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Abstract

I study a non-stochastic, perfect foresight, general equilibrium model with a banking system that

may hold large excess reserves when the central bank pays interest on reserves. The banking

system also faces a capital constraint that may or may not be binding. When the rate of interest

on reserves equals the market rate, if the quantity of reserves is large and bank capital is not

scarce, the price level is indeterminate. However, for a large enough level of reserves, the bank

capital constraint becomes binding and the price level moves one to one with the quantity of

reserves.

1. Introduction

In September 2012, the Federal Reserves instituted a policy of buying $40 billion of mortgage-backed

securities every month for an indefinite time. In January 2013, $45 billion of longer-term Treasury

securities were added to the program. As a result, the total amount of reserves held by depository

institutions (as reported in the Fed’s H.4 statistical release) grew at an average rate of approximately

$75 billion per month during 2013, reaching $2.5 trillion at the beginning of 2014. The difference

between reserves growth and asset purchases was accounted for by increases in currency in circulation

(and other minor items in the liability side of the Fed’s balance sheet). The program concluded in

October 2014 after reserves had reached a maximum of $2.8 trillion during the summer months of

that year.

For the time of the life of the program, the Federal Open Market Committee consistently restated

its long-standing commitment to price stability, targeting a 2% inflation rate. The creation of

nominal reserves, then, was not intended to be accompanied with an increase in the price level that

could attenuate the associated changes in the total real value of different asset classes. Rather, it

was thought of as a swap of one type of asset (securities) for another type of asset (reserves), all in

real terms.

Reserves, however, can only be held by a select group of financial institutions; mainly, banks.

Hence, with stable prices, the growth in total reserves translates into growth of the real value of
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an asset that primarily resides on the balance sheets of banks. When reserves increase, either the

balance sheet of banks grows or some other bank assets adjust to compensate.

The U.S. banking system is large. As of December 2012 total assets at commercial banks (as

reported in the Fed’s H.8 statistical release) were $13.1 trillion, with $1.7 trillion of cash assets (more

than 90% being reserves) and $2.7 trillion of securities (68% of which were Treasury and Agency

securities — see Figure A4 in the appendix). Furthermore, the average growth rate of total assets

in the banking system over the last 20 years has been close to 0.5% per month, which in December

2012 would amount to around $65 billion (see Figures 1 and 2).

While it seems plausible that the large U.S. banking system could absorb a growing real value of

reserves, at least for some time, a natural question to ask is: How long can such a process continue

without any major impact on banks’ lending capacity and, eventually, on the economy’s price level?

To answer this question it is useful to study a general equilibrium model of an economy that includes

a system of banks with sophisticated balance sheets. This is the objective of this paper.

Figure 1 Figure 2

The model is a dynamic economy with four types of agents and a central bank. Households

consume and make deposits in the banking system. Entrepreneurs take loans from banks to fund

productive projects. Expert investors provide bank capital to banks and banks intermediate funding

between households, expert investors, and entrepreneurs. The central bank sets the rate of growth of

monetary assets in the economy, may or may not pay interest on reserves, and can impose lump-sum

taxes/subsidies on households.

Aside from the goods produced by entrepreneurs undertaking their projects, households and

expert investors receive an endowment of goods every period. There is also an endowment of

productive assets every period which deliver goods to their holders the following period. The claims

on the productive assets are securities on agents’ balance sheets. All agents can, in principle, hold

securities.

Households do not like to consume their own endowment and trade goods with other households

using currency (Lucas, 1990). The monetary assets issued by the central bank are endogenously

divided every period between currency and bank reserves. Banks maximize per period profits and

face three constraints: (1) a bank capital constraint, (2) a reserve requirement constraint, and

(3) a liquidity constraint. There is free entry in banking and, hence, banks make zero profits in

equilibrium.2

I study the model’s stationary competitive equilibrium. The main result is that when the central

bank is paying interest on reserves at the market rate, if the quantity of reserves is large and bank

2 Ireland (2013) and Hornstein (2010) are two recent papers closely related to mine. In Ireland’s (2013) model

reserves play a unique technological role in the “production” of deposits which pins down the real demand for reserves

in equilibrium. Hornstein (2010) considers a liquidity constraint that is always binding and does not discuss price level

determination in his model. Both Ireland and Hornstein do not study the role of bank capital, which is important for

my analysis. For a detailed comparison of the models, see Part 2 of the Appendix.
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capital is not scarce, the price level is indeterminate and belongs to a closed interval.3 For a large

enough level of reserves, the bank capital constraint becomes binding and the price level becomes

determinate and moves one for one with the quantity of reserves. This result suggests that there is

a limit to central bank purchases of securities financed with reserves when the intention is to not

induce increases in the price level: After some point, if excess reserves become large enough, more

reserves are associated with higher price levels.

The main components that drive the results in this paper are the ability of the central bank to

pay interest on reserves and the fact that the central bank only controls the total amount of mone-

tary assets (currency plus reserves) but does not control the split between the two (an endogenous

variable in the model). When the central bank pays interest on reserves at the market rate and

the capital, reserves, and liquidity constraints of banks are not binding, banks are indifferent both

between holding securities and reserves and between funding their operations with more deposits

or more capital. This indifference creates the indeterminacy: Different equilibria result from banks

holding more or less reserves funded by more or less bank deposits. Given Lucas-type price level

determination, more reserves in the banking system imply less currency in circulation and a lower

price level.4

The questions in this paper mainly involve long-run trends and large, relatively persistent,

changes in the levels of the various components of a monetary policy. For this reason, I choose

to work with a non-stochastic, perfect foresight model. However, as will become clear in the analy-

sis, a stochastic extension of the model may be useful for understanding, for example, the short-run

effects of central bank asset purchases. This subject is left for future research.5

Even though there are multiple moving parts, I call the model “simple” because I keep the

problems of the agents and their interactions as simple as possible, while still being able to obtain

some useful insights about the possible answers to the questions that I am concerned with. For

example, in the model banks do not solve an explicit information problem. Instead, they are assumed

to be the necessary intermediaries of funds between entrepreneurs and other agents. Furthermore,

the reason for banks to hold reserves is kept very simple: either reserves are not dominated in

rate of return or the exogenously imposed reserve requirement is binding. Similarly, bank capital

is either a non-dominated source of funding or the exogenously imposed bank capital constraint

is binding. These are strong assumptions, and various alternatives to them already exist in the

literature. However, the origin of banks’ demand for reserves and capital does not appear to be of

first order importance for the mechanisms discussed in this paper and the simplicity associated with

the adopted assumptions makes them an acceptable compromise in a first attempt to answer some

basic questions.6

3 In their seminal contribution, Sargent and Wallace (1985) show a similar result using an overlapping generations

endowment economy with money (see also Smith, 1991). The logic behind their result, however, is very different from

the one studied here. The real rate of interest is pinned down in my model, but it is indeterminate in Sargent and

Wallace’s analysis. Also, Sargent and Wallace do not consider the endogenous division of monetary assets between

currency and reserves, which plays an important role in this paper. See Part 2 of the Appendix for a more detailed

discussion of the connection between this paper and Sargent and Wallace (1985).
4This indeterminacy is fundamentally different from the indeterminacy identified by Sargent and Wallace (1975)

in a model with rational expectations when the monetary authority targets the nominal interest rate in the economy.

The monetary authority in my model follows a “money supply rule” (in the terminology of Sargent and Wallace)

which is sufficient to rule out price-level indeterminacy in Sargent and Wallace’s model. See the detail discussion in

Part 3 of the Appendix. See also Bassetto and Phelan (2014) for a modern analysis of multiplicity of equilibria under

interest rate rule and large quantities of excess reserves.
5 Ireland (2013) studies quantitatively the short-term response to shocks of an economy where the central bank pays

interest on reserves. Examples of papers addressing the general equilibrium impact of central bank asset purchases are

Curdia and Woodford (2011), Gertler and Karadi (2011), and Foerster (2011). Prominent precursors to this general

line of research are Diaz Gimenez et al. (1992) and Goodfriend and McCallum (1997). None of these papers addresses

the price level indeterminacy that is the main objective of my paper.
6Lacker (1997) studies a model where reserves play a fundamental role in the payment system and investigates the

consequences of paying interest on reserves in such a model. Bianchi and Bigio (2013) also provide a micro-founded

role for bank reserves and a quantitative analysis of some of the issues involved. Williamson (2012) is a prominent

example of a paper that studies the recent experience of U.S. monetary policy (including payment of interest on

reserves) in a general equilibrium model with explicit microfoundations for the demand of monetary assets and the
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The issues discuss in this paper are potentially relevant to understand not just recent events in

the U.S. but also in Europe and Japan. The case of the large increases of the quantity of monetary

assets by the Bank of Japan during the 1990s has been widely documented (see, for example, Spiegel,

2006). More recently, the European Union and several other countries in Europe have engaged in

similar policies (see, for example, Fawley and Neely, 2013 and Joyce et al., 2012). The most recent

example is the January 2015 announcement by the European Central Bank of a program to buy

60 billion a month of government and private sector bonds for a period at least 18 months (until
September 2016). Just as in the U.S., the ECB program is effectively open-ended.

The paper is organized as follows. In the next section, I describe the baseline model. In Section

3, I define equilibrium. In Section 4, I study stationary equilibrium, first when the central bank

does not pay interest on reserves and then when it does. I use the case of no interest on reserves

to build up some understanding of the workings of the model. Payment of interest on reserves is

crucial for addressing the issues described above, and it is where the main contribution of the paper

is. In Section 5, I consider two extension of the model that introduce more flexibility on the decision

of banks to hold securities when the interest rate on reserves is below market rates. One case is

the situation where the banks’ liquidity constraint is binding and the other is the situation when

deposits provide a transaction-based convenience yield to households. In Section 6, I provide a brief

conclusion.

2. The model

Time is discrete and goes on forever. Let  = 0 1 2 denote time. There is a central bank and

four types of agents in the economy: private households, expert investors, entrepreneurs, and bank

managers. Private households are dynasties that live forever. Expert investors, entrepreneurs, and

bank managers live for two periods, and a new generation of them is born every period. There is a

measure one of each type of agent. There is a perishable good every period and a stock of monetary

assets that become reserves when and if a bank deposits some of these assets at the central bank.

Before moving into the specific details associated with the economic decisions of each of the

different types of agents in the model, let me briefly describe how these agents will interact in

equilibrium. All transactions take place in competitive markets. Every period, each member of

the new generation of bank managers has the ability to form a two-period-lived bank that uses

deposits and bank capital to finance entrepreneurs. Expert investors are able to provide bank capital

to bankers, relying on some endowed expertise that allows them to invest in banking effectively.

Households make deposits with banks, and entrepreneurs take loans only from banks. In other

words, by assumption, households cannot directly make loans to entrepreneurs and all lending to

entrepreneurs must be intermediated by banks.

2.1 Private households

In every period , each household receives an endowment of goods  and an endowment of one-

period zero-coupon securities of size . Each of these securities pays one unit of the good next

period and they represent private productive assets in the economy.

