt,εt� and xt+1 = x�st+1, jt+1,εt+1� in εt and εt+1.
Note that zt is, under AOP, formed conditional
on the belief that the probability distribution in
period t+1 will be given by pt+1|t+1 = P ′pt|t, not by
the true updating equation that we are about to
specify.

(vii) After the expectations zt have been
formed, xt is determined as a function of Xt, zt, it,
jt, and εt by (10).

(viii) The policymaker and the private sector
then use the observed xt to update pt|t to the new
posterior p+t|t according to Bayes’s theorem, via
the updating equation

(25)

(ix) The policymaker and the private sector
then leave period t and enter period t+1, with
the prior pt+1|t given by the prediction equation
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10 The policymaker and private sector can also estimate the shocks
εt|t as

where

However, because of the assumed independence of C1jεt and C2kεt,
j,k � Nj, we do not need to keep track of εjt|t.

11 Note that 0 instead of εjt|t enters above. This is because the inference
εjt|t above is inference about C1jεt, whereas xt depends on εt through
C2jεt. Becausewe assume that C1jεt and C2jεt are independent, there
is no inference of C2jεt from observing Xt. Hence, EtC2jtεt = 0. Because
of the linearity of xt in εt, the integration of xt over εt results in
x�st, jt,0t�.

ε jt t t j t j t t jX A X A x B i j N
j

; − − − ∈( )− − −11 1 12 1 1 1 � .

ε εt t jt tj jt tp= ∑ ,

Svensson and Williams

282 JULY/AUGUST 2008 FEDERAL RESERVE BANK OF ST. LOUIS REVIEW



In the beginning of period t+1, the mode jt+1 and
the vector of shocks εt+1 are realized, and Xt+1 is
determined by (1) and observed by the policy-
maker and private sector. The sequence of the nine
steps above then repeats itself. For more detail on
the explicit densities in the updating equations
(21) and (25), see Svensson andWilliams (2007b).

The transition equation for pt+1|t+1 can be
written

(27)

where Q�st,zt, it, jt,εt, jt+1,εt+1� is defined by the
combination of (21) for period t+1 with (13) and
(26). The equilibrium transition equation for the
full state vector is then given by

(28)

where the bottom block is given by the true
updating equation (27) together with the policy
function (16). Thus, we note that, in this AOP
case, there is a distinction between the perceived
transition and equilibrium transition equations,
(15) and (18), which in the bottom block include
the perceived updating equation, (7), and the
true equilibrium transition equation, (28), which
replaces the perceived updating equation, (7) with
the true updating equation, (27).

Note that V�st� in (19), which is subject to the
perceived transition equation, (15), does not give
the true (unconditional) value function for the
AOP case. This is instead given by

where the true conditional value function, V̆�st,jt�,
satisfies
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(29)

That is, the true value function, V–�st�, takes into
account the true updating equation for pt|t, (27),
whereas the optimal policy and the perceived
value function, V�st�, in (19), are conditional on
the perceived updating equation, (7), and thereby
the perceived transition equation, (15). Note also
that V–�st� is the value function after X̃t has been
observed but before xt is observed, so it is condi-
tional on pt|t rather than p

+
t|t. Because the full

transition equation, (28), is no longer linear due
to the belief-updating equation, (27), the true
value function, V–�st�, is no longer quadratic in X̃t
for given pt|t. Thus, more-complex numerical
methods are required to evaluate losses in the
AOP case, although policy is still determined
simply as in the NL case.

As we discuss in Svensson and Williams
(2007b), the difference between the true updating
equation for pt+1|t+1, (27), and the perceived updat-
ing equation, (7), is that, in the true updating equa-
tion, pt+1|t+1 becomes a random variable from the
point of view of period t, with mean equal to pt+1|t.
This is because pt+1|t+1 depends on the realization
of jt+1 and εt+1. Thus Bayesian updating induces
a mean-preserving spread over beliefs, which in
turn sheds light on the gains from learning. If the
conditional value function, V̆�st,jt�, under NL is
concave in pt|t for given X̃t and jt, then by Jensen’s
inequality the true expected future loss under
AOP will be lower than the true expected future
loss under NL. That is, the concavity of the value
function for beliefs means that learning leads to
lower losses. Although it is likely that V̆ is indeed
concave, as we show in the applications, it need
not be globally so and thus learning need not
always reduce losses. In some cases, the losses
incurred by increased variability of beliefs may
offset the expected precision gains. Furthermore,
under BOP, it may be possible to adjust policy
to further increase the variance of pt|t, that is,
achieve a mean-preserving spread that might
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further reduce the expected future loss.12 This
amounts to optimal experimentation.

