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Predicting Exchange
Rate Volatility:
Genetic Programming
Versus GARCH and
RiskMetrics
Christopher J. Neely and Paul A. Weller

It is well established that the volatility of asset
prices displays considerable persistence. That is,
large movements in prices tend to be followed

by more large moves, producing positive serial
correlation in squared returns. Thus, current and
past volatility can be used to predict future volatility.
This fact is important to both financial market
practitioners and regulators. 

Professional traders in equity and foreign
exchange markets must pay attention not only to
the expected return from their trading activity but
also to the risk that they incur. Risk-averse investors
will wish to reduce their exposure during periods of
high volatility, and improvements in risk-adjusted
performance depend upon the accuracy of volatility
predictions. Many current models of risk manage-
ment, such as Value-at-Risk (VaR), use volatility
predictions as inputs.

The bank capital adequacy standards recently
proposed by the Basel Committee on Banking
Supervision illustrate the importance of sophisti-
cated risk management techniques for regulators.
These norms are aimed at providing international
banks with greater incentives to manage financial
risk in a sophisticated fashion, so that they might
economize on capital. One such system that is widely
used is RiskMetrics, developed by J.P. Morgan. 

A core component of the RiskMetrics system is
a statistical model—a member of the large ARCH/
GARCH family—that forecasts volatility. Such ARCH/

GARCH models are parametric. That is, they make
specific assumptions about the functional form of
the data generation process and the distribution of
error terms. Parametric models such as GARCH are
easy to estimate and readily interpretable, but these
advantages may come at a cost. Other, perhaps
much more complex models may be better repre-
sentations of the underlying data generation process.
If so, then procedures designed to identify these
alternative models have an obvious payoff. Such
procedures are described as nonparametric. Instead
of specifying a particular functional form for the
data generation process and making distributional
assumptions about the error terms, a nonparametric
procedure will search for the best fit over a large
set of alternative functional forms.

This article investigates the performance of a
genetic program applied to the problem of forecast-
ing volatility in the foreign exchange market. Genetic
programming is a computer search and problem-
solving methodology that can be adapted for use in
nonparametric estimation. It has been shown to
detect patterns in the conditional mean of foreign
exchange and equity returns that are not accounted
for by standard statistical models (Neely, Weller, and
Dittmar, 1997; Neely and Weller, 1999, 2001; Neely,
2001). These achievements suggest that a genetic
program may also be a powerful tool for generating
predictions of asset price volatility.

We compare the performance of a genetic
program in forecasting daily exchange rate volatility
for the dollar–Deutsche mark and dollar-yen
exchange rates with that of a GARCH(1,1) model and
a related RiskMetrics volatility forecast (described
in the following section). These models are widely
used by both academics and practitioners and thus
are good benchmarks with which to compare the
genetic program forecasts. While the overall fore-
cast performance of the two methods is broadly
similar, on some dimensions the genetic program
produces significantly superior results. This encour-
aging finding suggests that more detailed investi-
gation of this methodology applied to volatility
forecasting would be warranted.

THE BENCHMARK MODEL

Before discussing the genetic programming
procedure, we will review the benchmark GARCH
and RiskMetrics volatility models. Engle (1982)
developed the autoregressive conditionally hetero-
skedastic (ARCH) model to characterize the observed
serial correlation in asset price volatility. Suppose
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we assume that a price Pt follows a random walk,

(1) ,

where εt+1∼N(0,σ t
2). The variance of the error term

depends upon t, and the objective of the model is
to characterize the way in which this variance
changes over time. The ARCH model assumes that
this dependence can be captured by an autoregres-
sive process of the form

(2) ,

where the restrictions ω ≥ 0 and α i ≥ 0 for i=0,1,…,m
ensure that the predicted variance is always non-
negative. This specification illustrates clearly how
current levels of volatility will be influenced by the
past and how periods of high or low price fluctua-
tion will tend to persist.

Bollerslev (1986) extended the ARCH class to
produce the generalized autoregressive condition-
ally heteroskedastic (GARCH) model, in which the
variance is given by

(3)

The simplest specification in this class, and the one
most widely used, is referred to as GARCH(1,1) and
is given by

(4) .

When α+β<1, the variance process displays mean
reversion to the unconditional expectation of σ t

2,
ω /(1– α – β ). That is, forecasts of volatility in the
distant future will be equal to the unconditional
expectation of σ t

2, ω /(1– α – β ). 
The RiskMetrics model for volatility forecasting

imposes the restrictions that α+β=1 and that
ω=0.1 In addition, the parameter β is not estimated,
but imposed to be equal to 0.94 ( J.P. Morgan/Reuters,
1996). This value was found to minimize the mean-
squared error (MSE) of volatility forecasts for asset
prices. The RiskMetrics one-day-ahead volatility
forecast is 

(5) .