Households cannot consume their own endowment. Following Lucas (1990), think of the house-

hold as having two members. One member of the household trades securities , makes nominal

deposits , pays lump-sum taxes  to the government, and buys the consumption good . The

other member of the household sells the endowment in exchange for (and only for) cash.7 The cash

role of the banking system (see the discussion in Part 3 of the Appendix). Berentsen and Monnet (2008) also present

a model within the tradition of the money search literature and study a channel system for the implementation of

monetary policy. Naturally, the floor of the channel involves a central bank deposit facility that pays interest on

reserves. Goodfriend (2002) is a common reference for a discussion of monetary policy implementation using interest

on reserves.
7Lucas’ (1990) household has three members, one buying consumption goods, one selling the endowment, and one

trading securities. We choose a simpler setup as a first step, but it would be interesting to extend the analysis to

consider three-member households and study, as Lucas does, the possibility of liquidity effects in the securities market.
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obtained from selling the endowment cannot be used until the following period. Denote by  the

cash holdings of a household at the end of period .

Utility from household consumption in period  is given by a strictly increasing and strictly

concave function  (). All households discount the future at factor .

The nominal rate of return on deposits is  and the price of private securities is . The real

value of money (the inverse of the price level) at time  is denoted with . Then, the problem of

the private households is:

max

∞X
=0

 () 

subject to

 +  +  +  =  (1 + −1) −1 + −1 +  + −1 − 

 =  + 

   ≥ 0

where  represents excess cash that the household decides not to deposit or spend on consumption

and securities during period . Using the first order condition with respect to  it is easy to see

that whenever   0 we have that  = 0 is optimal. I will restrict attention to this case in what

follows.

The other first order conditions from the household optimization problem can be summarized

as:

−0 () + +1 (1 + )
0 (+1) ≤ 0 (1)

−0 () + 0 (+1) = 0 (2)

and the first inequality should hold with equality whenever   0 is satisfied. We can interpret the

inverse of  as the gross real return on households savings at time ; that is, 1 ≡ 1 +  is the

(gross) real rate of interest available to the household in period .

Whenever  is positive in equilibrium a Fisher-type equation holds:

1 +  = (1 + )

+1

 (3)

which tells us that the equilibrium gross nominal interest rate on deposits equals the gross real

interest rate multiplied by the gross inflation rate. In Section 5.2, I extend the model to allow for

a situation where deposits provide a convenience yield to households, and hence their real return in

the market can be lower than the real return on securities.

2.2 Expert investors

Every period , each expert investor has an endowment of goods  and some expertise that allows

him to lend resources to the banks in the form of bank capital. Experts live for two periods and their

period utility function is given by  (), where  ∈ R+ and  () is a strictly increasing, strictly

concave, smooth function. Experts can save by holding securities  (but cannot short them) or by

allocating resources to bank capital. They discount the future at factor   1.

I assume that at each time  there is a competitive market for bank capital. Let  be the real

rate of return that is set in that market at time . Experts, then, take as given  and  and solve

the following optimization problem:

max  (1) +  (2+1) 

subject to

1 +  +  = 

2+1 =  + (1 + ) 

 ≥ 0 0 ≤  ≤ 
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In general, I will restrict attention to situations where 1+  ≥ 1 in equilibrium, so that   0
for all  If 1+  1 then we will have that  = 0. This is the case when bank capital is scarce

in the economy. If instead, 1+ = 1 then experts are indifferent between holding securities and

bank capital and the supply of bank capital is infinitely elastic as long as  ∈ (0 ).

A particularly simple version of the experts’ problem is the one in which they are risk neutral

and, hence,  () is linear. In that case, we have that whenever 1 +   1 ≥ 1 the experts
dedicate all the endowment to bank capital and  = . This will be a situation in which the

economy confronts an inelastic supply of bank capital.

More generally, define  =  + . From the first order conditions we have that when

1 +  ≥ 1, the following equation must hold:
−0 ( − ) +  (1 + ) 

0 ((1 + ) ) = 0

and when 1+  1, then  = 0 and  = . This expression defines a correspondence  ()

for 1+ ≥ 1. If, for example, experts have a constant-relative-risk-aversion utility function with
a coefficient of relative risk aversion between zero and one, then  () is an increasing function of

 for all   1−1. In other words, experts supply more bank capital when the return on bank
capital increases.

I have assumed that experts cannot short-sell private securities. Given this, when 1+   1,

experts adjust their supply of bank capital smoothly in response to changes in the rate of return .

This is not the case when short-selling is allowed.8 The short-selling constraint, then, is particularly

helpful when one wants to consider a situation with an elastic supply of bank capital.

2.3 Entrepreneurs

There is a measure one continuum of entrepreneurs in the economy, each with an indivisible project

and no endowment of goods. Entrepreneurs live for two periods, are risk neutral, and consume only

in the second period. Each project requires the investment of one unit of resources (goods) in the

first period and gives a return of goods in the second period. Projects are heterogeneous in rate of

return. Let  () ≥ 0 denote the measure of entrepreneurs with project return less than or equal to
1 +  where  ∈ [0 ] and, hence,  () = 1. I will consider values of  large enough so that there
are always projects that are profitable enough to deserve funding.

An entrepreneur  that receives at time  a loan from a bank with real interest rate  must

repay the loan at time  + 1 using the returns from the project. If   , then entrepreneur 

can consume  − . Then, given a loan rate , all entrepreneurs with project return greater than

 will take a loan from a bank and undertake their project. The total demand for loans in the

economy at time  is, then, a function of the loan rate at time  and is given by:

 () =

Z


 () ≡ 1− () 

Note that  () is decreasing in  because  () is a distribution function and, hence, is

increasing in 

2.4 Banks

I assume that bank managers are risk neutral and, hence, maximize bank profits. Each generation

of bank managers have the ability to form new banks. At time  each newly formed bank  takes

deposits  from households and capital  from expert investors. With the proceeds, banks make

one-period loans to entrepreneurs , hold securities  and reserves . Each bank has a cost  ()

that represents the managing cost of providing  loans to entrepreneurs and receive a real return 

8Even if we restrict bank capital to be less than or equal to experts endowments, when experts can short sell

securities, they use securities trading to smooth consumption over time and the sensitivity of bank capital to its

return would be extreme: completely inelastic and equal to  for all   1 − 1 and infinitely elastic when
 = 1 − 1.
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on each loan extended at time  and repaid at time + 1. The function  is strictly increasing and

strictly convex, twice continuously differentiable, and with lim→0  ()  0 (that is, there is a fixed
cost of providing loans).

The bank can make deposits at the central bank to increase its reserves holdings. The nominal

interest paid by the central bank at time  on those reserves is equal to . If a bank needs to

increase its holdings of reserves after all depositors have made their deposits in banks, the bank can

access a competitive interbank market and borrow reserves 

 from other banks at rate .

Banks must hold enough reserves to satisfy a regulatory reserve requirement  per unit of deposits

and enough bank capital to satisfy a regulatory capital requirement  per unit of asset (i.e., a leverage

ratio requirement). Aside from funding, bank capital serves no special role in the model. However, a

simple extension in which banks perform a monitoring function (Holmstrom and Tirole, 1997) could

be used to justify the imposition of regulatory capital requirements. In the model here, when the

cost of capital is higher than other financing means, banks will hold only enough capital to satisfy

the capital requirement. If one thinks that capital requirements are a significant factor in explaining

holdings of bank capital in the real world, then this simpler modelling choice may be an acceptable

approach to study the issues that concern us here.

Securities and reserves can also be a source of “liquidity” for banks. First, assume that when a

bank gives a loan for a project, it commits to providing extra funds if the project needs them. In

other words, the bank gives an entrepreneur a loan and a loan commitment (a line of credit).9 Also

assume that, at the beginning of the second period of the bank’s life and before loans have been

repaid, a proportion  ∈ [0 1] of depositors withdraw their deposits and a proportion  ∈ [0 1] of
the entrepreneurs financed by the bank need an extra unit of resources to complete their project

and, hence, draw on their line of credit with the bank. Finally, assume that banks have to also

repay outstanding interbank loans at the beginning of the second period. These assumptions induce

a demand for bank liquidity in the form of securities and reserves.10

There is free entry in the business of banking and the population of potential bank managers is

large enough to drive bank profits to zero in equilibrium. I denote by Γ the measure of active bank

managers in the economy.

A bank  formed at time  takes as given prices
¡
 +1     

¢
and the policy

parameters (  ) and solves the following optimization problem:

max (1 + )  +  + +1 (1 + )  − +1 (1 + )  − (1 + ) 

−+1 (1 + ) 

 −  () 

subject to

 ≡  +  +  = 

³
 + 




´
+ 

 ≥ 

 ≥ 

 + +1 (1 + )  ≥ +1 (1 + )  +  + +1 (1 + ) 



and non-negativity constraints on , , and .
11 The first constraint defines bank assets and gives

a formal statement of the bank’s balance sheet identity (that is, total assets equal total liabilities

plus capital). The second constraint reflects the fact that the bank must satisfy capital regulations.

The third constraint is due to an exogenously imposed regulatory reserve requirement, and the

9As it will become clear later, this assumption is intended to capture the need for banks to hold liquidity not

just to satisfy depositors’ potential demand for cash but also to satisfy liquidity needs that come associated with the

standard lending activities of the bank (Kashyap, Rajan, and Stein, 2002). This is not an essential assumption for

the results, and most of the paper deals with the case when the loan commitment is not present (i.e.,  = 0).
10The extra unit of loan given by the bank to the proportion  of the entrepreneurs is paid back to the bank later

in the same period at zero interest rate. For this reason, these extra loans do not appear in the objective function

(profits) of the bank.
11Note that we assume that banks cannot, or are not allowed to, short securities (i.e.,  ≥ 0 for all  and all ).
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fourth constraint is the liquidity requirement that can have technological origins associated with the

regular business of banking (holding deposits and making loans) or can reflect further regulation by

a banking authority.12 Note that the non-negativity constraints on , , and , together with

the other constraints, imply that  and  are also non-negative in the solution to the bank’s

problem.

For some values of the rates of return faced by the bank, this decision problem allows for the

possibility of an optimal banking arrangement fully funded by bank capital (i.e., a bank with no

deposits). While this could be considered an interesting theoretical possibility, deposits are a distin-

guishing characteristic of banks in the United States and for the practical questions of this paper it

is reasonable to restrict attention to equilibrium situations where   0. In Part 4 of the appendix,

I discuss the case of  = 0 for completeness.

Assuming that   0 and, to simplify notation, defining the real return on activity  as 1+ =¡
+1

¢
(1 + ) with  =    the problem of a banker  at time  is:

max ( − )  + ( − )  + ( − ) − ( − ) 

− ( − )

 −  ()  (Problem A)

subject to

 −  ( +  + ) ≥ 0
 − 

³
 +  +  − 


 − 

´
≥ 0

 + (1 + ) −  (1 + )
³
 +  +  − 


 − 

´
−  − (1 + )


 ≥ 0

and  ≥ 0
Let  1, and 2 be the Lagrange multipliers for the three constraints in Problem A, respec-

tively. All three multipliers are greater than or equal to zero, by definition. Then, the first order

conditions for the bank’s problem are:

 : ( − )− 0 ()−  − 1 − [ (1 + ) + ]2 = 0

 : ( − )−  − 1 + [(1)−  (1 + )]2 ≤ 0
 : ( − )−  + (1− )1 + [(1 + )−  (1 + )]2 = 0

 : − ( − ) +  + 1 +  (1 + )2 = 0



 : − ( − ) + 1 + [ (1 + )− (1 + )]2 = 0

I will use these conditions in the characterization of equilibrium presented below. It is clear from

the first order condition with respect to capital that these equations are consistent only with the

case in which  ≥ . If   , it is easy to show that the bank would finance itself all with

capital (that is,  = 0). So, assuming that   0 implies that one is considering only equilibrium

situations where  ≥ , but the reverse is not true. Even if   , the bank may choose to

finance all its operations with capital. That is, the assumptions that result in   0 are stronger.

