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Forecasting Employment Growth in Missouri
with Many Potentially Relevant Predictors:

An Analysis of Forecast Combining Methods
David E. Rapach and Jack K. Strauss

averaging of a large number of individual auto-
regressive distributed (ARDL) model forecasts,
typically outperform more complicated methods.
Combination forecast methods can exploit the
information in a large number of potential pre-
dictors. This is especially relevant when fore-
casting a variable like national output growth,
subject to both supply and demand shocks and
possible instabilities in the data. In this case, it
is difficult to know a priori which particular
variables are the most relevant and, moreover, it
is unlikely that a forecaster can specify a single
econometric model that closely corresponds to
the actual—and perhaps unknowable—data-
generating process.

Although most of the literature, including

1 INTRODUCTION

Bates and Granger’s (1969) seminal work
showed that combinations of individual
forecasts often outperform individual fore-

casts. Well over a quarter century later, Stock
and Watson (2004) analyze more than a dozen
different methods for combining forecasts of
output growth in the G7 countries and find that
combination forecasts are a useful way of incor-
porating information from a large number of
potentially relevant predictors. They show that
combination forecasts of output growth often
outperform forecasts generated by a benchmark
autoregressive (AR) model and that simple
methods, such as simple averaging or trimmed

In this paper, the authors examine different approaches to forecasting monthly Missouri employ-
ment growth in the presence of many potentially relevant predictors, including both regional and
national economic variables. Following Stock and Watson (2003, 2004), they first generate simulated
out-of-sample forecasts of Missouri employment growth at horizons of 3, 6, 12, and 24 months using
individual autoregressive distributed lag (ARDL) models based on 22 potential predictors. They
then consider 20 different methods from the extant literature for combining the forecasts generated
by the individual ARDL models. At longer horizons of 12 and 24 months, combining methods based
on Bayesian shrinkage techniques produce out-of-sample forecasts that are substantially more
accurate than forecasts from an autoregressive (AR) benchmark model. Combining methods based
on Bayesian shrinkage techniques also outperform simple combining methods (such as those that
use the mean or median of the individual forecasts) at longer horizons. Nevertheless, simple com-
bining methods consistently outperform the AR benchmark model at all horizons and appear to
offer a low-cost way of generating reliable combination forecasts.
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Stock and Watson (1999, 2003, 2004), examines
combination forecasts of national economic vari-
ables such as output growth and inflation, we are
interested in the usefulness of combining methods
when forecasting a regional economic variable.
As discussed above, combining methods are likely
to be useful when predicting aggregate economic
variables because they incorporate information
from a large number of potential predictors. This
is also likely to be the case when forecasting
regional economic variables, as a large number
of both national and regional variables may con-
tain information useful for forecasting. In the
present paper, we consider forecasting employ-
ment growth in Missouri in the presence of a large
number of potentially relevant predictors. Gener-
ating accurate forecasts of regional variables is
important for planning purposes for businesses
and state and local governments. Evaluating fore-
cast combining methods for predicting a regional
economic variable represents a natural comple-
ment to the extant literature on national economic
variables.

We analyze forecasts of Missouri employment
growth over the 1995:01–2005:01 out-of-sample
period. This period includes the expansion of the
late 1990s, the 2001 recession, and the subsequent
“jobless” recovery, so it should represent an
informative laboratory for analyzing forecasts of
Missouri employment growth. We consider 22
potential predictors of Missouri employment
growth, including 9 regional and 13 national
economic variables. Following Stock and Watson
(2003, 2004), we first generate simulated out-of-
sample forecasts of Missouri employment growth
from individual ARDL models, with each ARDL
model based on 1 of the 22 potential predictors.
We then use 20 different methods from the extant
literature to construct combination forecasts of the
individual ARDL model forecasts. The combin-
ing methods are based on the following: simple
averaging using the mean, median, or trimmed
mean (Stock and Watson, 2003, 2004); ordinary
least squares (OLS; Granger and Ramanathan,
1984); weighted least squares (WLS; Diebold and
Pauly, 1987); discount mean squared forecast
error (MSFE; Stock and Watson, 2004); Bayesian
shrinkage techniques (Clemen and Winkler, 1986;

Diebold and Pauly, 1990); clusters formed on the
basis of MSFE (Aiolfi and Timmermann, 2005);
model selection (Swanson and Zeng, 2001);
principal components (Chan, Stock, and Watson,
1999; Stock and Watson, 2004); approximate
Bayesian model averaging (Draper, 1995); and
exponential reweighting (Yang, 2004).

Previewing our results, we find that forecast
combining methods can improve the forecasting
of employment growth in Missouri, especially at
longer horizons of 1 and 2 years. In particular,
combining methods based on Bayesian shrinkage
techniques generate forecasts that are up to 29
percent and 49 percent more accurate, in terms
of MSFE, than the forecasts produced by an AR
benchmark model at horizons of 1 and 2 years,
respectively. Combination forecasts based on
Bayesian shrinkage techniques also have an MSFE
that is close to or below that of the best individual
ARDL model forecast at horizons of 1 and 2 years,
and Bayesian shrinkage combination forecasts
have a lower MSFE than simple combining
methods at these horizons. It should be noted that
a number of the forecast combining methods fail
to outperform the AR benchmark model, implying
that it is critical to carefully select combining
methods when forecasting Missouri employment
growth. Simple combining methods appear to offer
a low-cost way of generating reliable combination
forecasts, as they consistently outperform the AR
benchmark model at all horizons, in agreement
with the findings of Stock and Watson (2004).

The rest of the paper is organized as follows:
Section 2 describes the econometric methodology,
Section 3 reports the empirical results, and
Section 4 concludes.