The GARCH model has been used to characterize
patterns of volatility in U.S. dollar foreign exchange
markets (Baillie and Bollerslev, 1989, 1991) and in
the European Monetary System (Neely, 1999). How-
ever, initial investigations into the explanatory power
of out-of-sample forecasts produced disappointing
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results (West and Cho, 1995). Jorion (1995) found
that volatility forecasts for several major currencies
from the GARCH model were outperformed by
implied volatilities generated from the Black-Scholes
option-pricing model. These studies typically used
the squared daily return as the variable to be fore-
cast. However, the squared return is a very imprecise
measure of true, unobserved volatility. For example,
the exchange rate may move around a lot during
the day, and yet end up close to its value the same
time the previous day. In this case, the squared daily
return would be small, even though volatility was
high. More recently, it has been demonstrated that
one can significantly improve the forecasting power
of the GARCH model by measuring volatility as the
sum of intraday squared returns (Andersen and
Bollerslev, 1998). This measure is referred to as
integrated, or realized, volatility. In theory, if the
true underlying price path is a diffusion process, it
is possible to obtain progressively more accurate
estimates of the true volatility by increasing the
frequency of intraday observation. Of course, there
are practical limits to this; microstructural effects
begin to degrade accuracy beyond a certain point. 

GENETIC ALGORITHMS AND GENETIC
PROGRAMMING

Genetic algorithms are computer search proce-
dures used to solve appropriately defined problems.
The structure of the search procedure is based on
the principles of natural selection. These procedures
were developed for genetic algorithms by Holland
(1975) and extended to genetic programming by Koza
(1992). The essential features of both algorithms
include (i) a means of representing potential solu-
tions to a problem as character strings that can be
split up and recombined to form new potential solu-
tions and (ii) a fitness criterion that measures the
“quality” of a candidate solution. Both types of
algorithms produce successive “generations” of
candidate solutions using procedures that mimic
genetic reproduction and recombination. Each new
generation is subjected to the pressures of “natural
selection” by increasing the probability that candi-
date solutions scoring highly on the fitness criterion
get to reproduce.

To understand the principles involved in genetic
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1 The restriction, α+β=1, implies that shocks to the volatility process
persist forever; higher volatility today will lead one to forecast higher
volatility indefinitely. It therefore falls into the class of integrated
GARCH or IGARCH models.
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programming, it is useful to understand the opera-
tion of the simpler genetic algorithm. Genetic algo-
rithms require that potential solutions be expressed
as fixed-length character strings. Consider a problem
in which candidate solutions are mapped into binary
strings s, with a length of five digits. One possible
solution would be represented as (01010). Associated
with this binary string would be a measure of fitness
that quantifies how well it solves the problem. In
other words, we need a fitness function m(s) that
maps the strings into the real line and thus ranks
the quality of the solutions. Next we introduce the
crossover operator. Given two strings, a crossover
point is randomly selected and the first part of one
string is combined with the second part of the other.
For example, given the two strings (00101) and
(11010) and a crossover point between elements two
and three, the new string (00010) is generated. The
remaining parts of the original strings are discarded. 

The algorithm begins by randomly generating
an initial population of binary strings and then
evaluating the fitness of each string by applying the
fitness function m(s). Next, the program produces a
new (second) generation of candidate solutions by
selecting pairs of strings at random from this initial
population and applying the crossover operator to
create new strings. The probability of selecting a given
string is set to be proportional to its fitness. Thus a
“selection pressure” in favor of progressively superior
solutions is introduced. This process is repeated to
produce successive generations of strings, keeping
the size of each generation the same. The procedure
“evolves” new generations of improved potential
solutions.

Recall that genetic algorithms require that
potential solutions be encoded as fixed length
character strings. Koza’s (1992) extension, genetic
programming, instead employs variable-length,
hierarchical strings that can be thought of as deci-
sion trees or computer programs. However, the basic
structure of a genetic program is exactly the same
as described above. In particular, the crossover oper-
ator is applied to pairs of decision trees to generate
new “offspring” trees.