I will provide conditions that guarantee that deposits are positive in all the equilibrium situations

being considered.

2.5 The central bank

At every time , the central bank controls the total supply of monetary assets  in the economy.

The sum of cash and reserves + must equal  for all . The central bank can also buy and

sell private securities in the market, but it does not create its own bonds (although this may be an

12As a technological condition, the specification of the liquidity constraint is based on the following timing of

payments: The payoffs produced by securities and reserves become available before the bank needs to have access to

liquid funds to satisfy the liquidity demands of depositors and borrowers. Borrowed funds also become due at the

same time and, hence, also absorb liquidity. This implies that borrowed funds can be used to finance bank assets but,

at the same time, they increase the demand for liquid assets when liquidity is scarce.
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interesting possibility to study). Denote with  the central bank’s holdings of private securities.

Finally, the central bank charges taxes (or makes transfers) to households for a total of  at each

time .13

The budget constraint of the central bank is given by:

 [−1 + (1 + −1)−1] +  =  + −1 + 

for all  and with 0, 0 and 0 given. Note here that negative values of  would correspond to

the case when the central bank can issue bonds.

To fix ideas, it is interesting to consider a few special cases of this constraint. For example, if

the central bank is paying interest on reserves and does not tax agents in the economy, nor does it

own any securities, then it must be the case that the monetary assets in the economy are growing.

This can be seen by using the fact that  =  +  for all  to substitute in the expression of

the central bank’s budget constraint when  and  are equal to zero for all . In that case, we

have that:

 −−1 = −1−1  0

Another interesting case is when the central bank holds no securities and is paying interest on

reserves while keeping the stock of monetary assets constant. In that case, we have that:

 = −1−1 for all 

that is, the central bank pays its interest expense with revenue from taxation.14

Finally, consider the case when the central bank is not paying interest on reserves, nor taxing

any agent, and is also not holding any securities at time  − 1. Suppose now that the central

bank conducts a one-time open market operation at time  to purchase  securities financed with

monetary assets. Then, the central bank’s budget constraint implies that:

 ( −−1) =   0

that is, the increase in (central bank issued) monetary assets will exactly equal the nominal amount

the central bank pays for the securities. In the following period, the central bank’s budget constraint

will be:

+1 (+1 −) = −  0
so that monetary assets will decrease one period after the open market operation. To keep the size

of the monetary assets from declining, the central bank would need to conduct a new open market

operation (that is, the central bank needs to roll over its holdings of maturing assets).15

3. Equilibrium

I use a standard definition of competitive equilibrium, with free entry in banking. An equilibrium

is a feasible allocation of resources and assets, and a set of prices and interest rates such that,

given those prices and interest rates, the quantities associated to the equilibrium allocation solve the

optimization problems for the corresponding agents, the central bank’s budget constraint is satisfied,

13Here, we are considering a consolidated budget constraint for the central bank and the fiscal authority. The

key implicit assumptions are that the fiscal authority can charge lump-sum taxes/subsidies to agents and that those

taxes are adjusted to accommodate the decisions of the central bank. Monetary and fiscal policy coordination is an

important issue that has received considerable attention in the literature (see, for example, Sims, 2013). Cochrane

(2014) discuss these issues extensively with a special focus on the situation when the central bank is paying interest

on reserves.
14 In principle, we could set up some notation to deal with the case when the central bank sends and receives

remittances from the fiscal authority. Hall and Reis (2013) study the issue of central-bank remittances in some detail.
15 Since we are going to concentrate attention only on stationary equilibria, we do not discuss here any policy rule

potentially followed by the central bank in the short run. The properties of those policy rules, however, are important

for the stability of stationary equilibria. See Hornstein (2010) for a detailed treatment of this issue.
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and banks make zero profits. I use capital letters to denote aggregate, economy-wide values of the

relevant quantities in the equilibrium allocation.

I restrict attention to symmetric equilibrium in which all operating banks make identical deci-

sions. Denote by
³
     




´
the solution to the optimization problem of the represen-

tative bank. Then, for example, since we have that all banks provide the same amount of loans to

entrepreneurs, the total supply of loans in the economy is given by:

 = Γ

In the same way, we can aggregate across banks to compute banks’ total demand for securities,

 = Γ, reserves,  = Γ, deposits, 

 = Γ, capital,  = Γ, and the total demand

for interbank loans, 

 = Γ


.

Since there is a measure one of households, the supply of deposits in the economy is given by

 = , where  is the level of deposits that corresponds to the solution of the individual-household

optimization problem. Similarly,  = ,  = ,  = , and  = .

Aggregating across expert investors we have that 1 = 1, 2 = 2, and  = . We also

have that the aggregate endowment of goods in the economy in period  is  =  + =

 + .

The total output obtained from projects at time  is given by:

 =

Z
−1

(1 + )  () 

and the total consumption of entrepreneurs at time  is given by:

 =

Z
−1

( − −1)  ()

There are seven market clearing conditions. Securities market clearing is given by  +  +

 +  = . Loans market clearing is given by  =  () = 1 −  (). Deposit market

clearing is 
 = , and bank capital market clearing is  =  = . The interbank market

clears when 

 = 0 because interbank loans are in zero net supply.

16 Market clearing for monetary

assets imply that  +  =.

Total (nominal) revenue from taxes is given by  = . Using Walras Law, we have that, in

equilibrium, the goods market clears; that is:

 +1 +2 +  +  + Γ−1 (−1) = + −1 + 

Recall from the household problem that restricting attention to equilibria with   0 for all ,

implies that  =  for all  in those equilibria.

3.1 Price level determination

As is common in monetary models, the demand for currency  is pinned down whenever  is

(strictly) positive. As we saw when introducing the households’ problem, if   0, then  = 0

and  =  in equilibrium.
17 From the money market clearing condition we have that  =

 − . Hence, we have that:

 ( − ) =

16For a macroeconomic model where the interbank market plays an active role see Gertler and Kiyotaki (2010).
17 If  = 0, then  could be greater than zero and a continuum of possible values of  are consistent with

equilibrium. While this is an interesting monetary phenomenon that has attracted some attention in the literature,

we do not discuss it here (see, for example, Woodford, 1994). If we want to consider the case when  = 0,

then assuming that  = 0 is consistent with equilibrium and allows us to abstract from this well-known monetary

indeterminacy issue.

10



After a change in , if  changes in the same amount (given ), the price level could

remain unchanged. In other words, if all the extra monetary assets are held by the banks in the

form of reserves, then the price level in the model does not need to adjust to changes in the supply of

monetary assets. It is important, however, to understand that increases in reserve holdings  when

the price level is constant (when  is constant) imply that banks are holding a stock of reserves with

a higher total real value. So, in that case, the question would be whether banks can accommodate

the real value of the extra reserves, and what are the implications of that adjustment, if any, for the

real allocation of resources.

4. Stationary equilibrium

Even though I try to keep the model as simple as possible, there are still several moving parts that

interact in general equilibrium. Since our interest is in the long-run level of prices consistent with

equilibrium, rather than their short-run behavior, studying stationary equilibrium is a natural first

step that helps to simplify the analysis. For this purpose, assume that  = ,  = , and

 =  for all . Furthermore, let  = (1 + )−1 for all  with  ≥ 0 and 0 given. Also,

let the real value of taxes  ≡ b and the nominal interest paid on reserves  be constant
over time. Finally, assume that there is a unique solution to the equation:

0 () =
 ()




and call that solution ∗  0.
The main results of this section involve a situation where the liquidity constraint of banks is not

binding. For concreteness, I assume from the outset that  =  = 0 in Problem A. In other words,

I assume that banks do not face a liquidity constraint. All the results can be proved for positive

values of  and  as long as the liquidity constraint is not binding.18 In Section 5, I come back to

the case of positive values of  and  and discuss situations where the banks’ liquidity constraint is

binding.

To further simplify the analysis, I also assume that experts are risk neutral and consume only in

their second period of life. As I proposed when introducing the bank’s problem, let us concentrate

attention only on equilibrium with positive bank deposits. From the consumer’s problem, if ∗  0
for all , then 1 + ∗ = 1 + ∗ = 1 for all . This implies that 

∗
  0 and hence ∗ = 0 for all .

Furthermore, in a stationary equilibrium  is constant and hence both (nominal) variables 

and  are growing at rate . Since 
∗
 = 0 for all , we have that

∗ = = ∗+1+1

which implies that ∗+1
∗
 = 1 (1 + ).19

Even after these simplifications, depending on parameter values, stationary outcomes can display

several possible equilibrium configurations. Let us concentrate the attention in the most relevant

and start by considering the case when the central bank pays no interest on reserves (as the Fed

did before October 2008). I first show that at least one of the constraints in Problem A must

be binding (Lemma 1) and consider the two possible situations: when reserve requirements are

binding (Proposition 1) and when bank-capital constraints are binding (Proposition 2). Then, I

turn attention to the case when the central bank pays interest on reserves and consider the situation

when bank-capital constraints are binding (Proposition 3) and the situation when the reserves and

18 In the appendix, we confirm that the propositions in this section are valid for a non-empty set of parameter values.
19The value of money in this economy is not just determined by the demand for money by households. Every

period, banks demand reserves to (at least) satisfy their reserve requirements. If households believe that money will

not have value next period, they may not sell their endowment. In general, this opens the door to the possibility of

a non-monetary equilibrium. Here, since banks always demand reserves when deposits are positive, the inverse of the

price level in equilibrium is always positive.
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capital constraints are not binding (Proposition 4). This last case is where price level indeterminacy

arises.

4.1 No interest on reserves

If the central bank is not paying interest on reserves, then  = 0 for all  and 1+ = 1 (1 + ) ≤
1 so the net real interest on reserves is negative whenever  is positive (that is, whenever inflation is

positive). To hold reserves, banks have to fund them with either deposits or capital. If the return on

reserves is lower than the cost of funding them, then it cannot be that banks hold more reserves than

the ones they require to satisfy reserve requirements. The following lemma formalizes this logic.

Lemma 1. If  = 0, then in any stationary equilibrium with   0 at least one of the constraints

in Problem A is binding.

Proof. Suppose not. Then, from the first order conditions of the bank’s problem, we have that

 =  =  =   But we know that 1 +  = 1 and 1 +  = 1 (1 + ) ≤ 1  1, so we

reach a contradiction. ¥
In principle, any one of the constraints in Problem A can be binding in equilibrium. Here we

will study the case when the reserve requirement and the bank capital constraint are binding, and

relegate to the appendix the study of the case when the liquidity constraint is binding.

Binding reserve requirements

Consider first the case when only the reserve requirement constraint is binding. Recall that we are

assuming that  =  = 0 so that banks do not have a liquidity constraint.

Proposition 1. Let  = 0. Given a value of  ∈ (0 1)  there is a threshold value  () ∈ (0 1),
such that for all    () there exists a unique stationary (monetary) equilibrium where the bank

reserve requirement constraint is binding and the bank capital constraint is not binding.

Proof. From the bank’s problem we have that in equilibrium:

∗ =  +


1− 
( − ) = ∗ 

that is, the cost for the bank of funding its lending activities with capital or fed funds is the same

as that of funding its lending with deposits. Given this, the objective of the bank can be expressed

as ( − )  −  (). Using the first order condition with respect to  and the zero profit condition

we have that the optimal value of  equals ∗. Then, ∗ = ∗ + 0 (∗) and Γ∗ = [1− (∗ )] 
∗.