2 ECONOMETRIC METHODOLOGY
2.1 Individual Forecasts

Let ∆yt = yt – yt–1, where yt is the log-level of
Missouri employment at time t, and let 

, 

so that yh
t+h is the growth rate of Missouri employ-

ment over the next h months expressed at a
monthly rate. Consider the following ARDL model:
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(1)     

where xi,t is one of the potentially relevant predic-
tors (i = 1,…,n), h is the forecast horizon, and εh

t+h

is an error term. We consider forecast horizons
of 3, 6, 12, and 24 months (h = 3,6,12,24). In order
to form recursive simulated out-of-sample fore-
casts of yh

t+h using equation (1), we first divide the
sample into in-sample and out-of-sample portions,
where the first R observations comprise the in-
sample period and the last P observations make
up the out-of-sample period. We compute the
initial out-of-sample forecast for yh

R+h based on
the predictor xi,t as 

where α̂R, β̂ j,R, and γ̂ j,R are the OLS estimates of
α, βj, and γ j, respectively, in equation (1) using data
through period R. We select the lag lengths (q1 and
q2) in equation (2) using the Akaike information
criterion (AIC) and data through period R consid-
ering a minimum lag length of 0 for q1 and 1 for
q2 (thus ensuring that the potential predictor xi,t

appears in equation (1)) and a maximum lag length
of 12 for q1 and q2. We form the second out-of-
sample forecast by updating the above process
using data through period R+1. Continuing in
this manner, we end up with a series of P – (h – 1)
simulated out-of-sample forecasts corresponding
to the predictor xi,t, {y

h
i,t+h|t}

T–h
t=R. Note that q1 and

q2 are selected anew when computing each recur-
sive out-of-sample forecast, so that the ARDL lag
lengths in the forecasting equations can vary over
time. We consider 22 potential predictors that
define the individual ARDL models (n = 22). Apart
from data availability and revisions, these simu-
lated out-of-sample forecasts mimic the situation
of a forecaster in real time.1

An AR model, equation (1) with the restriction
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γ j = 0 for all j imposed, serves as the benchmark
model. This is a common benchmark model when
forecasting time-series variables. The AR model
forecasts are computed recursively in a manner
similar to the ARDL model forecasts, with the
lag length selected by the AIC given a minimum
(maximum) lag length of 0 (12). This produces a
series of P – (h – 1) simulated out-of-sample fore-
casts corresponding to the AR benchmark model,
{yh

AR,t+h|t}
T–h
t=R.

2.2 Forecast Combining Methods

We consider 20 different methods for com-
bining the individual forecasts generated by the
n = 22 ARDL models, and the methods can be
organized into 10 different classes. Most of the
forecast combining methods require a holdout
period to calculate the weights used to combine
the individual ARDL model forecasts, and we use
the first P0 out-of-sample forecast observations
as holdout observations. All of the combining
methods take the form of a linear combination of
the individual forecasts:

(2)            

where ŷh
c,t+h|t is a given combination forecast

whose weights, {wi,t}n
i=0, are typically calculated

using the individual out-of-sample forecasts and
yh

t+h observations available from the start of the
holdout out-of-sample period to time t. For each
of the combining methods, we form combination
forecasts over the post-holdout out-of-sample
period, yielding {ŷh

c,t+h|t}
T–h
t=R+P0

, for a total of 
T – (h – 1) – (R + P0) forecasts available for evalu-
ation. We compare the forecasts generated by each
of the 20 combining methods, as well as the AR
benchmark model, with the actual observations
of employment growth over the post-holdout
out-of-sample period, {yh

t+h}T–h
t=R+P0

.2

2.2.1 Simple Combining Methods. We con-
sider three simple methods of combining individ-
ual forecasts: mean, median, and trimmed mean.
Stock and Watson (2003, 2004) find that simple
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1 Although data availability is not an issue for financial variables,
some nonfinancial variables are only available after a 1- to 2-month
lag. Given this, it will generally be infeasible to use the procedure
described in the text in real time at horizons of 1 to 2 months. At
horizons beyond 2 months, say, 5 months, it is feasible to use the
procedure to generate a forecast of cumulative employment growth
over the previous 2 and subsequent 3 months.

2 To be clear, out-of-sample forecasts are generated for the individual
ARDL models over the entire out-of-sample period, which consists
of both the holdout and post-holdout periods, using the recursive
procedure described in Section 2.1.



combining methods work well in forecasting
inflation and output growth using a large number
of potential predictors in the G7 countries. The
mean sets w0,t = 0 and wi,t = (1/n) for all i in
equation (2); the median uses the sample median
of {ŷh

i,t+h|t}
n
i=1; the trimmed mean sets w0,t = 0 and

wi,t = 0 for the individual models that produce
the smallest and largest forecasts at time t, while
wi,t = 1/(n – 2) for the remaining individual
models.3

2.2.2 OLS Combining Methods. Granger
and Ramanathan (1984) recommend combining
forecasts using unrestricted OLS. We consider
OLS combination forecasts where the OLS
coefficients are estimated using either a recur-
sive or rolling window. To compute the initial
OLS combination forecast (for yh

R+P0+h) using a
recursive window, we regress {yh

s+h}s=R
R+(P0–1)– (h–1)

on a constant and {ŷ h
i,s+h|s}s=R

R+(P0–1)– (h–1), i = 1,…,n,
and set the combining weights in equation (2)
equal to the estimated OLS coefficients. To con-
struct the second combination forecast (for
yh

R+(P0+1)+h), the OLS coefficients are estimated by
regressing {yh

s+h}s=R
R+(P0–1)– (h–1)+1 on a constant and

{ŷ h
i,s+h|s}s=R

R+(P0–1)– (h–1)+1, i = 1,…,n, and the fitted
OLS coefficients again serve as the combining
weights in equation (2). We proceed in this
fashion through the end of the available out-of-
sample period. The OLS combination forecasts
based on a rolling window are computed in a
similar manner, with the exception that in com-
puting the second combination forecast, for
example, the OLS coefficients that serve as the
combining weights in equation (2) are estimated
by regressing {yh

s+h}s=R+1
R+(P0–1)–(h–1)+1 on a constant

and {ŷ h
i,s+h|s}s=R+1

R+(P0–1)–(h–1)+1, i = 1,…,n.
2.2.3 WLS Combining Methods. Diebold and

Pauly (1987) argue that combination forecasts
based on time-varying weights can enhance fore-
casting performance in the presence of structur-
al change. We use their “t-lambda” method. It
follows the OLS combining method based on a
recursive estimation window described in
Section 2.2.2 above, with the exception that the
combining weights are calculated using WLS

instead of OLS. Diebold and Pauly (1987) recom-
mend the weighting matrix Ψ = diag[ψtt] = ktλ,
where k, λ > 0, t = 1,…,T, and T is the number
of observations used in the WLS regression.
Under this approach, observations from the recent
past receive more weight than observations from
the distant past when computing the combining
coefficients.4 We consider λ = 1, which corre-
sponds to weights that decrease at a constant
rate as we move further into the past, and λ = 3,
which corresponds to weights that decrease at
an increasing rate.