The application in this paper represents fore-
casting functions as trees and makes use of the
following function set in constructing them: plus,
minus, times, divide, norm, log, exponential, square
root, and cumulative standard normal distribution
function. In addition, we supply the following set
of data functions: data, average, max, min, and lag.
The data functions can operate on any of the four

data series that we provide as inputs to the genetic
program: (i) daily foreign exchange returns, (ii) inte-
grated volatility (i.e., the sum of squared intraday
returns), (iii) the sum of the absolute value of intra-
day returns, and (iv) the number of days until the
next business day. For example, data (returns (t )) is
simply the identity function that computes the daily
return at t. The other data functions operate in a
similar fashion, but also take numerical arguments
to specify the length of the window—the number
of observations—over which the functions operate.
The numerical arguments that the functions take
are determined by the genetic program. Thus
average (returns (t ))(n) generates the arithmetic aver-
age of the return observations t, t –1,…, t –n+1. 

The choice of elements to include in the func-
tion set is a potentially important one. While a
genetic program can, in principle, produce a very
highly complex solution from simple functions,
computational limitations might make such solu-
tions very difficult to find in practice. Providing
specialized functions to the genetic program that
are thought to be useful to a “good” solution to the
problem can greatly increase the efficiency of the
search by encouraging the genetic program to
search in the area of the solution space containing
those functions. On the other hand, this might
bias the genetic program’s search away from other
promising regions. To focus the search in promising
regions of the solution space, we investigate the
results of adding three additional complex data
functions to the original set of functions. This is
described below.

The expanded set of data functions consists of
the original set plus geo, mem, and arch5. Each of
these functions approximates the forecast of a
known parametric model of conditional volatility.
Thus, the genetic program might find them useful.
The function geo returns the following weighted
average of ten lags of past data: 

(6) .

This function can be derived from the prediction
of an IGARCH specification with parameter α, where
we constrain α to satisfy 0.01≤ α ≤ 0.99 and ten
lags of data are used. The function mem returns a
weighted sum similar to that which would be
obtained from a long memory specification for
volatility. It takes the form

(7) ,mem data d h dataj t j
j

( )( ) ≡ ∑ −
=0

9

geo data data
j

t j
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where h0=1, hj ∝ (1/j ! )(d+j –1)(d+j –2)…(d+1)d for
j>0 and the sum of the coefficients hj is constrained
to equal 1 so that the output would be of the same
magnitude as recent volatility. The parameter d is
determined by the genetic program and constrained
to satisfy –1<d<1. Finally, the function arch5 per-
mits a flexible weighting of the five most recent
observations, where the values for hj are provided
by the genetic program and constrained to lie within
{–5,5} and to sum to 1. Again, the constraint on
the sum of the coefficients ensures that the magni-
tude of the output will be similar to that of recent
volatility. The function has the form

(8)  ,    

Figure 1 illustrates a simple example of a hypo-
thetical tree determining a forecasting function.
The function first computes the maximum of the
sum of squared intraday returns over the last five
days. This number is multiplied by 0.1, and the
result is entered as the argument x of the function
(8/π )arctan(x)+4. This latter function is common
to all trees and maps the real line into the interval
(0,8). It ensures that all forecasts are nonnegative
and bounded above by a number chosen with refer-
ence to the characteristics of the in-sample period.

We now turn to the form of the fitness criterion.
Because true volatility is not directly observed, it is
necessary to use an appropriate proxy in order to
assess the volatility forecasting performance of

arch data h h dataj t j
j

5
0

4
( )( ) ≡ ∑ −

=

the genetic program. One possibility is to use the
ex post squared daily return. However, as Andersen
and Bollerslev (1998) have pointed out, this is an
extremely noisy measure of the true underlying
volatility and is largely responsible for the appar-
ently poor forecast performance of GARCH models.
A better approach is to sum intraday returns to mea-
sure true daily volatility (i.e., integrated volatility)
more accurately. We measure integrated volatility
using five irregularly spaced intraday observations.
If Si,t is the i th observation on date t, we define

(9)

(10) .

Thus σ 2
I,t is the measure of integrated volatility on

date t.2 Using five intraday observations represents
a compromise between the increase in accuracy
generated by more frequent observations and the
problems of data handling and availability that arise
as one moves to progressively higher frequencies
of intraday observation. 

In constructing the rules, the genetic program
minimized the mean-squared forecast error (MSE)
as the fitness criterion. There are potential ineffi-
ciencies involved in using this criterion on hetero-
skedastic data. However, a heteroskedasticity-
corrected fitness measure proved unsatisfactory in
experiments. With three to five observations per day,
there were instances where the integrated daily
volatility was very small; the heteroskedasticity
correction caused the measure to be inappropriately
sensitive to those observations.3
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2 More precisely, daily volatility is calculated from 1700 Greenwich
Mean Time (GMT) to 1700 GMT.

