Long-Run Risks and Financial Markets

Ravi Bansal

The recently developed long-run risks asset pricing model shows that concerns about long-run expected growth and time-varying uncertainty (i.e., volatility) about future economic prospects drive asset prices. These two channels of economic risks can account for the risk premia and asset price fluctuations. In addition, the model can empirically account for the cross-sectional differences in asset returns. Hence, the long-run risks model provides a coherent and systematic framework for analyzing financial markets. (JEL G0, G00, G1, G10, G12)

From the perspective of theoretical models, several key features of asset markets are puzzling. Among others, these puzzling features include the level of equity premium (see Mehra and Prescott, 1985), asset price volatility (see Shiller, 1981), and the large cross-sectional differences in average returns across equity portfolios such as value and growth portfolios. In bond and foreign exchange markets, the violations of the expectations hypothesis (see Fama and Bliss, 1987; Fama, 1984) and the ensuing return predictability is quantitatively difficult to explain. What risks and investor concerns can provide a unified explanation for these asset market facts? One potential explanation of all these anomalies is the long-run risks model developed in Bansal and Yaron (2004) (henceforth BY). In this model, fluctuations in the long-run growth prospects of the economy and the time-varying level of economic uncertainty (consumption or output volatility) drive financial markets. Recent work indicates that many of the asset prices anomalies are a natural outcome of these channels developed in BY. In this article I explain the key mechanisms in the BY model that enable it to account for the asset market puzzles.

In the BY model, the first economic channel relates to expected growth and dividend growth rates contain a small long-run component in the mean. That is, current shocks to expected growth alter expectations about future economic growth not only for short horizons but also for the very long run. The second channel pertains to varying economic uncertainty: Conditional volatility of consumption is time varying. Fluctuations in consumption volatility lead to time variation in risk premia. Agents fear adverse movements in the long-run growth and volatility components because they lower equilibrium consumption, wealth, and asset prices. This makes holding equity quite risky, leading to high risk compensation in equity markets.

The preferences developed in Epstein and Zin (1989) play an important role in the long-run risks model. These preferences allow for a separation between risk aversion and intertemporal elasticity of substitution (IES) of investors: The magnitude of the risk aversion relative to the reciprocal of the IES determines whether agents prefer early or late resolution of uncertainty regarding the consumption path. In the BY model, agents prefer early resolution of uncertainty; that is, risk aver-
sion is larger than the reciprocal of the IES. This ensures that the compensation for long-run expected growth risk is positive. The resulting model has three distinct sources of risks that determine the risk premia: short-run, long-run, and consumption volatility risks. In the traditional power utility model, only the first risk source carries a distinct risk price and the other two risks have zero risk compensation. Separate risk compensation for shocks to consumption volatility and expected consumption growth is a novel feature of the BY model relative to earlier asset pricing models.

To derive model implications for asset prices, the preference parameters are calibrated. The calibrated magnitude of the risk aversion and the IES is an empirical issue. Hansen and Singleton (1982), Attanasio and Weber (1989), and Vissing-Jorgensen and Attanasio (2003) estimate the IES to be well in excess of 1. Hall (1988) and Campbell (1999), on the other hand, estimate its value to be well below 1. BY show that even if the population value of the IES is larger than 1, the estimation methods used by Hall would measure the IES to be close to zero. That is, in the presence of time-varying consumption volatility, there is a severe downward bias in the point estimates of the IES. Using data from financial markets, Bansal, Khatchatrian, and Yaron (2005) and Bansal and Shaliastovich (2007) provide further evidence on the magnitude of the IES.

Different techniques are employed to provide empirical and theoretical support for the existence of long-run components in consumption and dividends. Whereas BY calibrate parameters to match the annual moments of consumption and dividend growth rates, Bansal, Gallant, and Tauchen (2007) and Bansal, Kiku, and Yaron (2006) formally test the model using the efficient and generalized method of moments, respectively. Using multivariate analysis, Hansen, Heaton, and Li (2005) and Bansal, Kiku, and Yaron (2006) present evidence for long-run components in consumption growth. Colacito and Croce (2006) also provide statistical support for the long-run components in consumption data for the United States and other developed economies. Lochstoer and Kaltenbrunner (2006) provide a production-based motivation for long-run risks in consumption. They show that in a standard production economy, where consumption is endogenous, the consumption growth process contains a predictable long-run component similar to that in the BY model. There is considerable support for the volatility channel as well. Bansal, Khatchatrian, and Yaron (2005) show that consumption volatility is time varying and that its current level predicts future asset valuations (price-dividend ratio) with a significantly negative projection coefficient; this implies that asset markets dislike economic uncertainty. Exploiting the BY uncertainty channel, Lettau, Ludvigson, and Wachter (2007) provide interesting market premium implications of the low-frequency decline in consumption volatility.

BY show that their long-run risks model can explain the risk-free rate, the level of the equity premium, asset price volatility, and many of the return and dividend growth predictability dimensions that have been characterized in earlier work. The time-varying volatility in consumption is important to capture some of the economic outcomes that relate to time-varying risk premia.

The arguments presented in their work also have immediate implications for the cross-sectional differences in mean returns across assets. Bansal, Dittmar, and Lundblad (2002 and 2005) show that the systematic risks across firms should be related to the systematic long-run risks in firms’ cash flows that investors receive. Firms whose expected cash-flow (profits) growth rates move with the economy are more exposed to long-run risks and hence should carry higher risk compensation. These authors develop methods to measure the exposure of cash flows to long-run risks, and show that these cash flow betas can account for the differences in risk premia across assets. They show that the high book-to-market portfolio (i.e., value portfolio) has a larger long-run risks beta relative to the low book-to-market portfolio (i.e., growth portfolio). Hence, the high mean return of value firms relative to growth firms is not puzzling. The Bansal, Dittmar, and Lundblad (2002 and 2005) evidence supports a long-run risks explanation for the cross-sectional differences in mean returns.
Several recent papers use the BY long-run risks model to address a rich array of asset market questions; among others, these include Kiku (2006), Colacito and Croce (2006), Lochstoer and Kaltenbrunner (2006), Chen, Collin-Dufresne, and Goldstein (2006), Chen (2006), Eraker (2006), Piazzesi and Schneider (2005), and Bansal and Shaliastovich (2007). Kiku (2006) shows that the long-run risks model can account for the violations of the capital asset pricing model (CAPM) and consumption CAPM (C-CAPM) in explaining the cross-sectional differences in mean returns. Further, the model can capture the entire transition density of value or growth returns, which underscores the importance of long-run risks in accounting for equity markets’ behavior. Eraker (2006) and Piazzesi and Schneider (2005) consider the implications of the model for the risk premia on U.S. Treasury bonds and show how to account for some of the average premium puzzles in the term structure literature. Colacito and Croce (2006) extend the long-run risks model to a two-country setup and explain the issues about international risk sharing and exchange rate volatility. Bansal and Shaliastovich (2007) show that the long-run risks model can simultaneously account for the behavior of equity markets, yields, and foreign exchange and explain the nature of predictability and violations of the expectations hypothesis in foreign exchange and Treasury markets. Chen, Collin-Dufresne, and Goldstein (2006) and Chen (2006) analyze the ability of the long-run risks model to explain the credit spread and leverage puzzles of the corporate sector.