2.2.4 Discount MSFE Combining Methods.
Stock and Watson (2004) consider a combining
method, where the weights in equation (2) depend
inversely on the historical forecasting perform-
ance of the individual models. Their discount
(or inverse) MSFE combining method employs
the weights,

(3)

where

(4)

w0,t = 0, and δ is a discount factor. Note that when
δ = 1, there is no discounting and equation (3)
yields the optimal combination forecast derived
by Bates and Granger (1969) for the case where
the individual forecasts are uncorrelated; when
δ < 1, greater importance is attached to the recent
forecasting performance of the individual models.
We consider δ values of 1.0 and 0.9. Stock and
Watson (2004) also consider a “most recently best”
approach, where the “combination” forecast is the
forecast corresponding to the individual model
with the best forecasting performance over the
previous year, and we include this approach in
our analysis.

2.2.5 Bayesian Shrinkage Methods. In the
presence of a relatively large number of individ-
ual forecasts, Bayesian shrinkage techniques may
be helpful in forming combination forecasts, as
suggested by Clemen and Winkler (1986) and
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3 The simple combining methods obviously do not require holdout
out-of-sample observations.

4 Using familiar notation, the WLS estimator can be expressed as
β̂ WLS = (X ′Ψ–1X)–1(X ′Ψ–1Y). Note that the value of k is arbitrary,
because it disappears in the computation of the WLS estimator.



Diebold and Pauly (1990). We follow Stock and
Watson (2004) and consider the following shrink-
age combination forecast, which Diebold and
Pauly (1990) show can be viewed as a Bayesian
estimator:

(5)

where w0,t = 0, β̂ i,t is the OLS coefficient estimate
corresponding to individual forecast i (the OLS
coefficients are estimated using the recursive win-
dow scheme described in Section 2.2.2 above, with
the exception that the intercept term is restricted
to zero), λ = max{0,1 – κ[n/(t – h – R – n)]}, and κ
is a parameter that governs the degree of shrinkage
toward equal weights. Larger values of κ corre-
spond to smaller values of λ and thus more shrink-
age toward equal weights. We consider κ values
of 0.5 and 1.0.

2.2.6 Cluster Combining Methods. Aiolfi
and Timmermann (2005) investigate persistence
in forecasting performance and develop condi-
tional combining methods. We use their C (K, PB)
algorithm, which proceeds as follows. To form
the initial combination forecast, we first com-
pute the MSFE for the individual forecasts
{ŷh

i,s+h|s}s=R
R+(P0–1)– (h–1), i = 1,…,n, and group the

individual models into K equal-sized clusters,
where the first cluster contains the individual
models with the lowest MSFE values, the second
cluster contains the individual models with the
next-lowest MSFE values, and so on. The first
combination forecast, ŷ h

c,R+P0+h, is the average of
the individual forecasts of yh

R+P0+h generated by
the models included in the first cluster. To form
the second combination, we compute the MSFE
for the individual forecasts {ŷh

i,s+h|s}s=R+1
R+(P0–1)–(h–1)+1,

i = 1,…,n, and group the individual models into
clusters (so that the clusters are formed based on
a rolling window), and the second combination
forecast, ŷ h

c,R+(P0+1)+h, is the average of the indi-
vidual forecasts of yh

R+(P0+1)+h included in the first
cluster. We proceed in this manner through the
end of the available out-of-sample period. Fol-
lowing Aiolfi and Timmermann (2005), we con-
sider K = 2 and K = 3 in our applications.

2.2.7 Model Selection Combining Methods.
Swanson and Zeng (2001) consider combining
methods based on model selection. We use their

w ni t i t, ,
ˆ / ,= + −( )( )λβ λ1 1

M-TST model selection approach, which uses a
general-to-specific modeling procedure. We pro-
ceed as described in Section 2.2.2 above for the
OLS combining method based on a rolling win-
dow, with the exception that we first examine the
t-statistics corresponding to the estimated slope
coefficients of the combining regression, where
the t-statistics are calculated using heteroskedas-
ticity and autocorrelation consistent (HAC) stan-
dard errors.5 If any of the individual t-statistics
are less then 1.645 in absolute value, we exclude
these individual forecasts from the OLS regres-
sion used to estimate the combining weights. If
all of the t-statistics are less than 1.645 in absolute
value, we include all of the individual forecasts
in the OLS regression.6

2.2.8 Principal Component Combining
Methods. Chan, Stock, and Watson (1999) and
Stock and Watson (2004) consider forming
combination forecasts using the first m principal
components of the individual forecasts. Let
F̂ h

1,s+h|s,…, F̂ h
m,s+h|s, s = R,…,t, represent the first

m estimated principal components of the uncen-
tered second-moment matrix of the individual
forecasts, ŷh

i,s+h|s, i = 1,…,n, s = R,…,t. To form a
combination forecast of yh

t+h based on the fitted
principal components, we estimate the regression
model, 

(6)      

where s = R,…,t – h. The combination forecast 
is given by ŷ h

c,t+h|t = φ̂1F̂
h
1,t+h|t + … + φ̂mF̂h

m,t+h|t ,
where φ̂1,…,φ̂m are the OLS estimates of φ1,…,φm,
respectively, in equation (6). We use m = 1 and
m = 2 in computing forecasts using the principal
component (PC) method.

2.2.9 Approximate Bayesian Model Averag-
ing Combining Methods. Following Garratt et al.
(2003), we compute combining weights using
approximate Bayesian model averaging (ABMA),

y F F vs h
h

s h s
h

m m s h s
h

s h
h
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5 We use Newey and West (1987) HAC standard errors with a lag
truncation of h – 1.

6 Swanson and Zeng (2001) also consider model selection based on
the AIC or Schwarz information criterion (SIC). However, this
involves computing the AIC or SIC for every possible combination
of individual forecasts in the OLS regression model, which is imprac-
tical in our applications, as n = 22 so that there are 2n – 1 = 4,194,303
possible combinations of the individual forecasts.



in which functions of the SIC are used to approxi-
mate the posterior probabilities of the individual
models (Draper, 1995). The combining weights
can be expressed as

(7)

where ∆i,t = SICh
i,t – maxj (SICh

j,t), and SICh
i,t is the

SIC corresponding to the fitted ARDL model i
given by equation (1) used to generate ŷh

i,t+h|t.
Garratt et al. (2003) also follow Burnham and
Anderson (1998) and compute weights using the
AIC, so that ∆i,t = AICh

i,t – maxj (AICh
j,t) in equation

(7). We consider ABMA combining weights based
on both the SIC and AIC.7

2.2.10 Exponential Reweighting Combining
Methods. Yang (2004) develops what he labels the
AFTER (aggregated forecast through exponential
reweighting) algorithm to combine forecasts from
individual models. Yang (2004) shows that the
algorithm can be viewed as an optimal combina-
tion procedure under fairly general conditions.
The weights for the AFTER algorithm are given
by

(8)

where

(9)

and υ̂i,t is the OLS estimate of the variance of εh
t+h

for the fitted ARDL forecasting model i (equation
(1)) used to generate ŷh

i,t+h|t.