3 A perennial problem with using flexible, powerful search procedures
like genetic programming is overfitting—the finding of spurious
patterns in the data. Given the well-documented tendency for the
genetic program to overfit the data, it is necessary to design procedures
to mitigate this (e.g., Neely, Weller, and Dittmar, 1997). Here, we investi-
gated the effect of modifying the fitness criterion by adding a penalty
for complexity. This penalty consisted of subtracting an amount
(0.002 × number of nodes) from the negative MSE. Nodes are data and
numerical functions. This modification is intended to bias the search
toward functions with fewer nodes, which are simpler and therefore
less prone to overfit the data. Unfortunately, this procedure produced
no significant changes in performance, so we will report results only
from the unmodified version.
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Figure 1

Example of a Hypothetical Forecast Function
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DATA AND IMPLEMENTATION

The object of this exercise is to forecast the
daily volatility (the sum of intraday squared returns)
of two currencies against the dollar, the German
mark (DEM) and Japanese yen ( JPY), over the period
June 1975 to September 1999. Thus, the final nine
months of data for the DEM represent the rate derived
from that of the euro, which superseded the DEM
in January 1999. The timing of observations was
1000, 1400, 1600, 1700, and 2200 GMT. Days with
fewer than three valid observations or no observa-
tion at 1700 were treated as missing. In addition,
weekends were excluded. The sources of the data
for both exchange rates are summarized in Table 1.
We provided the genetic program with three series
in addition to the integrated volatility series: daily
returns, sum of absolute intraday returns, and the
number of days until the next trading day.

The full sample is divided into three subperiods:
the training period June 1975 through December
1979; the selection period January 1980 through
December 30, 1986; and the out-of-sample period
December 31, 1986, through September 21, 1999.
The role of these subperiods is described below.

In searching through the solution space of fore-
casting functions, the genetic program followed the
procedures below.

1. Create an initial generation of 500 randomly
generated forecast functions.

2. Measure the MSE of each function over 
the training period and rank according to
performance.

3. Select the function with the lowest MSE and
calculate its MSE over the selection period.
Save it as the initial best forecast function.

4. Select two functions at random, using weights
attaching higher probability to more highly
ranked functions. Apply the crossover oper-

ator to create a new function, which then
replaces an old function, chosen using weights
attaching higher probability to less highly
ranked functions. Repeat this procedure 500
times to create a new generation of functions.

5. Measure the MSE of each function in the new
generation over the training period. Take the
best function in the training period and evalu-
ate the MSE over the selection period. If it
outperforms the previous best forecast, save
it as the new best forecast function.

6. Stop if no new best function appears for 25
generations, or after 50 generations. Other-
wise, return to stage 4.

The stages above describe one trial. Each trial
produces one forecast function. The results of each
trial will generally differ as a result of sampling
variation. For this reason it is necessary to run a
number of trials and then to aggregate the results.
The aggregation methods are described in the fol-
lowing section.

RESULTS

The benchmark results are those from the
GARCH(1,1) and RiskMetrics models described in
the Benchmark Model section, estimated over the
in-sample period June 1975 to December 30, 1986.
We forecast daily integrated volatility (defined in
equations (9) and (10)) from these models, in and out
of sample, at horizons of 1, 5, and 20 days.4

We also forecast with a genetic program whose
training and selection periods coincide with the in-
sample estimation period for the GARCH model. For
each case of the genetic program we generated ten
trials, each of which produced a forecast function.

MAY/JUNE 2002      47

4 Note that the forecasted variable at the 5-day (20-day) horizon is the
integrated volatility 5 (20) days in the future. It is not the sum of the
next 5 (20) days of integrated volatility.
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Data Type and Source

Time Source Type of price

1000 Swiss National Bank Triangular arbitrage on bid rates

1400 Federal Reserve Bank of New York Midpoint of bid and ask

1600 Bank of England Triangular arbitrage, unspecified

1700 Federal Reserve Bank of New York Midpoint of bid and ask

2200 Federal Reserve Bank of New York Midpoint of bid and ask

Table 1



The cases were distinguished by the following
factors: (i) forecast horizon—1, 5, and 20 days; (ii) the
number of data functions—five or eight. For each
case, we generated ten rules. The forecasts from each
set of ten rules were aggregated in two ways. The
equally weighted forecast is the arithmetic average
of the forecasts from each of the ten trials. The
median-weighted forecast takes the median forecast
from the set of ten forecasts at each date. We report
six measures of out-of-sample forecast performance:

MSE, mean absolute error (MAE), R2, mean forecast
bias, kernel estimates of the error densities, and gen-
eralized mean-squared forecast error matrix tests.