Bayesian Optimal Policy

Finally, we consider the BOP case, when
optimal policy is determined while taking the
updating equation, (27), into account. That is, we
now allow the policymaker to choose it taking into
account that his actions will affect pt+1|t+1, which
in turn will affect future expected losses. In par-
ticular, experimentation is allowed and is opti-
mally chosen. For the BOP case, there is hence
no distinction between the perceived and true
transition equation.

The transition equation for the BOP case is

(30)

Then the dual optimization problem can be writ-
ten as (12) subject to the above transition equation
(30). However, in the Bayesian case, matters sim-
plify somewhat, as we do not need to compute the
conditional value functions, V̂�st,jt�, which we
recall were required because of the failure of the
law of iterated expectations in the AOP case. We
note now that the second term on the right side
of (12) can be written as

Because, in the Bayesian case, the beliefs do sat-
isfy the law of iterated expectations, this is then
the same as
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See Svensson and Williams (2007b) for a proof.
Thus, the dual Bellman equation for the

Bayesian optimal policy is

(31)

where the transition equation is given by (30).
The solution to the optimization problem

can be written

(32)

(33)

Because of the nonlinearity of (27) and (30), the
solution is no longer linear in X̃t for given pt|t.
The dual value function, Ṽ�st�, is no longer qua-
dratic in X̃t for given pt|t. The value function of
the primal problem, V�st�, is given by, equiva-
lently, (19), (29) (with the equilibrium transition
equation (28) with the solution (32)), or

(34)

It is also no longer quadratic in X̃t for given pt|t.
Thus, more complex and detailed numerical
methods are necessary in this case to find the
optimal policy and the value function. Therefore,
little can be said in general about the solution of
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12 Kiefer (1989) examines the properties of a value function, including
concavity, under Bayesian learning for a simpler model without
forward-looking variables.
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the problem. Nonetheless, in numerical analysis
it is very useful to have a good starting guess at a
solution, which in our case comes from the AOP
case. In our examples below we explain in more
detail how the BOP and AOP cases differ and
what drives the differences.

Observable Modes

In this paper we largely focus on the cases
where the policymakers do not observe the cur-
rent mode, which is certainly the more relevant
case when analyzing model uncertainty. However,
some situations may arguably be better modeled
by observable shifts in modes, as in most of the
econometric literature on regime-switching
models. Moreover, one way to gauge the effects of
uncertainty in a model is to move from a constant-
coefficient specification to one in which the
parameters are observable but may vary. (That is,
the current values of parameters are known, but
future values are uncertain.) For this reason, we
use the observable mode case, to analyze implica-
tions of uncertainty on policy. In Svensson and
Williams (2007a), we develop simple algorithms
for observable changes in modes, which play off
the fact that conditional on the mode the evolu-
tion of the economy is linear and preferences are
quadratic. Thus, the optimal policy consists of a
mode-dependent collection of linear policy rules
and can be written

(35)

for jt � Nj.

LEARNING AND
EXPERIMENTATION IN A SIMPLE
NEW KEYNESIAN MODEL
The Model

For our policy exercises, we consider a bench-
mark hybrid New Keynesian Phillips curve (see
Woodford, 2003, for an exposition):

(36) π ω π ω π γ εt j t j t t j t tt t t
y c= −( ) + + +− +1 1 1Ε .

i F Xt ij tt
= %

Here πt is the inflation rate, yt is the output gap,
ωjt is a parameter reflecting the degree of forward-
looking behavior in price setting, and γjt is a
composite parameter reflecting the elasticity of
demand and frequency of price adjustment. For
simplicity, we assume that policymakers can
directly control the output gap, yt. In another
paper, Svensson andWilliams (2008), we consider
optimal policy in the standard two-equation
New Keynesian model that also includes a log-
linearized consumption Euler equation. Many of
the same issues that we focus on here arise there
as well, but the simpler setting in the present
paper allows us to focus more directly on the
effects of uncertainty on policy.