Hansen, Heaton, and Li (2005) consider a long-run risks model with a unit IES specification. Using different methods to measure long-run risks exposures of portfolios sorted by book-to-market ratio, they find, as in Bansal, Dittmar, and Lundblad (2005), that these alternative long-run risk measures do line-up in the cross-section with the average returns. They further show that the measurement of long-run risks can be sensitive to the econometric methods used. Hansen and Sargent (2006) highlight the interesting implications of robust decisionmaking for risks in financial markets when the representative agent entertains the long-run risks model as a baseline description of the economy.

The above results indicate that the long-run risks model can go a long way toward providing an explanation for many of the key features of asset markets.

The remainder of the article has three sections. The next section reviews the long-run risks model of Bansal and Yaron (2004). The third section discusses the empirical evidence of the model and, in particular, its implications for the equity, bond, and currency markets. The final section concludes.

LONG-RUN RISKS MODEL

Preferences and the Environment

Consider a representative agent with the following Epstein and Zin (1989) recursive preferences,

$$U_t = \left(1 - \delta\right)C_t^{-\frac{1 - \gamma}{\theta}} + \delta E_t \left[U_{t+1}^{1-\gamma}\right]^{\frac{1 - \gamma}{1 - \gamma}}$$

where the rate of time preference is determined by δ, with $0 < \delta < 1$. The parameter θ is determined by the risk aversion and the IES—specifically,

$$\theta = \frac{1 - \gamma}{1 - \frac{1}{\psi}}$$

where $\gamma \geq 0$ is the risk aversion parameter and $\psi \geq 0$ is the IES. The sign of θ is determined by the magnitudes of the risk aversion and the elasticity of substitution. In particular, if $\psi > 1$ and $\gamma > 1$, then θ will be negative. Note that, when $\theta = 1$ (that is $\gamma = 1/\psi$), one obtains the standard case of expected utility.

As is pointed out in Epstein and Zin (1989), when risk aversion equals the reciprocal of IES (expected utility), the agent is indifferent to the timing of the resolution of the uncertainty of the consumption path. When risk aversion exceeds (is less than) the reciprocal of IES, the agent prefers early (late) resolution of uncertainty of consumption path. In the long-run risks model, agents prefer early resolution of the uncertainty of the consumption path.
The period budget constraint for the agent with wealth, \(W_t \), and consumption, \(C_t \), at date \(t \) is

\[
W_{t+1} = (W_t - C_t) R_{a,t+1}.
\]

\[
R_{a,t+1} = \frac{W_{t+1}}{W_t - C_t}
\]

is the return on the aggregate portfolio held by the agent. As in Lucas (1978), we normalize the supply of all equity claims to be 1 and the risk-free asset to be in zero net supply. In equilibrium, aggregate dividends in the economy (which also include any claims to labor income) equals aggregate consumption of the representative agent.

Given a process for aggregate consumption, the return on the aggregate portfolio corresponds to the return on an asset that delivers aggregate consumption as its dividends each time period.

The logarithm of the intertemporal marginal rate of substitution (IMRS), \(m_{t+1} \), for these preferences (Epstein and Zin, 1989) is

\[
m_{t+1} = \theta \log \delta \frac{\theta}{\psi} g_{t+1} + (\theta - 1) r_{a,t+1},
\]

and the asset pricing restriction on any continuous return, \(r_{l,t+1} \), is

\[
E_t \left[\exp \left(\theta \log \delta \frac{\theta}{\psi} g_{t+1} + (\theta - 1) r_{a,t+1} + r_{l,t+1} \right) \right] = 1,
\]

where \(g_{t+1} \) equals \(\log (C_{t+1}/C_t) \)—the log growth rate of aggregate consumption. The return, \(r_{a,t+1} \), is the log of the return (i.e., continuous return) on an asset that delivers aggregate consumption as its dividends each time period.

The return on the aggregate consumption claim, \(r_{a,t+1} \), is not observed in the data, whereas the return on the dividend claim corresponds to the observed return on the market portfolio, \(r_{m,t+1} \). The levels of market dividends and consumption are not equal; aggregate consumption is much larger than aggregate dividends. The difference is financed by labor income. In the BY model, aggregate consumption and aggregate dividends are treated as two separate processes and the difference between them defines the agent’s labor income process.

The key ideas of the model are developed, and the intuition is provided by means of approximate analytical solutions. However, for the key qualitative results, the model is solved numerically. To derive the approximate solutions for the model, we use the standard Campbell and Shiller (1988) return approximation,

\[
r_{a,t+1} = \kappa_0 + \kappa_1 z_{t+1} - z_t + g_{t+1},
\]

where lowercase letters refer to variables in logs, in particular, \(r_{a,t+1} = \log (R_{a,t+1}) \) is the continuous return on the consumption claim and the price-to-consumption ratio is \(z_t = \log (P_t/C_t) \). Analogously, \(r_{m,t+1} \) and \(z_{m,t} \) correspond to the continuous return on the dividend claim and the log of the price-to-dividend ratio. The approximating constants, \(\kappa_0 \) and \(\kappa_1 \), are specific to the asset under consideration and depend only on the average level of \(z_t \), as shown in Campbell and Shiller (1988). It is important to keep in mind that the average value of \(z_t \) for any asset is endogenous to the model and depends on all its parameters and the dynamics of the asset’s dividends.

From equation (2), it follows that the innovation in IMRS, \(m_{t+1} \), is driven by the innovations in \(g_{t+1} \) and \(r_{a,t+1} \). Covariation with the innovation in \(m_{t+1} \) determines the risk premium for any asset. We characterize the nature of risk sources and their compensation in the next section.