Before discussing the results, we first present a
simple example of the forecasting rules produced
by the genetic program. Figure 2 illustrates a one-
day-ahead forecasting function for the DEM. Its
out-of-sample MSE was 0.496. The function is inter-
preted as follows. The number –0.4744 at the termi-
nal node enters as the argument of geo(sum of
squared intraday returns). Since the argument of
geo is constrained to lie between 0.01 and 0.99, it is
set to 0.01. The number generated by this function
then enters as the argument in geo(Ndays), where
Ndays refers to the “number of days to the next trad-
ing day.” We caution that this example was chosen
largely because of its relatively simple form; some
trials generated rules that were considerably more
complex, with as many as 10 levels and/or 100 nodes. 

Table 2 reports in-sample results for the baseline
case with five data functions. The figures for MSE
for the DEM are very similar for the GARCH and
equally weighted genetic program forecasts at the
1- and 5-day horizons, but the genetic program is
appreciably better at the 20-day horizon. The
median-weighted forecast is generally somewhat
inferior to the equally weighted forecast, but follows
the same pattern over the forecast horizons relative
to the GARCH model. That is, its best relative perfor-
mance is at the 20-day horizon. The RiskMetrics
forecasts also are generally comparable to GARCH
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Figure 2

One-Day-Ahead Forecasting Functions for
the DEM

(8/π )arctan(•)+4

log(•)

Geo(sum of squared intraday returns)(•)

–0.4744

log(•)

Geo(Ndays)(•)

In-Sample Comparison of Genetic Program, GARCH, and RiskMetrics: The Baseline Case

MSE MAE R2

Exchange 
rate Horizon EW GP MW GP GARCH RM EW GP MW GP GARCH RM EW GP MW GP GARCH RM

DEM 1 0.50 0.53 0.50 0.49 0.30 0.33 0.33 0.33 0.18 0.15 0.16 0.14

DEM 5 0.56 0.59 0.56 0.52 0.31 0.34 0.37 0.34 0.12 0.11 0.10 0.10

DEM 20 0.61 0.63 0.67 0.56 0.33 0.34 0.46 0.37 0.08 0.04 0.04 0.05

JPY 1 0.56 0.58 0.60 0.62 0.32 0.32 0.38 0.37 0.22 0.20 0.14 0.08

JPY 5 0.65 0.65 0.73 0.66 0.36 0.37 0.43 0.38 0.06 0.04 0.02 0.04

JPY 20 0.66 0.67 0.71 0.69 0.38 0.39 0.51 0.40 0.05 0.03 0.01 0.02

NOTE: The in-sample mean-squared error (MSE), mean absolute error (MAE), and R2 from GARCH(1,1), RiskMetrics (RM), and genetic
program (GP) forecasts on DEM/USD and JPY/USD data at three forecast horizons: 1, 5, and 20 days. The GP forecast was generated
using five data functions and without a penalty for complexity. In columns 3, 7, and 11 we report the forecast statistics—MSE, MAE, and
R2—for the equally weighted (EW) genetic programming method. In columns 4, 8, and 12 we report the analogous statistics for the
median-weighted (MW) genetic programming forecast. Columns 5, 9, and 13 contain the results for the GARCH forecast. Columns 6,
10, and 13 contain RiskMetrics forecast statistics. The in-sample period was June 1975 to December 30, 1986.

Table 2



forecasts at 1- and 5-day horizons, but a bit better
at longer horizons. For the JPY, the genetic program
produces equally weighted MSE figures that are in
all cases lower than for the GARCH and RiskMetrics
models. Similarly, the equally weighted genetic
programming rules have higher R2s over each
horizon than the GARCH and RiskMetrics models.
This result is not especially surprising given the
flexibility of the nonparametric procedure and its
known tendency to overfit in-sample. 

Table 3 presents a more interesting compari-
son—out-of-sample performance over the period

December 31, 1986, through September 21, 1999.
The equally weighted genetic program MSE figures
are usually slightly larger than those of the GARCH
and RiskMetrics forecasts at all horizons for both
currencies. Similarly, the genetic programming R2s
are typically slightly smaller than those of the
GARCH/RiskMetrics forecasts. However, the equally
weighted genetic program has a lower MAE than
do the GARCH/RiskMetrics models at all horizons
and for both currencies. 