We focus on two key sources of uncertainty
in the New Keynesian Phillips curve. Our first
example considers the degree of forward-looking
behavior in inflation. In the model, this translates
to uncertainty about ωj. If this parameter is large,
inflation is largely determined by current shocks
and expectations of the future, whereas if ωj is
small, then there is a substantial exogenous iner-
tia in the inflation process. Our second example
analyzes uncertainty about the slope of the Phillips
curve, as reflected in the parameter γj. This could
reflect changes in the degree of monopolistic
competition (which also lead to varying markups)
and/or changes in the degree of price stickiness.
In each example, we look first at the effect of
uncertainty, going from a constant-coefficient
model to a model with random coefficients. Then,
we analyze the effects of learning and experimen-
tation on policy and losses.

In both examples, we use the following loss
function:

(37)

We set the loss-function parameters as δ = 0.98,
λ = 0.1, and set the shock standard deviation to
c = 0.5. Even though different structural parame-
ters vary in the two examples, both examples use
two modes and set the transition matrix to

P =










0 98 0 02

0 02 0 98

. .

. .
.

L yt t t= +π λ2 2.
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In both examples, we examine the value func-
tions and optimal policies for this simple New
Keynesian model under NL, AOP, and BOP. We
have one forward-looking variable (xt � πt) and
consequently one Lagrange multiplier (Ξt–1 �
Ξπ,t–1). We have one predetermined variable
(Xt � πt–1) and the estimated mode probabilities
(pt|t � �p1t|t, p2t|t�′, of which we only need keep
track of one, p1t|t). Thus, the value and policy
functions, V�st� and i�st�, are all three dimensional
(st = �πt–1,Ξπ,t–1,p1|t�′). For computational reasons,
we are forced to restrict attention to relatively
sparse grids with few points. The following plots
show two-dimensional slices of the value and
policy functions, focusing on the dependence on
πt–1 and p1t|t (which we for simplicity denote by
p1|t in the figures). In particular, all of the plots
are for Ξπ,t–1 = 0.

Example 1: How Forward-Looking Is
Inflation?

This example analyzes one of themain sources
of uncertainty in the New Keynesian framework—
the degree to which inflation is a forward-looking
variable responding to expectations of future
developments. Specifications that suggest that

inflation has substantial exogenous persistence
have tended to fit better empirically, while perhaps
being less rigorous in their micro-foundations.
In this example, we see how uncertainty about
the degree of forward-looking behavior, as indexed
by ωj, affects policy. Thus, we assume that there
are two modes, one more forward looking, with
ω1 = 0.8, and the other more backward looking,
with ω2 = 0.2. Note that, with the transition matrix
P as specified above, this means E�ωj� = 0.5. For
this example, we fix the slope parameter at γ = 0.1.

In Figure 1, we illustrate the effects of uncer-
tainty on policy and losses. In the left panel, we
plot the two mode-dependent optimal policy
functions for the MJLQ model with observable
modes, labeled “Obs 1” for mode 1 and “Obs 2”
for mode 2. Here, we see that the optimal policy
is more aggressive in the more backward-looking
mode 2, because in response to a higher inflation
the optimal policy involves larger negative out-
put gaps. The unconditional average policy is
labeled “E(Obs)” and shown with a gray line. For
comparison, the constant-coefficient case, where
we set ω1 = ω2 = E�ωj� = 0.5, is plotted with a black
dashed line. Here, we see that optimal policy
under uncertainty is more aggressive in respond-
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Figure 1

Policies and Losses from Observable and Constant Modes

NOTE: Obs 1 (2) is observable mode 1 (2); E(Obs) is the unconditional average policy.



ing to inflation movements than optimal policy
in the absence of uncertainty.