Since experts are risk neutral and ∗  ∗, we have that Γ
∗∗ = . Furthermore, 

∗
  ∗

implies that banks do not hold securities and  = 0. Now using the banks’ balance sheet conditions

and aggregating across banks we have that:

∗
∗
 = ∗

∗
 =



1− 
(∗ −)  (4)

and total assets in the banking system are given by:

∗ + ∗
∗
 = ∗ +



1− 
(∗ −) 

where we are using that ∗ = Γ∗∗.20 Define ∗ to be the equilibrium capital-to-loan ratio in the

banking system. Since the real value of total deposits is positive in equilibrium, then ∗   and

∗ =
∗  1. Now make  () equal to the equilibrium capital-to-assets ratio. That is:

 () =


∗ + 
1− (

∗ −)
=
(1− )∗
1− ∗



20 It is possible (after some algebra) to provide conditions on   and  () so that Γ∗∗   This

guarantees that deposits are positive, something we assumed from the beginning.
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Since ∗  1 we have that  () ∈ (0 1) for all  ∈ (0 1). Clearly, then, as asserted in the statement
of the proposition, whenever    () the bank capital constraint is not binding.

Using the equilibrium values just determined, aggregate household consumption can be shown

to satisfy:

∗ = +  + ∗ 
∗ − Γ∗ (∗)− ∗

and consumption of experts is given by ∗2 = (1 + ∗). ¥
Corollary 1.1 (Price level determination). Given a sequence for  set by the central bank,

the price level in the equilibrium described in Proposition 1 is uniquely determined and proportional

to the quantity of monetary assets.

Proof. Since ∗ =  and equation (4) hold, we have that the following equation must hold in

equilibrium:

∗ = ∗ + ∗
∗
 = +



1− 
(Γ∗∗ −) 

Hence, there is an inverse relationship between the total amount of monetary assets and the inverse

of the equilibrium price level. ¥
It is important to understand that the central bank in this model sets the value of  only;

how much of  is dedicated to currency and how much to reserves is endogenously determined.

In the stationary equilibrium of Proposition 1, where reserve requirements are binding, there is a

one-to-one link between the price level and the quantity of monetary assets supplied by the central

bank. This result is in the spirit of the traditional Quantity Theory of Money. We will see later

in Proposition 4 that there are situations in which this one-to-one equilibrium relationship between

money and prices does not necessarily hold.

Corollary 1.2 (Rates of return). In the equilibrium of Proposition 1 we have that ∗  ∗ =
∗  ∗ = ∗  ∗ and

∗ = ∗ +
1

1− 
(∗ − ∗) 

Proof. Since  () is strictly increasing and ∗ = ∗ + 0 (∗) we have that ∗  ∗. The rest of the
proof is straightforward from the first order conditions to the bank’s problem and the fact that the

multiplier  (and 2) are equal to zero and 1 is positive and constant for all . ¥
Even though capital appears to be a more expensive source of funding than deposits (i.e., ∗ 

∗), in effect for the bank it is not. Deposits are indirectly “taxed” by the imposition of reserve
requirements and the policy of not paying interest on reserves (Lacker, 1987; and Kashyap and Stein,

2012). Once the implicit tax is taken into consideration, as the optimizing bank does, then both

forms of funding (capital and deposits) have the same cost.

Binding capital constraints

Suppose now that    () but strictly lower than unity, since we are considering equilibria where

bank deposits are positive. We are interested in understanding a situation where the capital con-

straint is binding. Again, since  =  = 0 banks do not have a liquidity constraint.

Lemma 2. When  = 0, if the bank capital constraint is binding in a stationary equilibrium with

  0, then the reserve requirement constraint must also be binding.

Proof. Suppose not. Then the bank’s first order condition with respect to reserves is − =  

0 But we know that 1+  = 1 and 1+ = 1 (1 + ) ≤ 1  1 so we reach a contradiction.¥
Given the result in Lemma 2, we only need to consider the case when both the capital and the

reserves constraints are binding. This is the situation characterized in the following proposition.

13



Proposition 2. Let  = 0. Given a value of  ∈ (0 1) and the threshold value  () (as defined in
Proposition 1), for all  ∈ ( ()  1) there exists a unique stationary (monetary) equilibrium where

the bank capital and the reserve requirement constraints are binding.

Proof. It is still the case that in equilibrium ∗ = ∗ . Since we are considering the case when the
capital and reserves constraints are binding, it is immediate from the first order condition of the

bank’s problem that ∗ = 0. Now, using the bank’s balance sheet condition and the capital and

reserves constraints, both holding with equality, we have that bank capital and the real value of

reserves are proportional to bank loans in equilibrium. That is:

 =  =
 (1− )

1−  (1− )
 and  =



1−  (1− )


To find the rest of the equilibrium values, define the weighted average of rates of return  as

follows:

 =  +
 (1− )

1−  (1− )
( − ) +



1−  (1− )
( − ) 

The objective of the bank can then be written as ( − )  −  (). Taking first order conditions

with respect to  and using the zero profit condition, we have that  = ∗. Now using the market
clearing condition for bank capital and for loans we have that:

 = Γ
∗∗ =



1−  (1− )
Γ∗∗ =



1−  (1− )
[1− (∗ )] 

which can be used to determine the equilibrium level of ∗ and Γ
∗. Since ∗ = ∗ − 0 (∗) we can

use the definition of  to determine the equilibrium level of ∗. The rest of the equilibrium values

can be obtained by straightforward substitution. ¥
Corollary 2.1 (Price level determination). Given a sequence for  set by the central bank,

the price level in the equilibrium described in Proposition 2 is uniquely determined and proportional

to the quantity of monetary assets.

Proof. Since ∗ =  and ∗
∗
 = [ (1− ) ], we have that the following equation must

hold in equilibrium:

∗ = +
 (1− )




and hence there is an inverse relation between the total amount of monetary assets and the inverse

of the price level , as in the equilibrium of Proposition 1. ¥
Corollary 2.2 (Rates of return). In the equilibrium of Proposition 2 we have that ∗  ∗ 

∗ = ∗  ∗ and ∗  ∗  ∗. Furthermore, the equilibrium interest rate on interbank loans is

given by:

∗ = ∗ +
1

1−  (1− )
(∗ − ∗) +



1−  (1− )
(∗ − ∗) 

Proof. Since ∗ = ∗ + 0 (∗) and 0 (∗)  0 we have that ∗  ∗ . Recall that 1 + ∗ = 1 

1 (1 + ) = 1 + ∗ then ∗  ∗. Also, from the first order conditions for the bank’s problem we

have ∗− ∗ = ∗+∗1  0 which implies that 
∗
  ∗. Using the definition of  given in the proof

of Proposition 2 and given that ∗  ∗ and ∗  ∗ we have that 
∗
  ∗. Finally, we need to

show that ∗  ∗  ∗. Again, from the first order conditions of the bank’s problem we have that

∗ − ∗ = ∗1  0 and ∗ − ∗ = ∗ + ∗1  ∗1 = ∗ − ∗. Hence, we have that 
∗
  ∗  ∗ as

desired. ¥
A look at some relevant data (1995-2005)

I now discuss some U.S. data for a period when the Fed was not paying interest on reserves and

contrast the data with predictions from the model. Even though the Fed started paying interest
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on reserves in 2008, I stop the data period for this section in 2005 to concentrate on a relatively

stable time in financial markets. Figure 3 shows total and required reserves in the banking system.

This data suggest that considering the case where reserve requirements are binding is a good first

approximation for this time period.

Figure 3 Figure 4

Figure 5

Figure 4 shows that banks held around 20% of their assets in securities during this period of zero

interest on reserves. This does not correspond with the predictions of the model in Propositions 1

and 2. The reasons for this gap are clear: Securities and deposits play the same store-of-value role in

the consumer’s problem; since consumers are pricing the securities in the market and they hold both

securities and deposits in equilibrium, both saving instruments must have the same rate of return

in equilibrium. A bank, on the other hand, to hold securities needs to hold more deposits and more

reserves, which makes the benefits from holding securities () lower than the costs (as reserves pay

no interest). There are two ways to modify the model to accommodate this fact: One way is to lower

the cost of deposits for the bank by allowing deposits to provide a liquidity/transaction service to

consumers (as in Van den Heuvel, 2008, Stein, 2012, or Ireland, 2013). The other way is to have

securities provide an extra benefit to banks, which can happen when the liquidity constraints of

banks are binding. I pursue these alternative formulations in Section 5.

To look at rates of return during this period and compare them with the predictions of the model

is complicated. For example, a possible approach to approximate the return on bank capital  is to

consider the average return on equity for banks. However, banking in the model is riskless and the

appropriate adjustment for risk to the observed return on equity is hard to determine. Subject to

this caveat, Figure 5 shows some of the relevant rates of return to assess the comparison in corollaries

1.2 and 2.2. We see that the return on equity of banks is the highest of the rates of return involved.

15



Also, the fed funds rate (which stands for  in the model) moves very closely with the rate on short

term treasuries, the counterpart of  in the model.

Empirically approximating the effective interest rate on deposits is difficult. There are many

different types of deposits and even within each type, different banks offer to their clients different

bundles of services that may include special pricing for deposits (see also the discussion in Part 5 of

the appendix). Based on an arbitrage argument, the model suggests that deposits and short-term

Treasuries should yield comparable returns. That is, since  =  the yield on 3-month Treasuries

can be considered a valid proxy for the interest rate on deposits. Finally, I include in the figure an

estimate of  = (1 + ) (1 + ) − 1 which I calculate using values for  = 005 and  = 010 that

are a reasonable approximation for the value of this ratios in the U.S. banking system (see Part 5

of the Appendix).

In summary, these observations suggest that in general, for the period between 1995 and 2005

in the U.S., the rate on deposits, bonds, and interbank loans were close while the rate on loans was

higher and the return on bank capital even higher. I conclude that the ordering of rates of return

during this period is most in line with the predictions in Corollary 2.2.

4.2 Interest on reserves

When the central bank pays interest on reserves, the strong result in Lemma 1 is no longer true.

That is, there are situations where none of the constraints in Problem A are binding. This is an

interesting case to study to the extent that, as we will see, such a situation is consistent with increases

in monetary assets that are unmatched by changes in the price level. But, before turning to that

particular case, I will discuss the implications of paying interest on reserves more generally.

As before, assume that  and  are equal to zero and let us start with those cases when 1+ ∈
(1 (1 + )  1). For any interest on reserves within this range, if  is small enough, a similar

equilibrium to the one described in Proposition 1 exists. To see this, consider the ratio of capital to

loans in the banking system, ∗ , as defined in the proof of Proposition 1. Clearly, 
∗
 is a function

of the interest paid on reserves because ∗ is a decreasing function of ∗ , which is an increasing
function of ∗, which in turn is a decreasing function of  (see the proof of Proposition 1). Since
1+ = (1 + )  (1 + ), we have that a higher nominal interest rate on reserves implies a lower

∗ and ∗ and a larger banking system (a larger ∗). In summary, then, for a given , one can

define the equilibrium capital-to-loans ratio as a decreasing function of the interest rate paid on

reserves; that is, ∗ (; ) is decreasing in . In line with the proof of Proposition 1, define now

the following threshold for the capital requirement :

 (; ) =
(1− )∗ (; )
1− ∗ (; )

 (5)

It is now easy to verify that given a value of  ∈ (0 1), whenever    (; ) there is a unique

stationary (monetary) equilibrium where the bank reserves requirement is binding and the bank

capital constraint is not binding.