Table 4 reports the out-of-sample performance
of the genetic program forecasts using the augmented
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Out-of-Sample Comparison of Genetic Program, GARCH, and RiskMetrics: The Baseline Case

MSE MAE R2

Exchange 
rate Horizon EW GP MW GP GARCH RM EW GP MW GP GARCH RM EW GP MW GP GARCH RM

DEM 1 0.35 0.38 0.33 0.32 0.30 0.34 0.33 0.32 0.09 0.08 0.12 0.10

DEM 5 0.38 0.42 0.36 0.34 0.31 0.35 0.35 0.33 0.06 0.06 0.08 0.07

DEM 20 0.41 0.42 0.44 0.37 0.31 0.31 0.43 0.35 0.01 0.01 0.02 0.02

JPY 1 1.35 1.35 1.29 1.33 0.42 0.44 0.47 0.47 0.14 0.13 0.16 0.11

JPY 5 1.48 1.48 1.56 1.44 0.43 0.45 0.52 0.49 0.03 0.02 0.04 0.06

JPY 20 1.48 1.48 1.43 1.46 0.45 0.46 0.55 0.51 0.02 0.02 0.05 0.05

NOTE: The out-of-sample MSE, MAE, and R2 from GARCH(1,1), RiskMetrics (RM), and genetic program (GP) forecasts on DEM/USD
and JPY/USD data at three forecast horizons: 1, 5, and 20 days. The GP forecast was generated using five data functions and without a
penalty for complexity. The out-of-sample period was December 31, 1986, to September 21, 1999. See the notes to Table 2 for column
definitions.

Table 3

Out-of-Sample Results Using the Data Functions Geo, Mem, and Arch5

MSE MAE R2

Exchange 
rate Horizon EW GP MW GP GARCH RM EW GP MW GP GARCH RM EW GP MW GP GARCH RM

DEM 1 0.37 0.44 0.33 0.32 0.29 0.37 0.33 0.32 0.12 0.05 0.12 0.10

DEM 5 0.36 0.37 0.36 0.34 0.30 0.30 0.35 0.33 0.05 0.04 0.08 0.07

DEM 20 0.38 0.38 0.44 0.37 0.30 0.30 0.43 0.35 0.01 0.01 0.02 0.02

JPY 1 1.27 1.31 1.29 1.33 0.43 0.44 0.47 0.47 0.18 0.15 0.16 0.11

JPY 5 1.45 1.46 1.56 1.44 0.46 0.46 0.52 0.49 0.04 0.03 0.04 0.06

JPY 20 1.49 1.62 1.43 1.46 0.44 0.50 0.55 0.51 0.04 0.00 0.05 0.05

NOTE: The out-of-sample MSE, MAE, and R2 from GARCH(1,1), RiskMetrics (RM), and genetic program (GP) forecasts on DEM/USD
and JPY/USD data at three forecast horizons: 1, 5, and 20 days. The GP forecast was generated using eight data functions including
geo, mem, and arch5 (for descriptions see equations (6) through (8) in the text) and without a penalty for complexity. The out-of-sample
period was December 31, 1986, to September 21, 1999. See the notes to Table 2 for column definitions.

Table 4



set of data functions, which include geo, mem, and
arch5. For ease of comparison Table 4 repeats the
out-of-sample figures for the GARCH model. The MSE
and R2 statistics from this table are more equivocal
than those from Table 3. The equally weighted
genetic program MSE for the DEM cases are slightly
larger than those of the GARCH and RiskMetrics
forecasts at the 1- and 5-day horizons, but the genetic

program performs somewhat better than GARCH at
the 20-day horizon. This performance is not, how-
ever, reflected in the R2, for which the GARCH/
RiskMetrics models are better at longer horizons.
For the JPY the situation is reversed; the equally
weighted genetic programming MSE is lower than
the GARCH/RiskMetrics figures at the 1-day hori-
zon but larger at the 20-day horizon. The equally
weighted genetic program also has a slight edge in
R2 at the 1-day horizon. The figures for the MAE of
the genetic program are not very different from
Table 3 and are still substantially better than those
of the GARCH/RiskMetrics predictions.

To summarize: With MSE as the performance
criterion, neither the genetic programming proce-
dure nor the GARCH/RiskMetrics model is clearly
superior. The GARCH/RiskMetrics models do
achieve slightly higher R2s at longer horizons but the
MAE criterion clearly prefers the genetic program-
ming forecasts. In both tables, there is some tendency
for the median-weighted genetic programming fore-
cast to perform less well than its equally weighted
counterpart. The out-of-sample RiskMetrics fore-
casts are usually marginally better than those of the
estimated GARCH model by MSE and MAE criteria
but marginally worse when judged by R2.