Long-Run Growth and Economic Uncertainty Risks

The agent’s IMRS depends on the endogenous consumption return, \(r_{a,t+1} \). The risk compensation on all assets depends on this return, which itself is determined by the process for consumption growth. The dividend process is needed for determining the return on the market portfolio. To capture long-run risks, consumption and dividend growth rates, \(g_{t+1} \) and \(g_{d,t+1} \), respectively, are modeled to contain a small persistent predictable component, \(x_t \), while fluctuating economic uncertainty is introduced through the time-varying volatility of the cash flows:
\[x_{t+1} = \rho x_t + \varphi_e \sigma_t e_{t+1} \]
\[g_{d,t+1} = \mu + x_t + \sigma_t \eta_{t+1} \]
\[\sigma^2_{t+1} = \sigma^2 + \nu \left(\sigma^2 - \sigma^2 \right) + \sigma_w w_{t+1} \]
\[e_{t+1}, u_{t+1}, \eta_{t+1}, w_{t+1} \sim N \text{i.i.d.} (0, 1). \]

with the shocks \(e_{t+1}, u_{t+1}, \eta_{t+1}, \) and \(w_{t+1} \) assumed to be mutually independent. The parameter \(\rho \) determines the persistence of the expected growth rate process. First, note that when \(\varphi_e = 0 \), the processes \(g_t \) and \(g_{d,t+1} \) have zero autocorrelation. Second, if \(e_{t+1} = \eta_{t+1} \), the process for consumption is ARMA(1,1) used in Campbell (1999), Cecchetti, Lam, and Mark (1993), and Bansal and Lundblad (2002). If in addition \(\varphi_e = \rho \), then consumption growth corresponds to an AR(1) process used in Mehra and Prescott (1985). The variable \(\sigma^2_{t+1} \) represents the time-varying volatility of consumption and captures the intuition that there are fluctuations in the level of uncertainty in the economy. The unconditional volatility of consumption is \(\sigma^2 \). To maintain parsimony, it is assumed that the shocks are uncorrelated and that there is only one source of time-varying economic uncertainty that affects consumption and dividends.

Two parameters, \(\varphi > 1 \) and \(\varphi_d > 1 \), calibrate the overall volatility of dividends and its correlation with consumption. The parameter \(\varphi \) is larger than 1 because corporate profits are more sensitive to changing economic conditions relative to consumption. Note that consumption and dividends are not cointegrated in the above specification; Bansal, Gallant, and Tauchen (2007) develop a specification that does allow for cointegration between consumption and dividends.

The better understand the role of long-run risks, consider the scaled long-run variance (or variance ratio) of consumption for horizon \(\mathcal{J} \),

\[\sigma^2_{c,J} = \frac{\text{Var} \left[\sum_{j=1}^{\mathcal{J}} g_{t+j} \right]}{\mathcal{J} \text{Var}[g_t]}. \]

The magnitude of this consumption growth volatility is the same for all \(\mathcal{J} \) if consumption is uncorrelated across time. This scaled variance increases with the horizon when the expected growth is persistent. Hence, agents face larger aggregate consumption volatility at longer horizons. As the persistence in \(\mathcal{X} \) and/or its variance increases, the magnitude of long-run volatility will rise. In equilibrium, this increase in magnitude of aggregate consumption volatility will require a sizeable compensation if the agents prefer early resolution of uncertainty about the consumption path.

Using multivariate statistical analysis, Hansen, Heaton, and Li (2005) and Bansal, Kiku, and Yaron (2006) provide evidence on the existence of the long-run component in observed consumption and dividends. Using simulation methods, Bansal and Yaron (2005) document the presence of the long-run component in U.S. consumption data, whereas Colacito and Croce (2006) estimate this component in consumption for many developed economies. Note that there can be considerable persistence in the time-varying consumption volatility as well; hence, the long-run variance of the conditional volatility of consumption can be very large as well.

To see the importance of the small low-frequency movements for asset prices, consider the quantity

\[E_t \left[\sum_{j=1}^{\infty} \kappa_j g_{t+j} \right]. \]

With \(\kappa_1 < 1 \), this expectation equals

\[\frac{\kappa_1 x_t}{1 - \kappa_1 \rho}. \]

Even though the variance of \(x \) is tiny, while \(\rho \) is fairly high, shocks to \(x_t \) (the expected growth rate component) can still alter growth rate expectations for the long run, leading to volatile asset prices. Hence, investor concerns about expected long-run growth rates can alter asset prices quite significantly.

Equilibrium and Asset Prices

The consumption and dividend growth rate processes are exogenous in this endowment economy. Further, the IMRS depends on an endogenous return, \(r_{n,t+1} \). To characterize the IMRS and the behavior of asset returns, a solution for the log price-consump tion ratio, \(z_t \), and
the log price-dividend ratio, $z_{m,t}$, is needed. The relevant state variables for z_t and $z_{m,t}$ are the expected growth rate of consumption, x_t, and the conditional consumption volatility, σ_t^2.

Exploiting the Euler equation (3), the approximate solution for the log price-consumption ratio, z_t, has the form $z_t = A_0 + A_1 x_t + A_2 \sigma_t^2$. The solution for A_1 is

$$A_1 = \frac{1 - \frac{1}{\psi}}{1 - \kappa_1 \rho}.$$ (6)

This coefficient is positive if the IES, ψ, is greater than 1. In this case, the intertemporal substitution effect dominates the wealth effect. In response to higher expected growth, agents buy more assets and consequently the wealth-to-consumption ratio rises. In the standard power utility model with risk aversion larger than 1, the IES is less than 1 and therefore A_1 is negative—a rise in expected growth potentially lowers asset valuations. That is, the wealth effect dominates the substitution effect. 1

Corporate payouts (i.e., dividends), with $\phi > 1$, are more sensitive to long-run risks and changes in the expected growth rate lead to a larger reaction in the price of the dividend claim than in the price of the consumption claim. Hence, for the dividend asset,

$$A_{1,m} = \frac{-\phi - 1}{\psi}$$

and is larger in absolute value than the consumption asset.

The solution coefficient, A_2, for measuring the sensitivity of the price-consumption ratio to volatility fluctuations is

$$A_2 = \frac{0.5 \left[\frac{\theta - \frac{1}{\psi}}{\psi} + \left(\frac{\theta A_1 \kappa_1 \varphi_e}{1 - \kappa_1 \rho} \right)^2 \right]}{\theta (1 - \kappa_1 \nu_1)}.$$ (7)

An analogous coefficient for the market price-dividend ratio, $A_{2,m}$, is provided in BY.

The expression for A_2 provides two valuable insights. First, if the IES and risk aversion are larger than 1, then θ and consequently A_2 are negative. In this case, a rise in consumption volatility lowers asset valuations and increases the risk premia on all assets. Second, an increase in the permanence of volatility shocks—that is, an increase in ν_1—magnifies the effects of volatility shocks on valuation ratios as investors perceive changes in economic uncertainty as very long lasting.