As in Proposition 1 (see Corollary 1.2), we have that ∗ = ∗  ∗  ∗ and we can express the
nominal interest rate on interbank loans, the equivalent to the fed funds rate, as follows:

∗ =  +
1

1− 
(∗ − ) =

1

1− 
∗ −



1− 
 (6)

Clearly, the interest on reserves acts as a floor for the interbank rate. However, increases in the

interest rate paid on reserves tend to decrease the interbank rate. This result is in sharp contrast

with the standard result in the Poole model of demand for reserves, where the interest paid on

reserves and the fed funds rate move (ceteris paribus) in the same direction (see, for example, Ennis

and Keister, 2008).

The mechanism behind this relationship between equilibrium interest rates is clear. Paying higher

interest on reserves makes reserves a better asset, which reduces the cost of funding via deposits

(since deposits require holding reserves to satisfy reserve requirements). Unless the interbank rate
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falls, all banks would want to attract deposits and lend the funds out in the interbank market, which

would be inconsistent with the clearing of that market.

To make this logic more evident, we can re-write expression (6) as follows:

∗ =  + (1− ) ∗ 

The left-hand side is the cost for the bank of attracting one extra unit of deposits; that is, ∗. The
right-hand side is the benefits: To hold one extra unit of deposits, the bank has to hold  units of

reserves, which get a return of  and can lend the rest, 1− , in the interbank market at rate ∗ .
Since the equilibrium level of ∗ is independent of  in this model, higher values for  result in
lower equilibrium values of ∗ .
When the capital constraint is not binding, the return on capital is the marginal cost of funding

for the bank, which can be written as:

∗ = ∗ +


1− 
(∗ − ∗) 

That is, the marginal cost of funding for the bank equals the cost of deposits plus the “implicit tax”

on deposits originated in the fact that the interest rate on reserve is lower than the interest rate

on deposits. Managing this tax is at the heart of the monetary policy prescriptions advanced, for

example, by Kashyap and Stein (2012). Here, total lending is a decreasing function of the spread

∗ − ∗ and, hence, by changing this spread the monetary authority can influence banks’ lending
activities.

If the capital ratio parameter  is greater than  (; ), then the equilibrium is analogous to

that described in Proposition 2. Since  (; ) is decreasing in  we have that, for a given value

of , higher levels of the rate of interest on reserves make it more likely that the capital constraint

would be binding. This is a natural consequence of the fact that when only the reserve requirement

is binding, higher levels of the rate of interest on reserves are associated with a banking system that

has a larger balance sheet.

Interestingly, once the capital constraint becomes binding, this is no longer the case: Instead,

higher levels of the interest rate on reserves do not change the size of the banking system but only

induce changes in the equilibrium value of the various rates of return. In particular, a higher interest

rate on reserves imply higher return on bank capital,  (see Proposition 2).

So far, I have considered cases where the interest rate paid on reserves is the lowest among the

prevailing rates in the economy. In such situations, reserve requirements are binding and banks do

not hold excess reserves. To think about large holdings of excess reserves in the model, I need to

consider values of the interest rate on reserves such that  ≥ . I turn the attention to those

cases next.

Excess reserves

We want to study situations where the banking system is holding plentiful of reserves, over and

above their requirements. Assume again that  =  = 0. Abstracting from the liquidity constraints

in this case is even less of a limitation: given the large quantity of reserves, the liquidity constraint

is relatively slack, and conditions for it to not be binding are easy to establish.

Lemma 3. If    for all , then in any stationary equilibrium with   0 the capital constraint

is binding.

Proof. This is a direct implication of the first order conditions for Problem A. Given that   0,

the reserve requirement constraint implies that  ≥   0 and the first order condition for

bank reserve holdings is:

( − )− + (1− )1 = 0

where we are using that 2 = 0 since we are considering the case when liquidity constraints are not

binding. The only way that the first order condition for bank reserves can hold is if   0, that is,

if the capital constraint is binding. ¥
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Since we are particularly interested in situations with excess reserves, let us concentrate attention

on the case when only the capital constraint is binding. Recall that from the consumer’s problem,

with positive equilibrium deposits, the rates of return on deposits and securities satisfy 1 +  =

1+  = 1. Given that   0, we have that    + , and hence the banking system does not

hold securities; that is, ∗ = 0 in equilibrium. Since the banking system is holding (excess) reserves,
it must be the case that   . Also from the bank’s problem, we have that:

∗ = ∗ +
1


(∗ − ∗)  ∗ 

so experts do not hold securities in equilibrium and ∗ = ∗ in equilibrium.

Proposition 3. Let   . Given a value of  ∈ (0 1)  there is a threshold value  ( )  0
such that for all    ( ) there exists a unique stationary (monetary) equilibrium where the

bank capital constraint is binding and banks hold excess reserves.

Proof. Using the equilibrium values for the rates of return and the fact that the binding capital

constraint implies that  = () −  we have that the representative bank chooses loans to

maximize ( − )  −  (). Together with the zero profit condition, this determines that  = ∗

and ∗ () = 1− (∗ ()) where ∗ () = ∗+
0 (∗). Define again ∗ () =

∗ ().21

Define the threshold value  ( ) as:

 ( ) = min

½
1
(1− )∗ ( )
1− ∗ ( )

¾


Since ∗ ( ) ∈ (0 1), we have that  ( )  0. If only the capital constraint is binding, then
 = ()− ∗ and  = ((1− ) ). When    ( ), we have that   

so the reserve requirement is not binding. The rest of the equilibrium values can be easily obtained

by straightforward substitution. ¥
The condition that  ∈ (0  (; )) can be translated into a condition over ; that is,  ∈

(0  (; )) (see Figure 6). When    (; ) the reserve requirement is too high for the equi-

librium in Proposition 3 to exists. Instead, the equilibrium has both the capital and the reserve

requirement constraints binding (that is, no excess reserves; see Part 2 of the Appendix for a de-

scription of this case).

Figure 6

21Note here that ∗

() is different than in Proposition 1, so the values of 

∗

and  ( ) are also different.
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Proposition 3 has the capital requirement constraint binding. However, the proposition requires

that the capital requirement  be below a threshold value; that is, the proposition requires that 

is not too high. To understand this, note that given that    the bank would want to increase

reserves by raising deposits as long as the capital constraint is not binding. Hence, in equilibrium,

banks increase reserves and deposits until the capital requirement becomes binding (see Lemma 3).

There is a level of capital for which the cost of capital is such that increasing deposits and capital

is more costly than what the banks can receive by depositing those funds at the interest rate on

reserves. At that level of bank capital in the banking system (which, in equilibrium, is equals )

and given that capital requirements are binding, we have that the size of the banking system’s

balance sheet (measured on the liability side) is:

 + =
1




which determines the size of total deposits in the banking system, ((1− ) ). The asset side of

the banking system’s balance sheet implies that  = ()− ∗. Hence, as long as, ()−
∗   ((1− ) ) we have that the reserve requirement constraint is not binding. This can

happen when  is low or  is low, as illustrated in Figure 6.

Corollary 3.1 (Price level determination). Given a sequence for  set by the central bank,

the price level in the equilibrium described in Proposition 3 is uniquely determined and proportional

to the quantity of monetary assets.

Proof. Since   0, we have that ∗ = . Using ∗
∗
 = () − ∗ and given that ∗ is

independent of  and , we have that prices  satisfy:

∗ = +
1


 − ∗

and hence there is an inverse relationship between the total amount of monetary assets and the

inverse of the price level. ¥
Corollary 3.2 (Rates of return). In the equilibrium of Proposition 3 we have that ∗  ∗ 
∗ = ∗ and ∗  ∗. Furthermore, the equilibrium interest rate on interbank loans is given by:

∗ = ∗ −  (∗ − ∗) 

This result is interesting because it tell us that even if the banking system is flushed with reserves,

when bank capital is scarce the equilibrium interest rate on interbank loans is lower than the rate

of interest on reserves.22

Paying interest on reserves at ‘market rates’

Suppose now that the central bank pays interest on reserves at a level such that  =  in

equilibrium. Given that the return from holding reserves is the same as the cost of obtaining extra

deposits, if bank capital is scarce (and the bank capital constraint is binding) then the reserve

requirement constraint will also be binding. Holding reserves requires holding more (expensive)

capital and given that the return on reserves is the same as the cost of deposits, the return on

reserves is not sufficient to compensate for the higher cost in terms of bank capital. However, if

bank capital is not scarce, then banks will be indifferent with respect to their holdings of reserves

and may increase them by becoming bigger or by holding fewer securities. The next two propositions

describe these two situations formally, starting with the latter situation first, in Proposition 4, and

then moving on to the situation with scarce capital in Proposition 5.

22Bech and Klee (2011) provide a different (but complementary) argument to explain such a relationship among rates

of return. Their explanation is mainly based on limited competition in the interbank market when some participants

have no access to the payment of interest on reserves by the monetary authority.
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Proposition 4. Let  = . Given a value of  ∈ (0 1) there is a threshold value  ( )  0

such that for all    ( ) there exists a continuum of equilibria where the bank capital constraint

is not binding and banks hold excess reserves. The equilibrium set induces a continuum of possible

initial (inverse of the) price level 0 in the bounded segment
h
0  


0

i


Proof. From the household’s problem we have 1+∗ = 1. If none of the constraints are binding in
Problem A (the bank’s problem), then in equilibrium we must have that ∗ = ∗ = ∗ = ∗ = ∗ .
The solution to the bank’s problem is such that  = ∗ and hence we have that ∗ = ∗ + 0 (∗) 
Also, loan market clearing implies that Γ∗ = [1− (∗ )] 

∗ and ∗ = Γ∗∗. Assume that ∗  

and define the threshold value  ( ) as follows:

 ( ) =
(1− )∗
1− ∗



where ∗ =
∗ and ∗ depends on .23

Given the equality of equilibrium rates of return on different assets, there are many different

possible sizes of the banking system’s balance sheet that are consistent with bank optimization. The

smallest possible banking system (measured by assets) is one where ∗ = 0 and reserve holdings are
minimal. This requires that ∗

∗
 = ∗

∗
 and that deposits are minimal. From the balance sheet

condition of the banking system we have that:

∗
∗
 =

1

1− 
(∗ −∗ ) 

and deposits are minimal when ∗ =. When    ( ) we have that:

∗
∗
 +∗ =

1

1− 
(∗ −) + 






so the capital constraint is not binding.

The largest possible banking system has the largest possible deposits consistent with a non-

binding capital constraint and bank capital less than or equal to  so that capital is not scarce in

equilibrium. Using the banking system balance sheet and the capital constraint, we have that:

∗
∗
 +∗ ≤

∗




must hold. So, the largest possible deposits are:

∗
∗
 =

1− 




When ∗ = 0, this banking system has excess reserves. In fact, this level of reserves achieves the

maximum real value of reserves consistent with equilibrium. The level is given by:

∗
∗
 =




− ∗  

1− 




where the last inequality holds whenever    ( ).