3 EMPIRICAL RESULTS
3.1 Data

Missouri employment growth is measured as
the first difference in the log-levels of seasonally
adjusted Missouri employment (multiplied by
100). The cumulative Missouri employment
growth is divided by h, thereby expressing
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employment growth at the average monthly rate
over the forecast horizon. We consider 9 regional
and 13 national economic variables, for a total of
22 potential predictors (xi,t in equation (1)), which
include labor market, production, and financial
variables that are commonly used to forecast
economic activity. The 9 regional variables are the
Missouri unemployment rate and employment
growth in the eight states that border Missouri
(Arkansas, Illinois, Iowa, Kansas, Kentucky,
Nebraska, Tennessee, and Oklahoma). The data
are seasonally adjusted and, like the Missouri
employment data, are from the Bureau of Labor
Statistics (BLS). Based on availability, the data
span from 1976:01 to 2005:01.8 The 13 national
economic variables are the following: U.S.
employment; U.S. unemployment rate; capacity
utilization rate; average weekly manufacturing
hours; average weekly initial claims for unemploy-
ment insurance; manufacturers’ new orders for
consumer goods and materials; vendor perform-
ance (sales); manufacturers’ new orders for non-
defense capital goods; building permits; stock
prices (S&P 500 index); interest rate spread (10-
year Treasury bond yield minus the federal funds
rate); national overtime; and industrial production.
The U.S. employment and unemployment rate
series are from the BLS; the remaining national
variables are from the Conference Board. With
three exceptions, all of the national variables are
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7 Like the simple combining methods, the ABMA combining methods
do not require holdout out-of-sample observations.

8 Supporting our specifications, the unit root tests of Ng and Perron
(2001) clearly indicate that the log-levels of Missouri employment
and employment in the eight bordering states are I (1), while the
Missouri unemployment rate is I(0). We also tested for cointegration
between the log-levels of Missouri employment and the log-levels
of employment in each of the eight bordering states because equa-
tion (1) should potentially include an error-correction term in the
event of cointegration. We only found evidence of cointegration
between the log-levels of employment in Missouri and Kansas and
Missouri and Oklahoma. However, Missouri employment appears
weakly exogenous with respect to both of these variables, so the
inclusion of an error-correction term in equation (1) is not necessary.

9 With one exception, Ng and Perron (2001) unit root tests clearly
support our specifications for the national variables. The exception
is the U.S. unemployment rate, where the unit root null hypothesis
cannot be rejected at the 10 percent level; however, the null hypoth-
esis is very nearly rejected at the 10 percent level. We obtain similar
results in our applications below if we the use first differences of
the U.S. unemployment rate instead of the levels. Where relevant,
we also found little evidence that an error-correction term needs
to be included in equation (1) when any of the national variables
serve as predictors.



measured in monthly growth rates (first differ-
ences of log-levels multiplied by 100); the three
exceptions are the U.S. unemployment rate, capac-
ity utilization rate, and interest rate spread, which
are specified in levels.9 While we do not claim that
our list of 9 regional and 13 national variables con-
stitutes an exhaustive list of potential predictors
of Missouri employment growth, it does include
a large number of potentially relevant predictors
that are likely to be useful for our analysis.

3.2 Out-of-Sample Forecasting Results

We evaluate out-of-sample forecasts of
Missouri employment growth over the 1995:01 to
2005:01 period. This period includes the late-1990s
expansion, 2001 recession, and subsequent “job-
less” recovery—an informative period in which
to evaluate forecasts of Missouri employment
growth. We consider “short” forecast horizons of
3 and 6 months and “long” forecast horizons of
12 and 24 months. As discussed in Section 2.2
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Table 1
MSFE statistics for the Individual ARDL Models of Missouri Employment Growth,
1995:01–2005:01 Out-of-Sample Period

Variable h = 3 h = 6 h = 12 h = 24

AR benchmark 1.92 1.21 0.88 0.84

Regional variables

Missouri unemployment rate 0.97 0.94 1.01 0.98

Arkansas employment 1.00 1.00 0.92 0.93

Illinois employment 1.04 0.99 0.94 1.18

Iowa employment 0.98 0.92 0.95 0.91

Kansas employment 0.95 0.91 0.92 1.32

Kentucky employment 0.90 0.86 0.79 0.87

Nebraska employment 1.17 1.08 1.04 0.95

Tennessee employment 0.94 1.02 0.70 0.76

Oklahoma employment 0.97 1.00 1.06 1.22

National variables

U.S. employment 1.11 0.93 0.98 1.16

U.S. unemployment rate 1.47 1.63 2.14 2.18

Capacity utilization 1.07 1.19 1.09 1.08

Average weekly hours, manufacturing 1.28 1.05 0.94 1.00

Unemployment claims 1.15 1.05 0.94 0.91

New manufacturing orders 1.06 1.03 0.96 0.98

Vendor sales 1.00 1.00 1.00 1.00

New manufacturing capital orders 1.08 1.15 1.26 1.30

Building permits 1.02 1.03 0.96 0.99

Stock market index 1.41 1.90 2.17 1.54

Interest rate spread 1.09 1.01 1.07 0.92

National overtime 0.95 0.83 0.87 0.94

Industrial production 1.30 0.98 1.00 1.00

NOTE: The first row reports the MSFE for the AR benchmark model; the remaining rows report the ratio of the MSFE for the individual
ARDL model to the MSFE for the AR benchmark model. A bold entry signifies the ARDL model with the lowest MSFE at a given horizon.



above, we need a holdout out-of-sample period
in order to compute most of the combination fore-
casts, and we use the 60 observations preceding
1995:01 as the holdout out-of-sample period.