Pricing of Short-Run, Long-Run, and Volatility Risks

Substituting the solutions for the price-consumption ratio, z_t, into the expression for equilibrium return for $r_{a,t+1}$ in equation (4), one can now characterize the solution for the IMRS that can be used to value all assets. The log of the IMRS m_{t+1} can always be stated as the sum of its conditional mean and its one-step-ahead innovation. The conditional mean is affine in expected mean and conditional variance of consumption growth and can be expressed as

$$E_t(m_{t+1}) = m_0 - \frac{1}{\psi} x_t + \left(\frac{1 - \gamma}{\psi} \right)(\gamma - 1) \left[1 + \left(\frac{\kappa_1 \varphi_e}{1 - \kappa_1 \rho} \right)^2 \right] \sigma_t^2,$$ (8)

where m_0 is a constant determined by the preference and consumption dynamics parameters.

The innovation in the IMRS is very important for thinking about risk compensation (risk premia) in various markets. Specifically, it is equal to

$$m_{t+1} - E_t(m_{t+1}) = -\lambda_{m,q} \sigma_t \eta_{t+1} - \lambda_{m,e} \sigma_t e_{t+1} - \lambda_{m,v} \sigma_t w_{t+1},$$ (9)

where $\lambda_{m,q}$, $\lambda_{m,e}$, and $\lambda_{m,v}$ are the market prices for the short-run, long-run, and volatility risks, respectively. The market prices of systematic risks, including the compensation for stochastic volatility risk in consumption, can be expressed in terms of the underlying preferences parameters that govern the evolution of consumption growth:

1 An alternative interpretation with the power utility model is that higher expected growth rates increase the risk-free rate to an extent that discounting dominates the effects of higher expected growth rates. This leads to a fall in asset prices.
The risk compensation for the η_{t+1} shocks is very standard, and $\lambda_{m,\eta}$ equals the risk aversion parameter, γ. In the special case of power utility, $\gamma = 1/\psi$, the risk compensation parameters $\lambda_{m,e}$ and $\lambda_{m,w}$ are zero. Long-run risks and volatility are priced only when the agent is not indifferent to the timing of the uncertainty resolution for the consumption path—that is, when risk aversion is different from the reciprocal of the IES. For this to be the case, γ should be larger than $1/\psi$. The market prices of long-run and volatility risks are sensitive to the magnitude of the permanence parameter, ρ, as well. The risk compensation for long-run risks and volatility risks rises as the permanence parameter, ρ, rises.

The equity premium in the presence of time-varying economic uncertainty is

$$E_t (r_{m,t+1} - r_{f,t}) = \beta_{m,\eta} \lambda_{m,\eta} \sigma_t^2 + \beta_{m,e} \lambda_{m,e} \sigma_t^2 + \beta_{m,w} \lambda_{m,w} \sigma_w^2 - 0.5 \var_t (r_{m,t+1}).$$

The first beta corresponds to the exposure to short-run risks and the second to long-run risks. The third beta (that is, $\beta_{m,w}$) captures the return’s exposure to volatility risks. It is important to note that all the betas in this general equilibrium framework are endogenous. They are completely pinned down by the dynamics of the asset’s dividends and the preferences parameters of the agent. The quantitative magnitude of the betas and the risk premium for the consumption claim is discussed below.

The risk premium on the market portfolio is time varying as σ_t fluctuates. The ratio of the conditional risk premium to the conditional volatility of the market portfolio fluctuates with σ_t and therefore the Sharpe ratio is time varying. The maximal Sharpe ratio in this model, which approximately equals the conditional volatility of the log IMRS, also varies with σ_t. During periods of high economic uncertainty (i.e., consumption volatility), all risk premia rise.

The first-order effects on the level of the risk-free rate, as discussed in Bansal and Yaron (2005), are the rate of time preference and the average consumption growth rate divided by the IES. Increasing the IES keeps the level low. The variance of the risk-free rate is determined by the volatility of the expected consumption growth rate and the IES. Increasing the IES lowers the volatility of the risk-free rate. In addition, incorporating economic uncertainty leads to an interesting channel for interpreting fluctuations in the real risk-free rate. In addition, this has serious implications for the measurement of the IES in the data, which heavily relies on the link between the risk-free rate and expected consumption growth. In the presence of varying volatility, the estimates of the IES based on the projections considered in Hall (1988) and Campbell (1999) are seriously biased downward.

Hansen, Heaton, and Li (2005) also consider a long-run risks model specification where the IES is pinned at 1. This specific case affords considerable simplicity, as the wealth-to-consumption ratio is constant. To solve the model at values of the IES that differ from 1, the authors provide approximations around the case where the IES is 1. Bansal, Kiku, and Yaron (2006) provide an alternative approximate solution that relies on equation (4); they show how to derive the return $r_{m,t+1}$ along with the endogenous approximating constants, κ_1 and κ_2, for any configuration of preferences parameters.

DATA AND MODEL IMPLICATIONS

Data and Growth Rate Dynamics

By calibrate the model described in (5) at the monthly frequency. From this monthly model they derive time-aggregated annual growth rates of consumption and dividends to match key aspects of annual aggregate consumption and
data. For consumption, Bureau of Economic Analysis data on real per capita annual consumption growth of non-durables and services for the period 1929-98 is used. Dividends and the value-weighted market return data are taken from the Center for Research in Security Prices (CRSP). All nominal quantities are deflated using the consumer price index.

The mean annual real per capita consumption growth rate is 1.8 percent, and its standard deviation is about 2.9 percent. Table 1, adapted from BY, shows that, in the data, consumption growth has a large first-order autocorrelation coefficient and a small second-order coefficient. The standard errors in the data for these autocorrelations are sizeable. An alternative way to view the long-horizon property of the consumption and dividend growth rates is to use variance ratios, which are themselves determined by the autocorrelations (Cochrane, 1988). In the data, the variance ratios first rise significantly and at a horizon of about seven years start to decline. The standard errors on these variance ratios, not surprisingly, are quite substantial.

In terms of the specific parameters for the consumption dynamics, BY calibrate \(\rho \) at 0.979, which determines the persistence in the long-run component in growth rates. Their choice of \(\phi_e \) and \(\sigma \) ensures that the model matches the unconditional variance and the autocorrelation function of annual consumption growth. The standard deviation of the innovation in consumption equals 0.0078. This parameter configuration implies that the predictable variation in monthly consumption growth is very small—the implied \(R^2 \) is only 4.4 percent. The exposure of the corporate sector to long-run risks is governed by \(\phi \), and its magnitude is similar to that in Abel (1999). The standard deviation of the monthly innovation in dividends, \(\varphi_d \sigma \), is 0.0351. The parameters of the volatility process are chosen to capture the persistence in consumption volatility. Based on the evidence of slow decay in volatility shocks, BY calibrate \(\nu_1 \), the parameter governing the persistence of conditional volatility, at 0.987. The shocks to the volatility process have very small volatility; \(\sigma_w \) is calibrated at \(0.23 \times 10^{-5} \). At the calibrated parameters, the modeled consumption and dividend growth rates very closely match the key consumption and dividends data features reported in Table 1. Bansal, Gallant, and Tauchen (2007) provide simulation-based estimation evidence that supports this configuration as well.