Since 1 + ∗ = 1 and   0, we have that in these equilibria ∗ is positive. Then, it follows
that:

∗ = ∗ (
∗
 +  ∗ ) = + ∗

∗
 

which, for a given sequence of values of  implies a one-to-one increasing relationship between

the inverse of the price level and the real value of reserves. To obtain the limits of the interval of

23 Imposing conditions on parameters so that ∗   is straightforward in this case. Essentially, the equation

1−

1

+ 0 ( ())   must hold. This is simply a condition on parameters.
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possible values of 0 we need to consider the cases when the equilibrium level of real reserves is

minimal and maximal. Denote by  = (1 + )

0 the inverse of the price level that satisfies:

 =
1



∙
 +



1− 
(∗ − ∗ )

¸


and denote by  = (1 + )

0 the inverse of the price level that satisfies:

 =
1



µ
 +




− ∗

¶


It is easy to verify that when    ( ) we have that    .

Household consumption in all these stationary equilibria is given by:

∗ = +  + ∗ 
∗ − Γ∗ (∗)− 

and consumption of experts is given by ∗2 = (1 + ). ¥
As one moves from one extreme of the set of possible equilibrium price levels to the other, several

adjustments in the banking system could be happening. The equilibrium associated with 0 is a

situation where the reserve requirements are not restricting the behavior of banks but, yet, there

are no excess reserves in the banking system. This is also a situation where deposits are at their

minimum value consistent with equilibrium.

Figure 7

Moving to situations with higher 0 requires that banks hold more deposits, which results in

a larger equilibrium banking system. Once deposits are not minimal, banks can hold either more

reserves or more securities. In principle, they could also hold less capital, as long as the capital

constraint does not become binding. Figure 7 shows a representation of the equilibrium set in the

space of real deposits and real reserves. The equilibrium set is the triangle ABC. Two lines are

plotted to delimit the set: one is the minimal reserves for each level of deposits ∗
∗
 = ∗

∗
 and

the other is the maximal level of reserves for a given level of deposits, which is a representation of

the balance sheet condition when securities holdings are set to equal zero. Point A is associated with

the price level implied by  and point C with the price level implied by  . Just as an example,

point B is an equilibrium where bank deposits are maximal but the bank is holding securities in the

amount represented by the segment BC so that reserves are not maximal.

Proposition 4 implies that there is a disconnect between the quantity of monetary assets set by

the central bank and the price level in the stationary equilibrium of the model when  = .
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There are two ways to look at this disconnect: On one side, as Proposition 4 demonstrates, there

are multiple price levels consistent with the same amount of monetary assets. On the other side,

for a given price level, there are multiple amounts of monetary assets consistent with an equilibrium

with that price level. The next corollary establishes this fact formally.

Corollary 4.1 (Monetary assets/price level disconnect). Given a value for the initial (in-

verse of the) price level e0 ∈ (  ) there is a continuum of values of 0 consistent with the

equilibrium of Proposition 4.

Proof. Take 0 = . Then, by Proposition 4 there exists  () and  () such that  () 

 () and

 () =
1



∙
 +



1− 
(∗ −)

¸
 and  () =

1



µ
 +




− ∗

¶


These two equations define the functions  () and  () for all   0. Figure 8 plots this two

functions.

Figure 8

Consider now a value e0 ∈ (()  ()) as in Figure 8. We know from Proposition 4 that there
is a stationary equilibrium with 0 =  and price level 1e0. Now define two threshold values:

(e0) ≡ 1e0
µ
 +



1− 
(∗ −)

¶
 and (e0) ≡ 1e0

µ
 +




− ∗

¶


By Proposition 4, for any  ∈ ((e0) (e0)) there are thresholds () and  () such that

for all 0 ∈ (()  ()) there is a stationary equilibrium with 0 =  and price level 10.

But, since

 ()  = e0(e0)  e0  e0(e0) =  ()

then e0 ∈ (()  ()). Hence for each  ∈ ((e0) (e0)) there is an stationary equilibrium
with 0 =  and price level 1e0. ¥
To illustrate the policy implications of these results, consider the case of a central bank operating

in a stationary equilibrium like the one described in Proposition 4. Suppose, now, that the central

bank can make an unanticipated change to the size of its open market operations at time 1  0. In

particular, suppose that:

1 = (1 + )1−1 +4
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and that:

4 =
4

∗1
 0

where 4 = 1 − 1−1. With this notation, we are ready to state the next corollary.

Corollary 4.2 (Unanticipated open market operations). Consider an economy that, for all

  1, is in a stationary equilibrium as described in Proposition 4. Given a value for the initial

(inverse of the) price level ∗0 ∈ (  ) there is a maximum size of an unanticipated open market

operation at time 1  0 that is consistent with maintaining a constant inflation equal to  in all

periods (including 1).

Proof. Take 0 = . We have that ∗0 ∈ (()  ()) and since ∗ = ∗0 for all   1
(see Proposition 4) we have that:

 () = +


1− 
(∗ −)  ∗   +




− ∗ =  ()

for all   1.

To simplify notation, denote by e the price level for period 1 consistent with a constant inflation
rate , that is e = (1 + )

−1 ∗0; and denote by  the level of monetary assets at time 1 consistent
with a constant growth rate equal to , that is  = (1 + )

1 . If e ∈ ((+4) 
 (+4)),

then e is consistent with equilibrium and the constant inflation rate  for all  (including 1) is also

consistent with equilibrium. However, if e is greater than  ( +4), then the inverse of the

price level has to change so that 1 ∈ (( +4) 
 ( +4)), which immediately implies

that 1 
e and hence inflation at time 1 is greater than .24

To determine the values of 4 that are consistent with a constant inflation rate  for all 

(including 1) note that for e ∈ (( +4) 
 ( +4)) we need that:

 ()  =  ( +4) ( +4)  e + e4   ( +4) ( +4) =  () 

and hence: Ã
 ()e − 1

!
  4 

Ã
 ()e − 1

!


Since  ()  =  (), we have that  () =  ()  (1 + )
1 and  () e =  () ∗0.

Then, we have that the maximum size of the open market operation at time 1 consistent with a

constant inflation rate  is the one that involves a percentage increase in monetary assets at time 1
equal to  given by:

 =
( +




− ∗)− ∗0
∗0

(1 + ) 

Whenever 4  1−1 inflation has to increase in period 1 when the (‘larger’) open market

operation occurs. ¥
I have analyzed in Proposition 4 equilibria where banks do not face any binding capital, reserve,

or liquidity constraint and the price level is indeterminate. Such situations can only happen if the

central bank pays interest on reserves at rate  = . However, even when the central bank

pays interest on reserves at rate  = , bank capital can be scarce in equilibrium, and in that

case the stationary equilibrium is unique, sharing similar properties to the equilibrium described in

Proposition 2. I state this result formally in the next proposition.

24Using the budget constraint for the central bank, it can be shown that if 1 =
, then the real value of taxes

 does not change at time 1. However, if 1 
 then the real value of taxes can actually be smaller, due to the

extra seigniorage obtained as a result of the increase in inflation.
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Proposition 5. Let  = . Given a value of  ∈ (0 1) and the threshold value  ( )  0

defined in Proposition 4, for all    ( ) there exists a unique stationary equilibrium where the

bank capital and the reserve requirement constraints are binding and the bank liquidity constraint

is not binding.

Proof. Let ∗ = Γ∗∗ = 1−(1−)


 and the loan rate 
∗
 be the rate that solves 1 −  (∗ ) = ∗.

Since    ( ) we have that ∗  ∗ + 0 (∗). Now let ∗ = ∗ − 0 (∗)  ∗ where:

∗ =
µ
1− 

1−  (1− )

¶
∗ +



1−  (1− )
∗

This implies that ∗  ∗ = ∗ and these rates imply that the capital and reserve constraints are
binding in the bank’s problem. Then, deposits are given by ∗

∗
 = ((1− ) ) and reserves are

∗
∗
 =  ((1− ) ) = ()−∗, which confirms the values of ∗ and Γ∗ postulated at the

beginning of the proof. The rest of the equilibrium values can be obtained by simple substitution.¥
Corollary 5.1 (Price level determination). Given a sequence {}∞=0 set by the central bank,
the price level in the equilibrium described in Proposition 5 is uniquely determined and proportional

to the quantity of monetary assets.

Proof. Since 1 + ∗ = 1 + ∗ = 1, we have that ∗  0 and ∗ = . Using ∗
∗
 =

 ((1− ) ) we have that prices 
∗
 satisfy:

∗ = + 
1− 




and hence there is an inverse relationship between the total amount of monetary assets and the

inverse of the equilibrium price level. ¥
Corollary 5.2 (Rates of return). In the equilibrium of Proposition 5 we have that ∗  ∗ 

∗ = ∗ and ∗  ∗  ∗. Furthermore, the equilibrium interest rate on interbank loans is given

by:

∗ = ∗ +


1−  (1− )
(∗ − ∗) 

A look at some relevant data (2005-2013)

In October 2008 the Federal Reserve started paying interest on reserves. At the same time, the Fed

engaged in a series of programs (lending facilities and asset purchases) that resulted in a significant

increase in the level of bank (excess) reserves, as illustrated in Figure 9 (see also Figures 1 and 2

in the Introduction). Keister and McAndrews (2009) provide a good discussion of the process of

buildup in bank reserves during the financial crisis and its potential implications.

Figure 9 also plots the currency component of the money stock measure provided by the Federal

Reserve in its H6 data release. This measure of currency is basically currency in circulation minus

bank vault cash (which is accounted for in bank reserves) and can be taken as the empirical counter-

part of the variable  in the model. At the same time that total monetary assets in the economy

were growing substantially, the price level grew only moderately at an average rate that was below

2% (see Figure A5). This suggests that a situation like the one described in Proposition 4 may be

relevant for understanding this period.

Since 2009, the fed funds rate has been persistently below the interest rate on reserves (see Figure

10). In principle, this is consistent with binding capital requirements, as indicated by Corollary

3.2. Also consistent with that corollary is the fact that the short-term rate on securities (3-month

Treasury bills) has been below interest on reserves.

In the model of this paper, the real rate of interest on deposits is pinned down by the real side of

the economy, and in steady state it is given by 1. Also, inflation is determined by the (long run)
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growth rate of monetary assets. In such situation, it is completely up to the central bank to set the

interest on reserves such that it is equal, higher, or lower than the rate on deposits.25

Figure 9

Figure 10 Figure 11

The fact that the rate on 3-months Treasury bills is below the interest on reserves in Figure

10 (see also Figure A6 in the appendix for details) suggests a situation such as that described in

Proposition 3. At the same time, the disconnect between the growth in monetary assets and prices

seems consistent with Proposition 4. A crucial distinction between the two propositions is the state

of the bank capital constraint.

Capital regulations in the United States are complex and undergoing a process of reform. For

these reasons, it is hard to evaluate the extent to which bank capital constraints may have been

binding in the period 2009-2013. Expectations about future adjustments to the required ratios may

have played a critical role. After a long period of gestation, a new rule was introduced in October

2013. The rule established a minimum common equity tier 1 capital to risk adjusted assets ratio of

4.5% with an added 2.5% conservation buffer. For tier 1 capital the required ratio is 6% plus the

conservation buffer, and for total capital the required ratio is 8%. The leverage ratio was set at 4%

with a supplement for off-balance sheet assets that may take it to as high as 5%. Figure 11 plots

the ratio of capital to assets for different categories of capital and for the U.S. banking system as

a whole. The figure suggests that bank capital holdings are not uniformly close to the regulatory

25Sargent and Wallace (1985) study a model where central bank policy can change the equilibrium real rate of

interest. In that case, a policy of setting the interest on reserves equal to the real rate does not pin down the

equilibrium value of the real rate, and some policy induced indeterminacy arises. See the appendix for a detailed

discussion of the connection between this and Sargent and Wallace’s papers.
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constraint. Of course, it could be important to look at the distribution of these ratios across banks.