Table 1 reports out-of-sample forecasting
results for the AR benchmark model and the indi-
vidual ARDL models. The table reports the MSFE
statistics for the AR benchmark model and the
ratio of the MSFE for the individual ARDL models
to the MSFE for the AR benchmark model. The
first row of the table shows that the MSFE declines
as the horizon increases for the AR benchmark

model, suggesting that more accurate forecasts of
average monthly Missouri employment growth are
available at longer horizons. Observe that either
five or six of the nine individual ARDL models
based on the regional variables have lower MSFE
statistics than those for the AR benchmark model
at all reported horizons. The performance of
national variables is poorer, as most individual
ARDL models do not have lower MSFE statistics
than those for the AR benchmark, particularly at
shorter horizons. It would seem difficult to ascer-
tain a priori which of the individual potential
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Table 2
Forecast Combining Results for Missouri Employment Growth, 1995:01–2005:01 
Out-of-Sample Period

h = 3 h = 6 h = 12 h = 24

Combination method MSFE α̂ 0 α̂ 1 R2 MSFE α̂ 0 α̂ 1 R2 MSFE α̂ 0 α̂ 1 R2 MSFE α̂ 0 α̂ 1 R2

AR benchmark 1.92 0.08 0.57* 0.08 1.21 –0.08 0.65 0.10 0.88 –0.08 0.65 0.10 0.84 –0.18 0.63 0.04

Mean 0.96 –0.02 0.67 0.10 0.92 –0.60 1.14 0.21 0.84 –0.60 1.14 0.21 0.83 –0.39 0.88 0.05

Median 0.94 –0.03 0.68 0.10 0.92 –0.54 1.07 0.22 0.85 –0.54 1.07 0.22 0.94 –0.49 0.90 0.07

Trimmed mean 0.93 –0.06 0.72 0.11 0.90 –0.57 1.12 0.23 0.82 –0.57 1.12 0.23 0.83 –0.36 0.85 0.07

OLS, recursive 1.44 0.53* 0.17** 0.02 1.56 0.33 0.35** 0.20 1.27 0.33 0.35** 0.20 0.95 –0.12 0.58 0.52

OLS, rolling 2.28 0.61** 0.07** 0.01 2.45 0.31 0.25** 0.21 2.81 0.31 0.25** 0.21 1.62 0.14 0.36 0.47

WLS: t-lambda, λ = 1 1.65 0.58* 0.11** 0.01 1.90 0.36 0.28** 0.20 1.87 0.36 0.28** 0.20 1.30 –0.08 0.50 0.50

WLS: t-lambda, λ = 3 2.06 0.58* 0.10** 0.01 2.30 0.35 0.24** 0.20 2.65 0.35 0.24** 0.20 1.94 –0.05 0.42** 0.53

Discount MSFE, δ = 1.0 0.95 –0.02 0.67 0.10 0.92 –0.64 1.16 0.22 0.85 –0.64 1.16 0.22 0.91 –0.72 1.10 0.07

Discount MSFE, δ = 0.9 0.95 0.01 0.65 0.10 0.91 –0.53 1.06 0.18 0.87 –0.53 1.06 0.18 0.91 –0.68 1.08 0.05

Most recently best 1.07 0.20 0.46** 0.10 1.03 0.55 0.12** 0.01 1.32 0.55 0.12** 0.01 0.87 –0.09 0.60 0.15

Shrinkage, κ = 0.5 1.18 0.47 0.25** 0.03 1.21 0.28 0.48** 0.24 0.85 0.28 0.48** 0.24 0.51 –0.16 0.80 0.33

Shrinkage, κ = 1.0 1.08 0.38 0.35** 0.04 1.02 0.19 0.59 0.24 0.71 0.19 0.59 0.24 0.53 –0.28 0.92 0.28

Cluster: C(2, PB) 0.96 –0.02 0.67 0.09 0.94 –0.54 1.01 0.16 0.97 –0.54 1.01 0.16 1.06 0.54 0.07 0.00

Cluster: C(3, PB) 0.96 0.07 0.61 0.08 0.94 –0.70 1.14 0.19 0.96 –0.70 1.14 0.19 1.11 0.34 0.22 0.00

Model selection: M-TST 1.82 0.57* 0.12** 0.02 1.93 0.32 0.22** 0.13 3.00 0.32 0.22** 0.13 1.73 0.13 0.36** 0.48

PC, m = 1 0.96 0.00 0.65 0.10 0.97 –0.68 1.04 0.30 1.00 –0.68 1.04 0.30 1.36 –1.15 1.17 0.23

PC, m = 2 0.96 –0.07 0.71 0.09 0.97 –0.62 0.96 0.25 1.10 –0.62 0.96 0.25 1.27 –0.43 0.73 0.12

ABMA, SIC 1.07 0.21 0.45** 0.06 1.01 0.05 0.55 0.05 1.00 0.05 0.55 0.05 1.16 0.99** –0.32** 0.04

ABMA, AIC 1.05 0.13 0.50** 0.09 1.17 –0.26 0.77 0.23 0.93 –0.26 0.77 0.23 0.90 –0.95 1.28 0.13

AFTER 0.94 –0.05 0.69 0.12 0.99 –0.14 0.71 0.19 0.92 –0.14 0.71 0.19 0.89 –0.89 1.23 0.15

NOTE: The first row reports the MSFE for the AR benchmark model; the remaining rows report the ratio of the MSFE for the 
combining method to the MSFE for the AR benchmark model. α̂ 0, α̂ 1, and R2 are the intercept estimate, slope estimate, and 
goodness-of-fit measure, respectively, for the MZ regression. A bold entry signifies the combining method with the lowest MSFE 
or the highest R2 at a given horizon; * and ** indicate significance at the 5 percent and 1 percent levels, respectively, for a test of 
the null hypothesis that α 0 = 0 (α 1 = 1) for α̂ 0 (α̂ 1).
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predictors in the ARDL models are likely to dis-
play the best forecasting ability, and this provides
a motivation for considering methods for combin-
ing the large number of individual ARDL forecasts.