A common starting point for thinking about
the effects of uncertainty on policy is Brainard’s
(1967) classic analysis, which suggested that
uncertainty should make policy more cautious.
However, Brainard worked in a static framework
and the source of uncertainty he analyzed was a
slope coefficient on how policy affects the econ-
omy. Our second example below is closer to
Brainard’s and comes to similar conclusions. But,
in this example, our results suggest, at least for
this parameterization, that uncertainty about the
dynamics of inflation leads to more-aggressive
policy. This is similar to what Söderström (2002)
found in a backward-looking model.

The right panel of Figure 1 plots the losses
associated with the optimal policies in the differ-
ent cases. When inflation is more forward looking,
it is easier to control and so overall losses are

lower evenwith less-aggressive policies. However,
uncertainty about the dynamics of inflation can
have significant effects on losses for moderate to
high inflation levels. This is evident by comparing
the constant-coefficient and average observable
curves, where we see that the loss nearly doubles
at the edges of the plot.

Nowwe keep the same specification, but make
the more realistic assumption that the current
mode is not observed. Thus, we analyze the effects
of learning and experimentation on policy and
losses. The top-two panels of Figure 2 show losses
under NL and BOP as functions of p1t. The bottom-
two panels of the figure show the differences
between losses under NL, AOP, and BOP. Figure 3
shows the corresponding policy functions and
their differences. The top-two panels plot the
policy functions under AOP and BOP as a func-
tion of inflation. The AOP policy is linear in πt,
and clearly the BOP policy is nearly so. The bot-
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tom-left panel plots the BOP policy as a function
of p1t, showing that policy is less aggressive (that
is, has a smaller magnitude of response) the greater
is the probability of being in the more forward-
looking mode 1. The bottom-right panel shows
that the policy differences between AOP and BOP,
the experimentation component of policy, are
incredibly small.

In Svensson and Williams (2007b), we show
that learning implies a mean-preserving spread
of the random variable pt+1|t+1 (which under
learning is a random variable from the vantage
point of period t). Hence, concavity of the value
function under NL in p1t implies that learning is
beneficial, because then a mean-preserving spread
reduces the expected future loss. However, we
see in Figure 2 that the value function is actually
slightly convex in p1t, so learning is not beneficial
here. Consequently, we see in Figure 2 that AOP
gives higher losses than NL. In contrast, for a
backward-looking example in Svensson and

Williams (2007b), the value function is concave
and learning is beneficial. Experimentation is
beneficial here, as BOP does give lower losses
than AOP, but the difference is minuscule. So,
for this example, learning has sizable effects on
losses and is detrimental, whereas experimenta-
tion is beneficial but has negligible effects.

Why would learning not be beneficial with
forward-looking variables? It may at least partially
be a remnant of our assumption of symmetric
beliefs and information between the private sec-
tor and the policymaker. With backward-looking
models, we have generally found that learning is
beneficial. However, under our assumption of
symmetric information and beliefs between the
private sector and the policymaker, both the pri-
vate sector and the policymaker learn. The differ-
ence between backward- and forward-looking
models then comes from the way that private sec-
tor beliefs also respond to learning. Having more
reactive private sector beliefs may add volatility
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and make it more difficult for the policymaker to
stabilize the economy.

Example 2: What Is the Slope of the
Phillips Curve?

This example analyzes the other main source
of uncertainty in the New Keynesian Phillips
curve—the extent to which inflation responds to
fluctuations in the output gap. Once again, we
assume that there are two modes: Now one has a
Phillips curve that is flatter, with γ1 = 0.05, and
the other has a steeper curve, with γ2 = 0.25. Note
that with the transition matrix P as specified
above, this means E�γj� = 0.15. For this example,
we fix the forward-looking expectations parame-
ter at ω = 0.5. Because policymakers once again
directly control the output gap, this example is
a forward-looking counterpart to the classic
Brainard (1967) analysis of uncertainty about the
effectiveness of the control.

In Figure 4 we illustrate the effects of uncer-
tainty on policy and losses. As in the previous
example, the left panel plots the two mode-
dependent optimal policy functions for the MJLQ
model with observable modes. Here, we see that
the MJLQ optimal policies in both modes are less

aggressive than the constant-coefficient case. Thus,
our results here are in accord with Brainard’s—
uncertainty about the slope of the Phillips curve
leads to more cautious policy.