The information provided in Ennis and Wolman (2014) on this respect supports a similar conclusion.

If capital constraints are not binding, then the situation described in Proposition 4 appears as

the most relevant. Since rates of return are equalized in such an equilibrium, explaining why the fed

funds rate and other short-term rates have been below the level of interest on reserves may require an

alternative explanation (such as that advanced in Bech and Klee, 2011, for example). Interest rates

in the U.S. have been very low during the period 2009-2013 and it seems inappropriate to over-stress

the relatively small divergence between the yield on Treasury bills and the interest rate on reserves

as a way to evaluate the validity of the different scenarios in the model. Rather, I conclude from

this evidence that the situation in the U.S. during the period between 2009 and 2013 is not at odds

with the scenario described in Proposition 4.

5. Banks’ securities holdings

As we saw from Figure 4, between 1995 and 2005, while the Fed was not paying interest on

reserves, banks held around 20% of their assets in securities. In contrast, in the equilibrium of the

model in the previous sections when  = 0 and the liquidity constraint is not binding banks do

not hold securities. The logic behind this outcome is clear: Since households price the securities and

are holding deposits, then the interest rate on securities and deposits is equalized. Banks, however,

would only hold securities if the return on them would be enough to compensate for the cost of

attracting deposits and the cost of holding more reserves and/or more capital.

In this section, I discuss two ways to overturn this counterfactual result without affecting the

logic behind Proposition 4. First, in Section 5.1 I consider the case when the liquidity constraint

of banks is binding. Securities can be a source of liquidity for banks and when that liquidity is

valuable, banks may hold securities even if their funding costs are higher than the market return

on those securities. Second, in Section 5.2 I modify the model to introduce a convenience yield on

deposits, which effectively lowers the funding cost for banks and allows banks to hold securities even

if that requires holding more low-return reserves and/or expensive capital.

5.1 Binding bank liquidity constraints

Again, I restrict attention to stationary equilibrium and maintain the same general assumptions as in

Section 4, including the assumptions that guarantee that bank deposits are positive in equilibrium.

I consider first the case when the central bank is not paying interest on reserves.

Lemma 4. If  = 0 and the liquidity constraint in Problem A is (strictly) binding (i.e., 2  0),

then the reserves requirement constraint is also binding.

Proof. Suppose the reserves constraint is not binding. If the capital constraint is also not binding,

then from the first order conditions of the bank problem, we have that:

 −  + [(1 + )−  (1 + )]2 ≤ 0
must hold. However, since from the household’s problem we have that  =  in equilibrium, this

implies that 2 ≤ 0 which is a contradiction.
Suppose, instead, that the capital constraint is binding. From the first order condition of the

bank’s problem we have that:

−+ (1− ) (1 + )2 ≤ 0 and (7)

−+ [(1 + )−  (1 + )]2 =  −  (8)

Condition (8) can be rewritten as:

−+ (1− ) (1 + )2 = (1 + 2) ( − ) 

Since the right-hand side of this expression is positive, this contradicts condition (7). ¥
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The logic behind this lemma is clear: Given that  = , the bank can always increase its

holdings of securities financed with an increase in deposits or with a decrease in reserves and in that

way relax the liquidity constraint without changing profits. Lemma A1 implies that we only need

to consider two cases: one when the liquidity and reserves constraint are binding, and one when all

three constraints (liquidity, reserves, and capital) are binding.

To simplify the presentation, assume that  = 0 so that loans do not require liquidity. Considering

the general case of  ≥ 0 is a straightforward extension. Also, assume that 1 −     . This

condition guarantees that the liquidity constraint can be binding in equilibrium.

Proposition 6. Let  = 0. Given a value of  ∈ (0 05)  for all  ∈ ( 1− ) there is a threshold

 ( ) ∈ (0 1) such that for all    ( ) there exists a unique stationary equilibrium where the

bank reserve requirement and liquidity constraints are binding and the bank capital constraint is

not binding.

Proof. In equilibrium, the reserves and liquidity constraints imply:

 =  and

(1 + )  + (1 + ) =  (1 + )

Substituting the first into the second constraint and rearranging terms, we get:

(1 + )  = [ (1 + )−  (1 + )]  0

which implies that the bank is holding securities in its balance sheet. In fact, both reserves and

securities holdings by banks are proportional to deposits. To simplify notation, define the following

variable

 ≡ 1 + 

(1− − ) (1 + ) +  (1 + )

Using the reserves and liquidity constraints and the balance sheet identity for the bank, we can write

the bank’s objective as ( − ∗)  −  (), with ∗ satisfying:

∗ =  + ( − ) 

Then, the level of lending for each bank satisfies ∗ − ∗ = 0 (∗) and from the zero profit condition

we have that  = ∗. Loan market clearing implies that Γ∗ = [1− (∗ )] 
∗. Since 1 −   , we

have that ∗  ∗ and hence experts dedicate all their resources to bank capital. Aggregating across
banks, we obtain the banking system’s balance sheet identity:

∗ + ∗ + ∗
∗
 = ∗

∗
 +

Since equilibrium reserves and securities holdings are proportional to deposits, we obtain that total

bank deposits are given by ∗
∗
 =  (Γ∗∗ −). Since we are interested in the case of positive

deposits, we required that ∗ = Γ∗∗  . It is easy to give conditions on parameters so that this

inequality is satisfied. The threshold  ( ) is given by:

 ( ) =
∗

1 + (+ )  (1− ∗ )


where ∗ = 
∗ and  ≡ (1+)−(1+)

1+
 The real quantity of total reserves in the banking

system is ∗
∗
 =  (Γ∗∗ −). Since the implied nominal interest rate on deposits is positive, we

have that ∗ = and, in equilibrium:

∗ = ∗ + ∗
∗
 = +  (Γ∗∗ −) 

which tells us that there is a one to one relationship between the total amount of monetary assets

and the equilibrium price level (the inverse of ). For a given sequence of , there is a unique
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sequence of ∗ consistent with a stationary equilibrium. Finally, note that in equilibrium we have

∗  ∗ = ∗  ∗, where the equality between ∗ and ∗ can be verified using the first order
conditions for the bank’s problem. ¥
Proposition 6 deals with the case when only the reserve and liquidity constraints are binding.

The next proposition considers the case when all three constraints (reserves, liquidity, and capital)

are binding.

Proposition 7. Let  = 0. Given a value of  ∈ (0 1)  there is a threshold  () ∈ (0 1)
such that for all    () there exists a unique stationary equilibrium where the banks’ reserve

requirements, the bank liquidity constraints, and the bank capital constraints are binding.

Proof. When the capital constraint is binding, we can write banks’ deposits and holdings of securities

and reserves as a function of bank capital. Using the constraints in Problem A, we obtain:

∗ 
∗
 = ∗

∗
 = 

1− 


∗  and

∗ =
 (1 + )−  (1 + )

(1 + )

1− 


∗ 

Now using the balance sheet condition we can express loans as a function of bank capital:

∗ =
[(1− )− ] (1 + ) (1− ) +  [(1 + )−  (1 + )] +  (1 + )

(1 + )
∗ ≡ ∗ 

Using this expression, we can show that the bank’s objective function can be express as
¡
 − 

¢
−

 () where  is given by:

 =  +
(1− )  ( − ) +  (∗ − )




and using the bank’s zero profit condition, we conclude that  = ∗. Since, from the first order

conditions of the bank’s problem, it is evident that ∗  ∗ then we have that the equilibrium rate

of return on loans ∗  the size of the banking system Γ
∗, and the level of capital per bank ∗ satisfy

the following equation:

Γ∗∗ = Γ∗∗ =  = 1− (∗ ) 

These derivations determine the real allocation of resources in the economy.26

As before, the real quantity of total reserves in the banking system does not depend on any

nominal quantity and is given by ∗
∗
 = 1−


. Furthermore, as the implied nominal interest

rate on deposits is positive, we have that ∗ = and, in equilibrium:

∗ = ∗ + ∗
∗
 = + 

1− 




so that for any given sequence of  there is a unique sequence of 
∗
 consistent with a stationary

equilibrium. ¥
Propositions 6 and 7 consider the situation when  = 0 It is relatively straightforward to prove

similar results when   . The more interesting cases arise when  =   0. Proposition

4 considers the situation when  =  and none of the constraints in the problem of the bank

are binding. It is easy to show that when  =  the liquidity constraint cannot be the only one

binding. Under some conditions, the capital and the liquidity constraints can be binding while the

banks are still holding excess reserves. This is in contrast with the result in Proposition 5, which

26Note that  is a function of . It is easy to show that, as should be expected,  () → 1∗

as  →  ()

where both ∗

and  () are defined as in Proposition A1. In other words, the equilibrium with a binding capital

constraint converges to the equilibrium with a non-binding capital constraint as the coefficient  converges to the

threshold  () from above.
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suggested that banks would not hold excess reserves if the capital constraint is binding (and the

liquidity constraint is not). The important logic here is that, from the perspective of a bank dealing

with a binding liquidity constraint, reserves and securities are equivalent assets when the central

bank pays interest on reserves at the market rate (so that  =  = ). Most importantly, this

asset indifference can act as a source of price level indeterminacy even when bank capital is binding

in the model.27

5.2 Convenience yield on deposits

As an alternative, I now provide a minimal modification of the model presented in Section 2 that

results in the possibility of banks holding securities in equilibrium even if bank liquidity constraints

are not binding. The basic idea is to capture the fact that deposits provide a liquidity/transaction

service to depositors (as in Van den Heuvel, 2008; Stein, 2012; or Ireland, 2013). When this is the

case, depositors will be willing to hold deposits even if the return on deposits is lower than the return

on securities. The spread between these two rates of return, then, can compensate banks for the full

balance sheet cost of holding securities.

Suppose that there are two goods in the economy, the consumption good introduced in Section 2,

and a ‘big-ticket item’ that can only be paid with deposits. I call these goods 1 and 2, respectively.

Every period  each household receives an endowment
¡
1 

2


¢
of the goods, and  units of the

one-period securities. As before, households do not consume their own endowment. Suppose that

each household has three members. At the beginning of the period, two members of the household

leave to sell the endowment of the goods in the market. The remaining member of the household

trades securities, makes deposits, pays taxes, and buys good 1 from other households. Once the

securities market closes, the household purchases good 2 and pays for those goods with deposits.

The problem of the household is:

max

∞X
=0


£

¡
1
¢
+ 

¡
2
¢¤


subject to

1 + 
e +  +  =  (1 + −1) −1 + −1 +  + −1 − 

2
2
 = 

³e − 

´
 = 1 + 

 = 2
2
 + 

1  
2
    ≥ 0

where 2 is the relative price of good 2 in terms of good 1 and
e is the amount of deposits held

by the household when banks close in period . Let us define the nominal interest rate  by the

following equation:

1 +  =

+1

(1 + ) 

Using the first order conditions for this problem, it is easy to show that whenever   0 we have

that  = 0. Also, in similar fashion, if    then  = 0. Finally, the optimal values of 
1
 and

2 satisfy the following two conditions:

−0 ¡1 ¢+ 1

2
0
¡
2
¢
= 0

−0
¡
1
¢
+ 0

¡
1+1

¢
= 0

The market clearing condition for good 2 is 2 = 2. The rest of the model is unchanged from

that presented in Section 2 and analyzed in Sections 3 and 4.