Comparing the genetic programming results in
Table 4 with those of Table 3 shows that expanding
the set of data functions leads to only a marginal
improvement in the performance of the genetic
program. Therefore further results will concentrate
on out-of-sample forecasts in the baseline genetic
programming case presented in Table 3, where only
five data functions were used. We present kernel
estimates of the densities of out-of-sample forecast
errors at the various horizons in Figures 3 through 5.5

The most striking feature to emerge from these
figures is the apparent bias in the GARCH forecasts
when compared with their genetic program counter-
parts. At all forecast horizons and for both curren-
cies, there is a positive shift in the error distributions
of the GARCH forecasts that move the modes of the
forecast densities away from zero. However, the
relative magnitude of the bias in the mode does not
carry over to the mean. Table 5 shows that, though
both forecasts are biased in the mean, the magnitude
of the bias is considerably greater for the genetic
program. Tests for the bias—carried out with a
Newey-West correction for serial correlation—show
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NOTE: The kernel estimates of the densities of the 1-day 
forecast errors (forecast minus realized volatility) for the 
DEM and JPY for genetic program and GARCH(1,1) model 
over the out-of-sample period, December 31, 1986, through 
September 21, 1999. The dotted vertical line denotes zero.

Figure 3



that all the forecasts are biased in a statistically
significant way (Newey and West, 1987, 1994). The
evidence from Figures 3 through 5—that the modes
of the genetic programming error distribution are
closer to zero than those of the GARCH model—
indicates that the bias in the genetic programming
forecasts is being substantially influenced by a
small number of negative outliers.

The MSE and R2 evidence presented so far fails
to indicate a clear preference for any of the four
sets of forecasts. The best model varies by forecast
horizon and by forecast evaluation criterion. This
confused state of affairs leaves one wondering
whether these disparate results can be reconciled
to produce an unambiguous ranking of the two
methodologies. One method by which multi-horizon
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5-Day DEM Forecast Error Densities

0

0.5

1

1.5

2

2.5

–2 –1 0 1 2

GARCHGP

0

0.5

1

1.5

2

2.5

–2 –1 0 1 2

GARCHGP

5-Day JPY Forecast Error Densities

NOTE: The kernel estimates of the densities of the 5-day 
forecast errors (forecast minus realized volatility) for the 
DEM and JPY for genetic program and GARCH(1,1) model 
over the out-of-sample period, December 31, 1986, through 
September 21, 1999. The dotted vertical line denotes zero.

Figure 4

20-Day DEM Forecast Error Densities
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NOTE: The kernel estimates of the densities of the 20-day 
forecast errors (forecast minus realized volatility) for the 
DEM and JPY for genetic program and GARCH(1,1) model 
over the out-of-sample period, December 31, 1986, through 
September 21, 1999. The dotted vertical line denotes zero.

Figure 5



forecasts from two sources can be aggregated and
compared is the generalized forecast error second
moment (GFESM) method proposed by Clements
and Hendry (1993). Unfortunately, this method has
some drawbacks. For example, the GFESM can prefer

model 1 to model 2 based on forecasts from horizon
1 to horizon h, even if model 2’s forecasts dominate
at every forecast horizon up to h. To remedy the per-
ceived weaknesses in the GFESM, Newbold, Harvey,
and Leybourne (1999) proposed the generalized
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Tests for Mean Forecast Bias

Equally weighted Median-weighted 
GP GP GARCH RM

Exchange Mean Predicted Bias Predicted Bias Predicted Bias Predicted Bias
rate Horizon σ 2 σ 2 Bias p value σ 2 Bias p value σ 2 Bias p value σ 2 Bias p value

DEM 1 0.43 0.29 –0.15 0.00 0.24 –0.19 0.00 0.46 0.03 0.00 0.43 0.00 0.92

DEM 5 0.43 0.23 –0.20 0.00 0.16 –0.27 0.00 0.49 0.05 0.00 0.43 0.00 0.92

DEM 20 0.43 0.19 –0.24 0.00 0.18 –0.25 0.00 0.59 0.16 0.00 0.43 0.00 0.92

JPY 1 0.56 0.33 –0.22 0.00 0.32 –0.24 0.00 0.57 0.02 0.06 0.55 0.00 0.88

JPY 5 0.56 0.37 –0.19 0.00 0.41 –0.15 0.00 0.59 0.04 0.07 0.55 –0.01 0.87

JPY 20 0.56 0.42 –0.14 0.00 0.44 –0.12 0.01 0.65 0.09 0.02 0.55 –0.01 0.89

NOTE: In column 3, mean volatility is the mean daily integrated volatility over the out-of-sample period December 31, 1986, through
September 21, 1999. Columns 4, 5, and 6 report the following statistics for the equally weighted genetic programming forecasts over
the same period: mean forecast of integrated volatility, the bias in the forecast (predicted volatility minus realized volatility), and the
p value for the test that the mean bias is zero. Columns 7 through 9 report the statistics for the median-weighted genetic programming
forecasts, and columns 10 through 12 report the analogous results for GARCH forecasts. The RiskMetrics statistics are in columns 13
through 15. The genetic program forecasts are based on the five-function model described in Table 3. The p values are computed with
Newey-West corrections for heteroskedasticity and serial correlation. The lag length was selected by the Newey and West (1994)
procedure.