Table 2 presents results for the 20 forecast
combining methods over the 1995:01–2005:01
out-of-sample period. Similar to Table 1, Table 2
reports the MSFE for the AR benchmark model
and the ratio of the MSFE for a given combining
method to the MSFE for the AR benchmark model.
Table 2 also reports the estimated intercept, esti-

mated slope, and R2 statistic for a Mincer and
Zarnowitz (MZ, 1969) regression of the form

(10)

where a0 = 0 and a1 = 1 when the forecasts are
unbiased. We indicate in Table 2 whether â0 (â1)
is significantly different from 0 (1), where â0 (â1)
is the OLS estimate of a0 (a1) in equation (10).10

y a a yt h
h

c t h h
h

t h
h

+ + += + +0 1
ˆ ,, | η

h = 12 h = 24

MSFE α̂ 0 α̂ 1 R2 MSFE α̂ 0 α̂ 1 R2

0.88 –0.08 0.65 0.10 0.84 –0.18 0.63 0.04

0.84 –0.60 1.14 0.21 0.83 –0.39 0.88 0.05

0.85 –0.54 1.07 0.22 0.94 –0.49 0.90 0.07

0.82 –0.57 1.12 0.23 0.83 –0.36 0.85 0.07

1.27 0.33 0.35** 0.20 0.95 –0.12 0.58 0.52

2.81 0.31 0.25** 0.21 1.62 0.14 0.36 0.47

1.87 0.36 0.28** 0.20 1.30 –0.08 0.50 0.50

2.65 0.35 0.24** 0.20 1.94 –0.05 0.42** 0.53

0.85 –0.64 1.16 0.22 0.91 –0.72 1.10 0.07

0.87 –0.53 1.06 0.18 0.91 –0.68 1.08 0.05

1.32 0.55 0.12** 0.01 0.87 –0.09 0.60 0.15

0.85 0.28 0.48** 0.24 0.51 –0.16 0.80 0.33

0.71 0.19 0.59 0.24 0.53 –0.28 0.92 0.28

0.97 –0.54 1.01 0.16 1.06 0.54 0.07 0.00

0.96 –0.70 1.14 0.19 1.11 0.34 0.22 0.00

3.00 0.32 0.22** 0.13 1.73 0.13 0.36** 0.48

1.00 –0.68 1.04 0.30 1.36 –1.15 1.17 0.23

1.10 –0.62 0.96 0.25 1.27 –0.43 0.73 0.12

1.00 0.05 0.55 0.05 1.16 0.99** –0.32** 0.04

0.93 –0.26 0.77 0.23 0.90 –0.95 1.28 0.13

0.92 –0.14 0.71 0.19 0.89 –0.89 1.23 0.15

10 The t-statistics used to assess the statistical significance are based on
Newey and West (1987) standard errors with a lag truncation of h–1.



Given that the forecasts are unbiased, the R2

statistic provides a measure of the ability of the
forecasts to explain movements in actual Missouri
employment growth.

Among the forecast combining methods, there
is considerable dispersion of results. The simple
combining methods (mean, median, and trimmed
mean) consistently outperform the AR benchmark,
with reductions in MSFE of around 5 percent to
15 percent relative to the AR benchmark, and the
R2 statistic for the MZ regressions are greater than
those for the AR benchmark. In addition, the esti-
mated intercept and slope coefficients are not
significantly different from 0 and 1, respectively,
so that the simple combining methods appear to
produce unbiased forecasts. At shorter horizons
of 3 and 6 months, the trimmed mean combining
method outperforms all of the other combining
methods in terms of MSFE. In terms of the R2

statistic of the MZ regression, the AFTER proce-
dure performs marginally better than other simple
combining methods at h = 3, and the PC (m = 1)
method provides the best MZ fit at h = 6, with
an R2 statistic of 0.30. Both the AFTER and PC
methods have estimated intercept and slope coef-
ficients that are not significantly different from 0
and 1, respectively, in the MZ regression. Observe
that many of the combining methods, especially
the OLS and t-lambda methods, produce forecasts
that are both substantially less accurate than the
AR benchmark and biased according to the MZ
regression results. Also note that the trimmed
mean, the best performing combining method at
horizons of 3 and 6 months, has an MSFE that is
reasonably close to that of the best performing
individual ARDL model at these horizons
(Kentucky employment and national overtime,
respectively). Given that it will be very difficult
a priori for a researcher to select the individual
variable that will perform the best, this helps to
demonstrate the usefulness of the trimmed mean
combining method at shorter horizons.

At longer horizons of 12 and 24 months,
Table 2 shows that several of the combining
methods lead to sizable reductions in MSFE and
increases in the MZ R2 statistics relative to the AR
benchmark model. In particular, the shrinkage

method with κ = 1.0 (κ = 0.5) leads to reductions
in MSFE of 29 percent (15 percent) and 47 percent
(49 percent) relative to the AR benchmark at
horizons of 12 and 24 months, respectively. The
coefficient estimates from the MZ regression indi-
cate that the shrinkage forecasts are unbiased,
with the exception of the slope coefficient when
κ = 0.5 and h = 12. In addition, the shrinkage
method with κ = 1.0 performs nearly as well as
the best individual ARDL model (Tennessee
employment) at the 12-month horizon and better
than the best individual ARDL model (Tennessee
employment) at the 24-month horizon, further
demonstrating the usefulness of the shrinkage
method with κ = 1.0 at longer horizons. The OLS
and t-lambda procedures yield relatively high MZ
R2 statistics at h = 12 and h = 24, but the estimated
slope coefficients in the MZ regressions are signifi-
cantly less than 1 at the 1-year horizon. Moreover,
these combining methods have MSFE statistics
well above those for the AR benchmark, with the
exception of the OLS recursive method when 
h = 24. The discount MSFE method appears to
offer reasonably large reduction in MSFE relative
to the AR benchmark model at horizons of 12 and
24 months. However, the reductions in MSFE
associated with the discount MSFE methods are
smaller than those for the simple combining
methods. In fact, the simple combining methods
offer fairly sizable reductions in MSFE relative to
the AR benchmark and generate unbiased fore-
casts at horizons of 12 and 24 months. Overall,
the simple combining methods perform consis-
tently well at all reported horizons in Table 2 and
seem to offer a low-cost way of generating reliable
forecasts of Missouri employment growth.