Table 2 presents the targeted asset market data for 1929-98. The equity risk premium is 6.33 percent per annum, and the real risk-free rate is 0.86 percent. The annual market return volatility is 19.42 percent, and that of the real risk-free rate is quite small, about 1 percent per annum. The volatility of the price-dividend ratio is quite high, and it is a very persistent series. In addition to these data dimensions, BY also evaluate the ability of the model to capture predictability of returns. Bansal, Khatchatryan, and Yaron (2005) show that, consistent with the implications of the BY model, price-dividend ratios are negatively correlated with consumption volatility at long leads and lags.

Table 1

Time-Series Properties of Data

<table>
<thead>
<tr>
<th>Variable</th>
<th>Estimate</th>
<th>Standard error</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\sigma(g))</td>
<td>2.93 (0.69)</td>
<td>(\sigma(g_d))</td>
</tr>
<tr>
<td>AC(1)</td>
<td>0.49 (0.14)</td>
<td>AC(1)</td>
</tr>
<tr>
<td>AC(2)</td>
<td>0.15 (0.22)</td>
<td>(\sigma(g,g_d))</td>
</tr>
<tr>
<td>AC(5)</td>
<td>–0.08 (0.10)</td>
<td>(\rho)</td>
</tr>
<tr>
<td>AC(10)</td>
<td>0.05 (0.09)</td>
<td>(\varphi_e)</td>
</tr>
<tr>
<td>VR(2)</td>
<td>1.61 (0.34)</td>
<td>VR(5)</td>
</tr>
<tr>
<td>VR(10)</td>
<td>1.57 (2.07)</td>
<td>(\nu_1)</td>
</tr>
</tbody>
</table>

NOTE: This table displays the time-series properties of aggregate consumption and dividend growth rates: \(g \) and \(g_d \), respectively. The statistics are based on annual observations from 1929 to 1998. Consumption is real per capita consumption of non-durables and services; dividends are the sum of real dividends across all CRSP firms. AC(\(j \)) is the \(j \)th autocorrelation, VR(\(j \)) is the \(j \)th variance ratio, \(\sigma \) is the volatility, and \(\sigma(g,g_d) \) denotes the correlation. Standard errors are Newey and West (1987)–corrected using 10 lags.
It is often argued that, in the data, consumption and dividend growth are close to being i.i.d. BY show that their model of consumption and dividends is also consistent with the observed data on consumption and dividends growth rates. However, although the financial market data are hard to interpret from the perspective of the i.i.d. growth rate dynamics, BY show that it is interpretable from the perspective of the growth rate dynamics that incorporate long-run risks. Given these difficulties in discrimination across these two models, Hansen and Sargent (2006) use features of the long-run model for developing economic models where agents update their model beliefs in a manner that incorporates robustness against model misspecification.

Preference Parameters

The preference parameters take account of economic considerations. The time preference parameter, \(\delta < 1 \), and the risk aversion parameter, \(\gamma \), is either 7.5 or 10. Mehra and Prescott (1985) argue that a reasonable upper bound for risk aversion is around 10. The IES is set at 1.5: An IES value that is not less than 1 is important for the quantitative results.

There is considerable debate about the magnitude of the IES. Hansen and Singleton (1982) and Attanasio and Weber (1989) estimate the IES to be well in excess of 1. More recently, Guvenen (2001) and Vissing-Jorgensen and Attanasio (2003) also estimate the IES over 1; they show that their estimates are close to that used in BY. However, Hall (1988) and Campbell (1999) estimate the IES to be well below 1. BY argue that the low IES estimates of Hall and Campbell are based on a model without time-varying volatility. They show that ignoring the effects of time-varying consumption volatility leads to a serious downward bias in the estimates of the IES. If the population value of the IES in the BY model is 1.5, then the estimated value of the IES using Hall estimation methods will be less than 0.3. With fluctuating consumption volatility, the projection of consumption growth on the level of the risk-free rate does not equal the IES, leading to the downward bias. This suggests that Hall’s and Campbell’s estimates may not be a robust guide for calibrating the IES.

Table 2

<table>
<thead>
<tr>
<th>Variable</th>
<th>Estimate</th>
<th>Standard error</th>
</tr>
</thead>
<tbody>
<tr>
<td>Returns</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(E(r_m - r_f))</td>
<td>6.33</td>
<td>(2.15)</td>
</tr>
<tr>
<td>(E(r_f))</td>
<td>0.86</td>
<td>(0.42)</td>
</tr>
<tr>
<td>(\sigma(r_m))</td>
<td>19.42</td>
<td>(3.07)</td>
</tr>
<tr>
<td>(\sigma(r_f))</td>
<td>0.97</td>
<td>(0.28)</td>
</tr>
<tr>
<td>Price-dividend ratio</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(E(\exp(p - d)))</td>
<td>26.56</td>
<td>(2.53)</td>
</tr>
<tr>
<td>(\sigma(p - d))</td>
<td>0.29</td>
<td>(0.04)</td>
</tr>
<tr>
<td>(AC1(p - d))</td>
<td>0.81</td>
<td>(0.09)</td>
</tr>
<tr>
<td>(AC2(p - d))</td>
<td>0.64</td>
<td>(0.15)</td>
</tr>
</tbody>
</table>

NOTE: This table presents descriptive statistics of asset market data. The moments are calculated using annual observations from 1929 through 1998. \(E(r_m - r_f) \) and \(E(r_f) \) are, respectively, the annualized equity premium and mean risk-free rate; \(\sigma(r_m) \), \(\sigma(r_f) \), and \(\sigma(p - d) \) are, respectively, the annualized volatilities of the market return, risk-free rate, and log price-dividend ratio; \(AC1 \) and \(AC2 \) denote the first and second autocorrelations. Standard errors are Newey and West (1987)–corrected using 10 lags.