Table 5

Test of Generalized Method of Second Forecast Error Moment Domination

Eigenvalues

GARCH-EW GP GARCH-MW GP RM-EW GP RM-MW GP GARCH-RM

DEM –0.090 –0.148 –0.021 –0.037 –0.017

0.012 –0.003 0.003 –0.138 0.086

0.082 0.079 –0.084 –0.002 0.036

JPY –0.369 –0.359 –0.028 –0.035 –0.295

0.145 0.127 0.055 0.059 0.200

0.199 0.203 –0.101 –0.102 0.144

NOTE: Table 6 provides sets of eigenvalues for the test of generalized method of second forecast error moment criterion. The first model
dominates the second model if all the eigenvalues in a set are nonpositive and at least one is negative. GARCH-EW GP denotes the
GARCH model versus the equally weighted genetic programming forecasts for the baseline case, as in Table 3. GARCH-MW GP
denotes the GARCH model versus the median-weighted genetic programming forecasts for the baseline case, as in Table 3. RM-EW
GP denotes the RiskMetrics model versus the equally weighted genetic programming forecasts for the baseline case. RM-MW GP
denotes the RiskMetrics model versus the median-weighted genetic programming forecasts for the baseline case. GARCH-RM
denotes the GARCH model versus RiskMetrics forecasts.

Table 6



mean-squared forecast error matrix (GMSFEM)
criterion. This procedure prefers forecasting method
1 to method 2 if the magnitude of all linear combi-
nations of forecast errors is at least as small under
method 1 as method 2. 

To explain the GMSFEM more fully, let us intro-
duce some notation. The one-by-three vector of
1-, 5-, and 20-day GARCH forecast errors at time t
is et

GARCH={et,1
GARCH,et,5

GARCH,et,20
GARCH}, and the second

moment matrix of these forecast errors is ΦGARCH=
E(et

GARCHet
GARCH′ ). The RiskMetrics and genetic pro-

gramming variables are defined analogously. The
GMSFEM says that the GARCH model is preferred
to the genetic programming forecasts if every linear
combination of GARCH forecast errors is at least as
small as every linear combination of genetic pro-
gramming forecast errors. That is, if 

(11)

.6

This condition is met if every eigenvalue of the
matrix (ΦGARCH– ΦGP ) is nonpositive and at least one
is negative. Clearly, the criterion prefers the genetic
programming forecast if every eigenvalue is non-
negative and at least one is positive. 

Table 6 shows five sets of eigenvalues from
the  (ΦGARCH– ΦGP ) matrix, using both the equally
weighted and median-weighted genetic program
forecasts, for both exchange rates. It confirms the
previous results. The only case in which there are
all negative (or positive) eigenvalues is the com-
parison of the RiskMetrics forecast to the median-
weighted genetic programming forecast. In that
case, all the eigenvalues are negative, indicating
that the RiskMetrics forecasts dominate the median-
weighted genetic programming forecasts under the
GMSFEM criterion. In every other set of eigenvalues
there are both positive and negative values. Neither
GARCH/RiskMetrics forecasts nor genetic program-
ming forecasts dominate the other under the
GMSFEM criterion.

DISCUSSION AND CONCLUSION

We choose to use the problem of forecasting
conditional volatility in the foreign exchange market
to illustrate the strengths and weaknesses of genetic
programming because it is a challenging problem
with a well-accepted benchmark solution, the
GARCH(1,1) model. The genetic program did reason-
ably well in forecasting out-of-sample volatility.

′ −( ) ≤ ≠d dGARCH GPΦ Φ                for all vectors d  00

While the genetic programming rules did not usually
match the GARCH(1,1) or RiskMetrics models’ MSE
or R2, its performance on those measures was
generally close. But the genetic program did consis-
tently outperform the GARCH model on MAE and
modal error bias at all horizons. The genetic pro-
gramming solutions appeared to suffer from some
in-sample overfitting, which was not mitigated, in
this case, by an ad hoc penalty for rule complexity. 

Our results suggest some interesting issues for
further investigation. The superiority of the genetic
program according to the MAE criterion is perhaps
surprising given that we used MSE as the fitness
criterion. This raises the possibility that further
improvement in the forecasting performance of the
genetic program relative to the GARCH model could
be achieved by using MAE as the fitness criterion.
Also, given that increasing the frequency of intra-
day observations has been shown to improve the
accuracy of forecasts based on the GARCH model
(Andersen et al., 2001), it is important to discover
whether the results of this investigation survive in
that context.
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