To gain further insight into the relative fore-
casting performances of some of the combining
methods, Figure 1 plots the realized observations
of yh

t+h and the forecasts generated by the AR
benchmark model and the mean; shrinkage, κ = 1.0;
and t-lambda, λ = 3 combining methods. The
shrinkage, κ = 1.0 method is shown because it has
the lowest MSFE at h = 12 and next-to-lowest
MSFE at h = 24; the t-lambda, λ = 3 method is
shown because it has the highest MZ R2 statistic
at h = 24. A problem with the t-lambda method,
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especially at horizons of 6, 12, and 24 months, is
that it is much more volatile than the actual real-
izations. Despite the fact that the t-lambda method
has relatively high MZ R2 statistics at horizons of
6, 12, and 24 months, the overly volatile nature
of the t-lambda forecasts causes its MSFE to be
substantially greater than that of the AR bench-
mark, and the estimated slope coefficient in the
MZ regression is consistently significantly less
than 1. At horizons of 12 and 24 months, Figure 1
shows that the shrinkage method tends to do the

best job of tracking the decline in Missouri employ-
ment growth associated with the 2001 recession.
Given that turning points are notoriously difficult
to predict, this suggests that the shrinkage method
forecasts are quite useful at longer horizons. We
also see from Figure 1 that the mean generally
does a better job than the AR benchmark model
at tracking Missouri employment growth at all
horizons. The mean forecasts are less volatile than
the shrinkage and t-lambda forecasts, so they pro-
vide more reliable forecasts at shorter horizons.

Rapach and Strauss

FEDERAL RESERVE BANK OF ST. LOUIS REGIONAL ECONOMIC DEVELOPMENT VOLUME 1, NUMBER 1 2005 107

–4

–2

0

2

4

6

8

–2

–1

0

1

2

3

4

5

6

 

–1

0

1

2

3

4

5

 

–4

–2

0

2

4

6

8

1995 1996 1997 1998 1999 2000 2001 2002 2003 2004

3-Month Horizon 6-Month Horizon

12-Month Horizon 24-Month Horizon

1995 1996 1997 1998 1999 2000 2001 2002 2003 2004

1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004

Actual
AR Benchmark
Mean

Shrinkage, κ = 1.0

t-lambda, λ = 3

Figure 1

Actual Missouri Employment Growth and Select Forecasts, 1995:01–2005:01 Out-of-Sample Period



However, the mean forecasts are too smooth at
longer horizons and thus are not as adept as the
shrinkage forecasts in tracing swings in Missouri
employment growth.

Given the relatively good forecasting perform-
ance of the shrinkage, κ = 1.0 method at longer
horizons, it is interesting to examine the weights
used to compute the combination forecasts for this
method. Table 3 reports the weights associated
with the individual forecasts using the shrinkage,

κ = 1.0 method for the first month of most of the
years of the forecast evaluation period. Each
weight would be 0.045 under equal weighting.
However, the weights on the individual forecasts
often differ markedly from equal weighting in
Table 3, and we also witness sizable changes in
some of the weights from year to year. Several of
the regional variables, such as Nebraska, Iowa, and
Kentucky employment, are heavily positively
weighted throughout most of the period, indicat-
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Table 3
Shrinkage, κ = 1.0 Combining Weights for the Individual ARDL Model Forecasts of Missouri
Employment Growth for Select Months, 1995:01–2005:01 Out-of-Sample Period, h = 12

Variable 1996:01 1997:01 1998:01 1999:01 2000:01 2001:01 2002:01 2003:01 2004:01

Regional variables

Missouri unemployment 0.01 0.20 0.21 0.38 0.23 –0.18 –0.03 –0.02 –0.01
rate

Arkansas employment 0.17 0.19 0.18 0.16 0.17 0.21 0.30 0.28 0.26

Illinois employment 0.02 –0.09 –0.10 –0.14 –0.05 0.02 0.06 0.01 –0.04

Iowa employment 0.28 0.25 0.28 0.25 0.26 0.31 0.28 0.26 0.25

Kansas employment 0.39 0.31 0.04 –0.16 –0.34 –0.17 –0.19 –0.06 0.00

Kentucky employment 0.00 0.27 0.23 0.11 0.23 0.37 0.59 0.88 0.84

Nebraska employment 0.51 0.58 0.66 0.67 0.60 0.45 0.43 0.40 0.35

Tennessee employment 0.01 –0.02 –0.08 –0.03 0.18 0.17 0.21 0.34 0.42

Oklahoma employment 0.17 0.20 0.21 0.38 0.23 –0.18 –0.03 –0.02 –0.01

National variables

U.S. employment –0.55 –0.68 –0.64 –0.68 –0.66 –0.58 –1.05 –1.27 –1.25

U.S. unemployment rate –0.12 –0.29 –0.22 –0.23 –0.12 –0.12 –0.20 –0.26 –0.19

Capacity utilization –0.22 –0.35 –0.45 –0.68 –0.60 –0.30 –0.47 –0.44 –0.35

Average weekly hours, –0.22 –0.14 0.06 0.08 0.12 0.02 0.02 0.00 –0.05
manufacturing

Unemployment claims 0.23 0.16 0.23 0.19 0.25 0.26 0.45 0.43 0.35

New manufacturing orders 0.02 –0.08 –0.09 –0.12 –0.11 –0.19 –0.22 –0.23 –0.26

Vendor sales 0.36 0.56 0.58 0.55 0.57 0.58 0.52 0.53 0.46

New manufacturing capital 0.03 0.06 0.02 0.05 –0.03 –0.07 –0.14 –0.22 –0.23
orders

Building permits 0.13 0.07 0.06 0.10 0.05 0.01 0.01 –0.07 –0.12

Stock market index –0.51 –0.78 –0.78 –0.62 –0.51 –0.42 –0.32 –0.28 –0.20

Interest rate spread 0.06 0.18 0.17 0.32 0.34 0.24 0.40 0.46 0.48

National overtime 0.12 0.21 0.12 0.09 –0.14 –0.15 –0.15 –0.17 –0.13

Industrial production 0.27 0.30 0.34 0.33 0.31 0.41 0.27 0.22 0.20

Note: A bold entry signifies the ARDL model that receives the highest weight at the given date; 0.00 indicates <0.005.



ing the important role for some of the regional
variables in forecasting Missouri employment
growth.11 Tennessee and Oklahoma employment
are interesting in that the weights display signif-
icant increases and decreases, respectively, over
the evaluation period. In terms of the national
variables, vendor sales, industrial production, and
the interest rate spread possess large positive
weights throughout most of the period; other
national variables such as U.S. employment,

capacity utilization, and the stock market index
have large negative weights throughout most of
the period. Overall, the shrinkage method at the
1-year horizon appears able to identify the indi-
vidual forecasts that are the most accurate and to
accommodate changes in relative forecasting
accuracy in computing the combining weights.
It would be difficult a priori to identify the par-
ticular individual model or models with the best
forecasting ability at different points in time, and
the shrinkage method provides an a priori proce-
dure to cull potentially useful information from
a large number of individual models.
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Table 4
Forecast Combining Results for Missouri and Illinois Employment Growth, Alternative 
Out-of-Sample Periods, h =12