In addition to the above arguments, the empirical evidence in Bansal, Khatchatrian, and Yaron (2005) shows that a rise in consumption volatility sharply lowers asset prices at long leads and lags, and high current asset valuations forecast higher future corporate earnings growth. Figures 1 through 4 use data from the United States, United Kingdom, Germany, and Japan to evaluate the volatility channel. The asset valuation measure is the price-to-earnings ratio, and the consumption volatility measure is constructed by averaging eight lags of the absolute value of consumption residuals. It is evident from the figures that a rise in consumption volatility lowers asset valuations for all countries under consideration; this highlights the volatility channel and motivates the specification of an IES larger than 1. In a two-country extension of the model, Bansal and Shaliastovich (2007) show that dollar prices of foreign currency and forward premia co-move negatively with the consumption volatility differential, whereas the ex ante currency returns
Figure 1

P/E Ratio and Consumption Volatility: United States

NOTE: This figure plots consumption volatility along with the logarithm of the price-earnings ratio for the United States. Both series are standardized.

Figure 2

P/E Ratio and Consumption Volatility: United Kingdom

NOTE: This figure plots consumption volatility along with the logarithm of the price-earnings ratio for the United Kingdom. Both series are standardized.

Figure 3

P/E Ratio and Consumption Volatility: Germany

NOTE: This figure plots consumption volatility along with the logarithm of the price-earnings ratio for Germany. Both series are standardized.

Figure 4

P/E Ratio and Consumption Volatility: Japan

NOTE: This figure plots consumption volatility along with the logarithm of the price-earnings ratio for Japan. Both series are standardized.
have positive correlations with it. This provides further empirical support for a magnitude of the IES. In terms of growth rate predictability, Ang and Bekaert (2007) and Bansal, Khatchatrian, and Yaron (2005) report a positive relation between asset valuations and expected earnings growth. These data features, as discussed in the theory sections above, again require an IES larger than 1.

Asset Pricing Implications

To underscore the importance of two key aspects of the model, preferences and long-run risks, first consider the genesis of the risk premium on $r_{a,t+1}$—the return on the asset that delivers aggregate consumption as its dividends. The determination of risk premia for other dividend claims follows the same logic.

Table 3 shows the market price of risk and the breakdown of the risk premium from various risk sources. Column 1 considers the case of power utility where the IES equals the reciprocal of the risk aversion parameter. As discussed earlier, the prices of long-run and volatility risks are zero. In the power utility case, the main risk is the short-run risk and the risk premium on the consumption asset equals $\gamma \sigma^2$, which is 0.7 percent per annum.

Column 2 of Table 3 considers the case with an IES less than 1 (set at 0.5). For long-run growth rate risks, the price of risk is positive; for volatility risks, the price of risk is negative, as γ is larger than the reciprocal of the IES. However, the consumption asset’s beta for long-run risks (beta with regard to the innovations in x_{t+1}) is negative. This, as discussed earlier, is because Λ_1 is negative (see equation (6)), implying that a rise in expected growth lowers the wealth-to-consumption ratio. Consequently, long-run risks in this case contribute a negative risk premium of -1.96 percent per annum. The market price of volatility risks is negative and small; however, the asset’s beta for this risk source is large and positive, reflecting the fact that asset prices rise when economic uncertainty rises (see equation (7)). In all, when the IES is less than 1, the risk premium on the

<table>
<thead>
<tr>
<th>ψ</th>
<th>0.1</th>
<th>0.5</th>
<th>1.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>mpr_η</td>
<td>93.60</td>
<td>93.60</td>
<td>93.60</td>
</tr>
<tr>
<td>mpr_e</td>
<td>0.00</td>
<td>137.23</td>
<td>160.05</td>
</tr>
<tr>
<td>mpr_w</td>
<td>0.00</td>
<td>-27.05</td>
<td>-31.56</td>
</tr>
<tr>
<td>β_η</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>β_e</td>
<td>-16.49</td>
<td>-1.83</td>
<td>0.61</td>
</tr>
<tr>
<td>β_w</td>
<td>11,026.45</td>
<td>1,225.16</td>
<td>-408.39</td>
</tr>
<tr>
<td>prm_η</td>
<td>0.73</td>
<td>0.73</td>
<td>0.73</td>
</tr>
<tr>
<td>prm_e</td>
<td>0.00</td>
<td>-1.96</td>
<td>0.76</td>
</tr>
<tr>
<td>prm_w</td>
<td>0.00</td>
<td>-0.08</td>
<td>0.03</td>
</tr>
</tbody>
</table>

Table 3

Risk Components and Risk Compensation

<table>
<thead>
<tr>
<th>ψ</th>
<th>0.1</th>
<th>0.5</th>
<th>1.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>mpr_η</td>
<td>93.60</td>
<td>93.60</td>
<td>93.60</td>
</tr>
<tr>
<td>mpr_e</td>
<td>0.00</td>
<td>137.23</td>
<td>160.05</td>
</tr>
<tr>
<td>mpr_w</td>
<td>0.00</td>
<td>-27.05</td>
<td>-31.56</td>
</tr>
<tr>
<td>β_η</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>β_e</td>
<td>-16.49</td>
<td>-1.83</td>
<td>0.61</td>
</tr>
<tr>
<td>β_w</td>
<td>11,026.45</td>
<td>1,225.16</td>
<td>-408.39</td>
</tr>
<tr>
<td>prm_η</td>
<td>0.73</td>
<td>0.73</td>
<td>0.73</td>
</tr>
<tr>
<td>prm_e</td>
<td>0.00</td>
<td>-1.96</td>
<td>0.76</td>
</tr>
<tr>
<td>prm_w</td>
<td>0.00</td>
<td>-0.08</td>
<td>0.03</td>
</tr>
</tbody>
</table>

NOTE: This table presents model-implied components of the risk premium on the consumption asset for different values of the intertemporal elasticity of substitution parameter, ψ. All entries are based on $\gamma = 10$. The parameters that govern the dynamics of the consumption process in equation (5) are identical to those in Bansal and Yaron (2004): $\rho = 0.979$, $\sigma = 0.0078$, $\phi = 0.044$, $\nu_1 = 0.987$, $\alpha_0 = 0.23 \times 10^{-5}$, and $\kappa_1 = 0.997$. The first three rows report the annualized percentage prices of risk for innovations in consumption, the expected growth risks, and the consumption volatility risks—mpr_η, mpr_e, and mpr_w, respectively. These prices of risks correspond to annualized percentage values for $\lambda_{m,\eta}$, $\lambda_{m,e}$, and $\lambda_{m,w}$, in equation (9). The exposures of the consumption asset to the three systematic risks, β_η, β_e, and β_w, are presented in the middle part of the table. Total risk compensation in annual percentage terms for each risk is reported as prm, and equals the product of the price of risk, the standard deviation of the shock, and the beta for the specific risk, respectively.
consumption asset is negative, which is highly counterintuitive, and highlights the implausibility of this parameter configuration.