The right panel of Figure 4 plots the losses
associated with the optimal policies in the differ-
ent cases. When the Phillips curve is steeper,
inflation responds more to the output gap, making
inflation easier to control. Thus, overall losses
are lower in mode 2, even with less-aggressive
policies. However, once again uncertainty about
this key parameter can have significant effects on
losses for high inflation levels. This is evident by
comparing the constant-coefficient and average
observable curves, where we see that the loss
nearly doubles at the edges of the plot.

Now we again keep the same specification,
but make the more realistic assumption that the
current mode is not observed. The top-two panels
of Figure 5 show losses under NL and BOP as
functions of p1t. The bottom-two panels of the
figure show the differences between losses under
NL, AOP, and BOP. We see in Figure 2 that the
value function is once again slightly convex in p1t,
so learning is not beneficial here. Consequently,
we see in the bottom-right panel of Figure 2 that
AOP gives higher losses than NL. Thus, once
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again, the additional volatility outweighs the
improved inference and makes learning detri-
mental in this example. Experimentation is once
again beneficial, as BOP gives lower losses than
AOP. And, while the effects of experimentation
are an order of magnitude smaller than the effects
of learning, the gains from recognizing the endo-
geneity of information are nonnegligible here.
Thus, for uncertainty about the slope of the
Phillips curve, policymakers may have an incen-
tive to experiment—that is, to take actions to
mitigate future uncertainty.

Figure 6 shows the corresponding policy
functions and their differences. The top-two
panels plot the policy functions under AOP and
BOP as a function of inflation. The AOP policy
is linear in πt–1, and clearly the BOP policy is
nearly so, although some differences are evident
at the edge of the plot. The bottom-left panel plots
the BOP policy as a function of p1t, showing that

the policy function is relatively flat in this dimen-
sion. The bottom-right panel plots the difference
between the AOP and BOP policy functions,
which shows that here the experimentationmotive
leads toward less-aggressive policy. This is counter
to an example in Svensson and Williams (2007b),
where we show that in a backward-looking model
experimentation may lead to more-aggressive
policy. There, policy makes outcomes more dis-
persed in order to sharpen inference over the
modes. However, here, because learning is detri-
mental, the experimentation component of policy
seeks to slow the effects of learning by making
outcomes less dispersed. This serves to illustrate
that the experimentation component of policy
need not be associated with wild or aggressive
policy action, but rather it optimally takes into
account how information influences the targets
of policy.
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CONCLUSION
In this paper, we have presented a relatively

general framework for analyzing model uncer-
tainty and the interactions between learning and
optimization. Although this is a classic issue,
very little to date has been done for systems with
forward-looking variables, which are essential
elements of modern models for policy analysis.
Our specification is general enough to cover many
practical cases of interest, yet remains relatively
tractable in implementation. This is definitely
true for cases when decisionmakers do not learn
from the data they observe (our case of no learning,
NL) or when they do learn but do not account for
learning in optimization (our case of adaptive
optimal policy, AOP). In both of these cases, we
have developed efficient algorithms for solving
for the optimal policy, which can handle rela-
tively large models with multiple modes and
many state variables. However, in the case of the

Bayesian optimal policy (BOP), where the exper-
imentation motive is taken into account, we
must solve more-complex numerical dynamic
programming problems. Thus, to fully examine
optimal experimentation, we are haunted by the
curse of dimensionality, forcing us to study rela-
tively small and simple models.

Thus, an issue of much practical importance
is the size of the experimentation component of
policy and the losses entailed by abstracting from
it. Although our results in this paper are far from
comprehensive, they suggest that in practical
settings the experimentation motive may not be
a concern. The above and similar examples that
we have considered indicate that the benefits of
learning (moving from NL to AOP) may be sub-
stantial, whereas the benefits from experimenta-
tion (moving from AOP to BOP) are modest or
even insignificant. If this preliminary finding
stands up to scrutiny, experimentation in eco-
nomic policy in general and monetary policy in
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particular may not be very beneficial, in which
case there is little need to face the difficult ethical
and other issues involved in conscious experi-
mentation in economic policy. Furthermore, the
AOP is much easier to compute and implement
than the BOP. To have this truly be a robust impli-
cation, more simulations and cases need to be
examined.
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