Missouri Illinois

Combination method 1995:01–1999:12 2000:01–2005:01 1995:01–2005:01 2000:01–2005:01

AR benchmark 0.47 1.41 1.72 3.22

Mean 0.88 0.83 0.81 0.81

Median 0.94 0.82 0.82 0.83

Trimmed mean 0.99 0.79 0.84 0.84

OLS, recursive 2.25 0.61 1.34 1.00

OLS, rolling 7.28 1.04 1.28 1.01

WLS: t-lambda, λ = 1 4.25 0.75 1.39 0.99

WLS: t-lambda, λ = 3 7.10 0.90 1.40 1.08

Discount MSFE, δ = 1.0 0.89 0.84 0.82 0.80

Discount MSFE, δ = 0.9 0.93 0.84 0.81 0.82

Most recently best 1.67 1.00 0.59 0.53

Shrinkage, κ = 0.5 1.25 0.42 0.90 0.64

Shrinkage, κ = 1.0 0.88 0.44 0.82 0.64

Cluster: C(2, PB) 0.97 0.90 0.89 0.78

Cluster: C(3, PB) 0.95 0.90 0.88 0.74

Model selection: M-TST 6.85 1.29 7.36 1.02

PC, m = 1 1.31 0.91 0.83 0.83

PC, m = 2 1.26 1.07 0.98 0.83

ABMA, SIC 1.04 1.00 1.41 1.39

ABMA, AIC 0.96 0.94 0.72 0.69

AFTER 0.98 0.84 1.06 1.03

NOTE: The first row reports the MSFE for the AR benchmark model; the remaining rows report the ratio of the MSFE for the combining
method to the MSFE for the AR benchmark model. A bold entry signifies the combining method with the lowest MSFE.

11 For instance, if we were to exclude the eight neighboring state
employment variables, the ratio of the MSFE for the shrinkage, 
κ = 1.0 procedure to the MSFE for the AR benchmark increases to
1.01 at the 12-month horizon, well above the 0.71 figure in Table 2.



3.3 Robustness Checks

Table 4 reports results for alternative forecast
evaluation periods for Missouri employment
growth and employment growth for a neighboring
state, Illinois, at the 1-year horizon.12 The results
for Missouri show that the MSFE for the AR fore-
cast procedure is more than three times lower for
the 1995:01–1999:12 period than the 2000:01–
2005:01 period. This reflects fairly sharp employ-
ment changes and potential data problems (for
example, occasional contradictory reports between
BLS monthly and quarterly reports on both the
national and state levels) during the latter period.13

Several of the combining methods in the earlier
period produce very poor results, with MSFE
ratios substantially above 1, while the shrinkage,
κ = 1.0 method and mean combination forecast
produce the lowest MSFE statistics. Both shrink-
age forecasts produce the lowest MSFE during
the latter period for Missouri. Overall, across our
three evaluation periods (1995:01–2005:01,
1995:01–1999:01, 2000:01–2005:1), the shrinkage,
κ = 1.0 method yields the lowest MSFE at the 1-
year horizon for Missouri employment growth.

With respect to employment growth in Illinois,
we consider the 1995:01–2005:01 and 2000:01–
2005:01 forecast evaluation periods. The indi-
vidual ARDL forecasts are based on the same set
of national variables used for Missouri, as well
as the Illinois unemployment rate and employ-
ment in the six states that border Illinois (Iowa,
Indiana, Kentucky, Missouri, Michigan, and
Wisconsin). The same time-series specifications
given in Section 3.1 above are used for these vari-
ables. The most recently best method achieves
the lowest MSFE for both evaluation periods,
producing declines of 51 percent and 47 percent
in MSFE relative to the AR benchmark. The simple
combination forecasts outperform the AR bench-
mark over both evaluation periods, with declines
in MSFE relative to the AR benchmark of 16 to
19 percent, and the shrinkage and ABMA, AIC

methods also lead to sizable declines in MSFE
relative to the AR benchmark, ranging from 10 to
36 percent. The results in the last two columns
of Table 4 indicate that simple combining and
shrinkage methods perform well with respect to
forecasting employment growth at the 1-year
horizon in both Missouri and Illinois.

4 CONCLUSION
There are a large number of potentially rele-

vant predictors of regional economic variables
such as Missouri employment growth. In this
paper, we analyze 20 different methods from the
extant literature for combining individual forecasts
of Missouri employment growth from 1995:01 to
2005:01. The individual forecasts are generated
by a large number of ARDL models based on
potential predictors. Similar to Stock and Watson
(2004), we find that simple combination methods
work well, particularly at shorter forecast horizons
of 3 and 6 months, and often outperform more
complicated weighting procedures. At longer
horizons of 12 and 24 months, we find that
Bayesian shrinkage methods produce the most
accurate forecasts, providing quite sizable reduc-
tion in MSFE relative to an AR benchmark model.
The shrinkage combining methods also perform
well at longer horizons over alternative evaluation
periods and were able to track Missouri employ-
ment growth over the recent recession reasonably
well. Examination of the combining weights used
in the shrinkage methods indicates that a number
of regional variables and a few national variables
can play a significant role in improving forecasts
of Missouri employment growth. Forecast com-
bination procedures also lead to relatively large
reductions in MSFE relative to an AR benchmark
model when forecasting Illinois employment
growth. Why do shrinkage combining methods
work well in the present paper? Diebold and Lopez
(1996, p. 256) offer helpful insight by observing
that “the combining weights [of shrinkage com-
bining methods] are coaxed toward the arithmetic
mean, but the data are still allowed to speak,
when (and if) the data have something to say.”
Shrinkage combining methods can thus take
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12 A 1-year horizon is typically important for state budgetary planning
purposes.

13 See Kliesen and Wall (2004) on reconciling the BLS jobless employ-
ment figures and Wall and Wheeler (2005) on large discrepancies
in recent St. Louis employment. 



advantage of the reliable performance of simple
averaging across a diversity of variables while
still allowing for particular variables to exert a
stronger influence in certain situations. In future
research, we plan to extend our analysis by devel-
oping combination forecasts of employment
growth for each of the 50 individual U.S. states.
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