Column 3 of Table 3 shows that when the IES is larger than 1, the price of long-run growth risks rises. More importantly, the asset’s beta for long-run growth risks is positive and that for volatility risks is negative. Both these risk sources contribute toward a positive risk premium. The risk premium from long-run growth is 0.76 percent and that for the short-run consumption shock is 0.73 percent. The overall risk premia for this consumption asset is 1.52 percent. This evidence shows that an IES larger than 1 is required for the long-run and volatility risks to carry a positive risk premium.

It is clear from Table 3 that the price of risk is highest for the long-run risks (see columns 2 and 3) and smallest for the volatility risks. A comparison of columns 2 and 3 also shows that raising the IES increases the prices of long-run and volatility risks in absolute value. The magnitudes reported in Table 3 are with \(\rho = 0.979 \)—lowering this persistence parameter also lowers the prices of long-run and volatility risks (in absolute value).

Increasing the risk aversion parameter increases the prices of all consumption risks. Hansen and Jagannathan (1991) document the importance of the maximal Sharpe ratio, determined by the volatility of the IMRS, in assessing asset pricing models. Incorporating long-run risks increases the maximal Sharpe ratio in the model, which easily satisfies the non-parametric bounds of Hansen and Jagannathan (1991).

The risk premium on the market portfolio (i.e., the dividend asset) is also affected by the presence of long-run risks. To underscore their importance, assume that consumption and dividend growth rates are i.i.d. This shuts off the long-run risks channel. The market risk premium in this case is

\[
E_t \left(r_{m,t+1} - r_j \right) = \gamma \text{cov} \left(g_{t+1}, g_{d,t+1} \right) - 0.5 \text{Var} \left(g_{d,t+1} \right),
\]

and market return volatility equals the dividend growth rate volatility. If shocks to consumption and dividends are uncorrelated, then the geometric risk premium is negative and equals \(-0.5 \text{Var} \left(g_{d,t+1} \right)\). If the correlation between monthly consumption and dividend growth is 0.25, then the equity premium is 0.08 percent per annum, which is similar to the evidence documented in Mehra and Prescott (1985) and Weil (1989).

BY show that their model, which incorporates long-run growth rate risks and fluctuating economic uncertainty, provides a very close match to the asset market data reported in Table 2. That is, the model can account for the low risk-free rate, high equity premium, high asset price volatility, and low risk-free rate volatility. The BY model matches additional data features, such as (i) predictability of returns at short and long horizons using dividend yield as a predictive variable, (ii) time-varying and persistent market return volatility, (iii) negative correlation between market return and volatility shocks, i.e., the volatility feedback effect, and the (iv) negative relation between consumption volatility and asset prices at long leads and lags. (Also see Bansal, Khatchatrian, and Yaron, 2005.)

Cross-Sectional Implications

Table 4, shows that there are sizable differences in mean real returns across portfolios sorted by book-to-market ratio, size, and momentum for quarterly data from 1967 to 2001. The size and book-to-market sorts place firms into different deciles once per year, and the subsequent return on these portfolios is used for empirical work. For momentum assets, CRSP-covered New York Stock Exchange and American Stock and Options Exchange stocks are sorted on the basis of their cumulative return over months \(t-12 \) through \(t-1 \). The loser portfolio (M1) includes firms with the worst performance over the past year, and the winner portfolio (M10) includes firms with the best performance. The data show that subsequent returns on these portfolios have a large spread (i.e., M10 return – M1 return), about 4.62 percent per quarter: This is the momentum spread puzzle. Similarly, the highest book-to-market firms (B10) earn average real quarterly returns of 3.27 percent, whereas the lowest book-to-market (B1) firms average 1.54 percent per quarter. The value spread (return on B10 – return on B1) is about 2 percent
per quarter: This is the value spread puzzle. What explains these big differences in mean returns across portfolios?

Bansal, Dittmar, and Lundblad (2002 and 2005) connect systematic risks to cash-flow risks. They show that an asset’s risk measure (i.e., its beta) is determined by its cash-flow properties. In particular, their paper shows that cross-sectional differences in asset betas mostly reflect differences in systematic risks in cash flows. Hence, systematic risks in cash flows ought to explain differences in mean returns across assets. They develop two ways to measure the long-run risks in cash flows. First they model dividend and consumption growth rates as a VAR and measure the discounted impulse response of the dividend growth rates to consumption innovations. This is one measure of risks in cash flows. Their second measure is based on stochastic cointegration, which is estimated by regressing the log level of dividends for each portfolio on a time trend and the log level of consumption. Specifically, consider the projection

\[d_t = \tau(0) + \tau(1)t + \tau(2)c_t + \xi_t, \]

where the projection coefficient, \(\tau(2) \), measures the long-run consumption risk in the asset’s dividends. The coefficient \(\tau(2) \) will be different for different assets.

Bansal, Dittmar, and Lundblad (2002 and 2005) show that the exposure of dividend growth rates to the long-run component in consumption has considerable cross-sectional explanatory power. That is, dividends’ exposure to long-run consumption risks is an important explanatory variable in accounting for differences in mean returns across portfolios. Portfolios with high mean returns also have higher dividend exposure to consumption risks. The cointegration-based measure of risk, \(\tau_2 \), also provides very valuable information about mean returns on assets. The cross-sectional \(R^2 \) from regressing the mean returns on the dividend-based risk measures is well over 65 percent. In contrast, other approaches find it quite hard to explain the differences in mean returns for the 30-asset menu used in Bansal, Dittmar, and Lundblad (2005). The standard consumption betas (i.e., C-CAPM) and the market-based CAPM asset betas have close to zero explanatory power. The \(R^2 \) for the C-CAPM

Table 4

<table>
<thead>
<tr>
<th>Portfolio</th>
<th>Mean</th>
<th>Standard deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>(S_1)</td>
<td>0.0230</td>
<td>0.1370</td>
</tr>
<tr>
<td>(S_2)</td>
<td>0.0231</td>
<td>0.1265</td>
</tr>
<tr>
<td>(S_3)</td>
<td>0.0233</td>
<td>0.1200</td>
</tr>
<tr>
<td>(S_4)</td>
<td>0.0233</td>
<td>0.1174</td>
</tr>
<tr>
<td>(S_5)</td>
<td>0.0242</td>
<td>0.1112</td>
</tr>
<tr>
<td>(S_6)</td>
<td>0.0207</td>
<td>0.1050</td>
</tr>
<tr>
<td>(S_7)</td>
<td>0.0224</td>
<td>0.1041</td>
</tr>
<tr>
<td>(S_8)</td>
<td>0.0219</td>
<td>0.1001</td>
</tr>
<tr>
<td>(S_9)</td>
<td>0.0207</td>
<td>0.0913</td>
</tr>
<tr>
<td>(S_{10})</td>
<td>0.0181</td>
<td>0.0827</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Portfolio</th>
<th>Mean</th>
<th>Standard deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>(B_1)</td>
<td>0.0154</td>
<td>0.1058</td>
</tr>
<tr>
<td>(B_2)</td>
<td>0.0199</td>
<td>0.0956</td>
</tr>
<tr>
<td>(B_3)</td>
<td>0.0211</td>
<td>0.0921</td>
</tr>
<tr>
<td>(B_4)</td>
<td>0.0218</td>
<td>0.0915</td>
</tr>
<tr>
<td>(B_5)</td>
<td>0.0200</td>
<td>0.0798</td>
</tr>
<tr>
<td>(B_6)</td>
<td>0.0234</td>
<td>0.0813</td>
</tr>
<tr>
<td>(B_7)</td>
<td>0.0237</td>
<td>0.0839</td>
</tr>
<tr>
<td>(B_8)</td>
<td>0.0259</td>
<td>0.0837</td>
</tr>
<tr>
<td>(B_9)</td>
<td>0.0273</td>
<td>0.0892</td>
</tr>
<tr>
<td>(B_{10})</td>
<td>0.0327</td>
<td>0.1034</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Portfolio</th>
<th>Mean</th>
<th>Standard deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>(M_1)</td>
<td>-0.0104</td>
<td>0.1541</td>
</tr>
<tr>
<td>(M_2)</td>
<td>0.0070</td>
<td>0.1192</td>
</tr>
<tr>
<td>(M_3)</td>
<td>0.0122</td>
<td>0.1089</td>
</tr>
<tr>
<td>(M_4)</td>
<td>0.0197</td>
<td>0.0943</td>
</tr>
<tr>
<td>(M_5)</td>
<td>0.0135</td>
<td>0.0869</td>
</tr>
<tr>
<td>(M_6)</td>
<td>0.0160</td>
<td>0.0876</td>
</tr>
<tr>
<td>(M_7)</td>
<td>0.0200</td>
<td>0.0886</td>
</tr>
<tr>
<td>(M_8)</td>
<td>0.0237</td>
<td>0.0825</td>
</tr>
<tr>
<td>(M_9)</td>
<td>0.0283</td>
<td>0.0931</td>
</tr>
<tr>
<td>(M_{10})</td>
<td>0.0358</td>
<td>0.1139</td>
</tr>
</tbody>
</table>

NOTE: This table presents descriptive statistics for the returns on the 30 characteristic-sorted decile portfolios. Value-weighted returns are presented for portfolios formed on market capitalization \(S \), book-to-market ratio \(B \), and momentum \(M \). \(M_1 \) represents the lowest momentum (loser) decile, \(S_1 \) the lowest size (small firms) decile, and \(B_1 \) the lowest book-to-market decile. Data are converted to real values using the personal consumption expenditure deflator, are sampled at the quarterly frequency, and cover 1967:Q1–2001:Q4.
is 2.7 percent, and that for the market CAPM is 6.5 percent, with an implausible negative slope coefficient. The Fama and French three-factor empirical specification also generates point estimates with negative, and difficult to interpret, prices of risk for the market and size factors; the cross-sectional R^2 is about 36 percent. Compared with all these models, the cash-flow risks model of Bansal, Dittmar, and Lundblad (2005) is able to capture a significant portion of the differences in risk premia across assets. Hansen, Heaton, and Li (2005) inquire about the robustness of the stochastic cointegration-based risk measures considered in Bansal, Dittmar, and Lundblad (2002). They argue that the dividend-based consumption betas—particularly, the cointegration-based risk measures—are imprecisely estimated in the time series. Interestingly, across the different estimation procedures, the cash-flow beta risk measures across portfolios line-up closely with the average returns across assets. That is, in the cross-section of assets (as opposed to the time series), the price of risk associated with the long-run risks measures is reliably significant.

Bansal, Dittmar, and Kiku (2006) derive new results that link this cointegration parameter to consumption betas by investment horizon and evaluate the ability of their model to explain differences in mean returns for different horizons. They provide new evidence regarding the robustness of the stochastic cointegration-based measures of permanent risks in equity markets. Parker and Julliard (2005) evaluate whether long-run risks in aggregate consumption can account for the cross-section of expected returns. Malloy, Moskowitz, and Vissing-Jorgensen (2005) evaluate whether long-run risks in stockholders’ consumption relative to aggregate consumption has greater ability to explain the cross-section of equity returns, relative to aggregate consumption measures.

Term Structure and Currency Markets

Colacito and Croce (2006) consider a two-country version of the BY model. They show that this model can account for the low correlation in consumption growth across countries but high correlation in marginal utilities across countries (high risk sharing despite a low measured cross-country consumption correlation). This feature of international data is highlighted in Brandt, Cochrane, and Santa-Clara (2006). The key idea that Colacito and Croche pursue is that the long-run risks component is very similar across countries, but in the short-run consumption growth can be very different. That is, countries share very similar long-run prospects, but in the short-run they can look very different. This dimension, they show, is sufficient to induce high correlation in marginal utilities across countries. It also accounts for high real exchange volatility.

BY derive implications for the real term structure of interest rates for the long-run risks model. More recent papers by Eraker (2006) and Piazzesi and Schneider (2005) also consider the quantitative implications for the nominal term structure using the long-run risks model. Bansal and Shaliastovich (2007) show that the BY model can simultaneously account for the upward-sloping terms structure, the violations of the expectations hypothesis in the bond markets, the violations in the foreign currency markets, and the equity returns. This evidence indicates that the long-run risks model provides a solid baseline model for understanding financial markets. With simple modifications the model can be used to analyze the impact of changing short-term interest rates on financial markets; that is, it can help in designing policy.

CONCLUSION

The work of Bansal and Lundblad (2002), Bansal and Yaron (2004), and Bansal, Dittmar, and Lundblad (2005) shows that the long-run risks model can help interpret several features of financial markets. These papers argue that investors care about the long-run growth prospects and the uncertainty (time-varying consumption volatility) surrounding the growth rate. Risks associated with changing long-run growth prospects and varying economic uncertainty drive the level of equity returns, asset price volatility, risk premia across assets, and predictability of returns in financial markets.
Recent papers indicate that the channel in this model can account for nominal yield curve features, such as the violation the expectations hypothesis and the average upward-sloping nominal yield curve. Evidence presented in Colacito and Croce (2006) and Bansal and Shaliastovich (2007) shows that the model also accounts for key aspects of foreign exchange markets.

Growing evidence suggests that the long-run risks model can explain a rich array of financial market facts. This suggests that the model can be used to analyze the impact of economic policy on financial markets.

REFERENCES