27For a related result, see the discussion of Hornstein (2010) in Part 3 of this appendix.
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Note that now even if the return on deposits is lower than the return on securities, we have

that  = 2
2
  0; that is, the household wants to hold deposits to be able to purchase the

big-ticket item, good 2. This is in sharp contrast with the equilibrium of the model in the previous

sections. There, for the banking system to attract deposits, the rate of return on deposits has to be

as high as the rate of return on securities. The modification introduced in this section allows the

rate of return on deposits to differ from the rate of return on securities. As a result, banks may hold

both securities and deposits in equilibrium even when the interest on reserves is relatively low (or

zero).

To illustrate how the modified model works, I characterize a stationary equilibrium when the

central bank is not paying interest on reserves and only the reserve requirements are binding. This

equilibrium parallels that in Proposition 1 of Section 4. As in that case, then, I adopt basic station-

arity assumptions: Endowments are constant, and monetary assets grow at rate . To simplify the

analysis, assume that  and  are equal to zero, so that the liquidity constraint is always satisfied.

Generalizing the result to positive values for  and  is straightforward using the same logic as in

Part 1 of the Appendix.

Before stating the proposition, I make one extra technical assumption and introduce one extra

piece of notation. Assume the utility function  () has relative risk aversion strictly lower than one

for all  and 0 () → 0 as → 0. Finally, define  = 1−
h
1−

+ 0 (∗)

i
.

Proposition 8. Fix    and assume that  = 0. There is an interval Ω2 of values of  2


and a threshold value  ∈ (0 1) such that for all    and  2
 ∈ Ω2 there exists a stationary

equilibrium where banks hold securities and the banks’ reserve requirement constraint is binding,

while the bank capital and bank liquidity constraints are not binding.

Proof. Using the household’s problem, we have that ∗ =  and ∗ = (1− ) . Also, we have that

∗2 = 0
¡
 2



¢
0 (∗1 ) where we have used the market clearing condition for good 2 and denote by

∗1 total equilibrium consumption of good 1.

As in Section 4, stationarity implies that ∗+1
∗
 = 1 (1 + ) and since  = 0 we have

that ∗ = − (1 + ). These rates of return imply that ∗ = 0 in the household’s problem and

∗
∗
 = 1

 .

Assume now that ∗  0 and that the bank capital constraint is not binding. We will verify that

this is the case later in the proof. Now, since ∗  ∗ the reserve requirements must be binding
and ∗ = ∗ = ∗  Furthermore, we have that 

∗
 = ∗ + 0 (∗) and:

∗ = (1− ) ∗ + ∗

which implies that ∗  ∗ because 
∗
 is negative. From the household’s problem, these rates of

return imply that ∗ = 0 and hence:
∗

∗
 = ∗2

2
 

Given that reserve requirements are binding, ∗
∗
 = ∗

∗
 = ∗2

2
 and hence

∗ = ∗ + ∗
∗
 = 1

 + ∗2
2
 

which uniquely determines a sequence of values for ∗ given values for  for all . Using the

bank’s zero profit condition we have that  = ∗, and from the market clearing condition for loans

we have Γ∗ = (1− (∗ )) 
∗, which implies ∗ = 

Since ∗ = ∗ , experts are indifferent between holding securities and supplying bank capital. For
concreteness, assume that ∗ = and define  =

¡
∗2

2
 +

¢ ∈ (0 1) and Ω2 as follows:

Ω2 =

½
 2

 | 0 (∗1 )
 −

1− 
 0

¡
 2



¢
 2

  0 (∗1 )
 ( − ) +  −

1− 

¾


where it is important to note that ∗1 is independent of 
2
 . Given the properties of the function

 (), the set Ω2 is non-empty. Aggregating across banks, the balance sheet condition for the
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banking system is:

∗ + ∗∗ = (1− )∗2
2
 +

and when  2
 ∈ Ω2 we have that ∗∗ . Finally, when    the bank capital requirement is not

binding in equilibrium. This completes the proof. ¥
Note that in this equilibrium of the modified model, the interest rate on deposits gets determined

in the solution to the bank’s problem and the quantity of deposits, in the solution to the household’s

problem. The opposite was true in the model of Section 2. Aside from this fundamental difference,

the analysis of equilibrium is very similar in both models. The point here was to show that a

minimal modification based on an idea that is common in the literature (i.e., the convenience yield

on deposits) moves the model closer to the data in terms of having banks hold securities on their

balance sheets even when the interest rate paid on reserves is below market rates.

As for the situation characterized in Proposition 4, note that once the central bank can pay

interest on reserves at market rates and none of the constraints in the bank’s problem are binding,

then ∗ = ∗ and the household choice of 
∗ can be positive. Households become indifferent on

the margin between holding deposits or securities, and so do banks. For this reason, the basic logic

behind Proposition 4 still applies to this case.

6. Conclusions

I have constructed a relatively simple general equilibrium model of a macro economy with a

banking system and non-trivial bank balance sheets. The model is consistent with traditional price

level determination (Lucas, 1990) when the central bank pays no (or low) interest on reserves.

However, when the central bank pays interest on reserves at ‘market’ rates, banks hold excess

reserves and the price level can be indeterminate. In other words, there is a disconnect between the

total amount of monetary assets issued by the central bank and the value of the equilibrium price

level: A higher quantity of monetary assets does not necessarily imply a higher price level.

However, the range of values that the price level may take is linked to the quantity of monetary

assets. Hence, not all price levels are consistent with equilibrium for a given quantity of monetary

assets. As higher levels of monetary assets are considered, eventually the price level needs to increase

to remain in the interval that makes it consistent with equilibrium. These results suggest that it

may be possible for a central bank to increase monetary assets for some time without impacting

the price level, but that eventually, as monetary assets continue to increase, the price level would

need to increase to accommodate the nominal liabilities issued by the central bank that are used for

transaction purposes and as reserves in banks’ balance sheets.

The two key elements of the model that drive these results are an endogenous split of total

monetary assets between bank reserves and currency in circulation, and the modeling of the explicit

potential costs faced by banks from expanding the size of their balance sheets given that reserves

can only be held by banks. The model was kept as simple as possible while incorporating these

two dimensions that seem essential for understanding the role that bank excess reserves play in the

process of price level determination. The analysis in this paper was limited to the non-stochastic

stationary equilibrium, for simplicity. However, an extension considering a stochastic version of the

model, where central bank policy can be studied in a more systematic way, seems a promising next

step on the research agenda pursued in this paper.

Appendix

The appendix has five parts. In the first part, I show that the results in Section 4 can be

extended to a situation where the liquidity constraint of banks is considered explicitly. In Part 2, as

a complement to Proposition 3, I consider equilibrium when both capital and reserves constraints on

banks are binding even for relatively high interest on reserves. In Part 3, I discuss in detail some of

the related literature. In Part 4, I briefly discuss the case when banks fund lending only with capital
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(and no deposits). Finally, in Part 5 I provide additional discussion of U.S. data that is useful to

evaluate the empirical relevance of the results in the model.

Part 1: Bank liquidity demand

In this part of the appendix, I show that the results in Section 4 are robust to considering situations

where  and  are positive. In other words, there is a non-empty set of parameter values for which

the results in Section 4 continue to hold even when  and  are positive and, hence, banks have a

non-negligible liquidity requirement.

For Proposition 1, define  () as the ratio:

 () =
 (1 + )

(1 + )


Clearly  () ∈ (0 1). Now, for each pair ( ) define:

 (; ) = min

½
[(1 + ) −  (1 + )]

1− 
(1− ∗ )  1

¾


When    (), we have that  (; )  0 and for all    (; ) the bank liquidity constraint is not

binding in equilibrium.

For Proposition 2, define for each triple (  ) the threshold value:

 (;  ) = min

½
[(1 + ) −  (1 + )]

1− 

1−  (1− )
 1

¾


Again, when    () we have that  (;  )  0. Using the expressions for reserves and bank capital

to substitute in the liquidity constraint, it is easy to verify that, if    () and    (;  ), then

the bank liquidity constraint is not binding.

For Proposition 3, define  ( ) as the ratio:

 ( ) =
(1 + ) (

∗
 − )

(1 + ) (1− )∗


and the threshold value  (;  ) as:

 (;  ) = min

½
1


[(1 + ) (

∗
 − )−  (1 + ) (1− )∗ ]  1

¾


Assuming, as we are, that ∗  1 (so that banks have positive deposits), when    ( ) we

have that   ∗ and hence  ( )  0. Also, when    ( ) we have that  (;  )  0.

Hence, for all    ( ) there is a non-empty set Ω ( ) given by:

Ω ( ) =
n
( ) | 0     ( ) and 0     (;  )

o


such that when ( ) ∈ Ω ( ) and    ( ) the banks’ liquidity constraint is not binding

in the equilibrium of Proposition 3.

For Proposition 4, note that the liquidity constraint is satisfied in equilibrium if

(1) (∗∗ + ∗
∗
 − ∗

∗
 ) ≥ ∗

where we have used that 1 + ∗ = 1 + ∗ = 1. Also, in equilibrium ∗∗ + ∗
∗
 ≥ ∗

∗
 since

holdings of reserves must satisfy the reserve requirement and banks cannot short securities. So, we

have that the liquidity constraint is satisfied whenever:

(1) (− )∗
∗
 ≥ ∗
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This expression also tells us that the liquidity constraint will be satisfied for all equilibria if it is

satisfied for the equilibria with minimal level of deposits. Going back to the proof of Proposition 4,

the minimal level of deposits in equilibrium is given by (∗ −)  (1− ).

Now, define  (;  ) as:

 (;  ) = min

½
(1) (− ) (1− ∗ )

1− 
 1

¾


which is essentially the same threshold defined for Proposition 1 but when  is such that 1+ =

1 + ∗ = 1. When   0 and    we have that  (;  )  0 and for all    ( ) there is a

non-empty set Ω ( ) given by:

Ω ( ) =
©
( ) | 0     and 0     (;  )

ª


such that when ( ) ∈ Ω ( ) and    ( ) the banks’ liquidity constraint is not binding in the

equilibria of Proposition 4.

For Proposition 5, define the threshold value  (;   ) as:

 (;   ) = min

½
(1) (− ) (1− )

1−  (1− )
 1

¾


which is essentially the same threshold defined for Proposition 2 but when  is such that 1+ =

1 + ∗ = 1. Again, then, when   0 and    ( ) we have that there is a non-empty set

Ω (  ) given by:

Ω (  ) =
n
( ) | 0     and 0     (;   )

o


such that when ( ) ∈ Ω (  ) and    ( ) the banks’ liquidity constraint is not binding in

the equilibrium of Proposition 5.

Part 2: Binding capital and reserve requirements with high interest on reserves

Consider the case when the central bank is paying    but    ( ), where the threshold

value  ( ) was defined in Proposition 3. Suppose the liquidity constraint is not binding. Then,

the equilibrium in this case is similar to that described in Proposition 2. First note that we still

have 1 + ∗ = 1 + ∗ = 1 and, since by Lemma 3 the capital constraint is binding, from the

bank’s and the experts’ problems we have that ∗ = ∗ = 0. Hence, ∗ = . Also using

the bank balance sheet constraint and the binding capital and reserves constraints, we have that

∗
∗
 = ∗

∗
 =  ((1− ) ) and ∗ = ((1−  (1− )) ). Now, as in Proposition 2,

define the weighted average of rates of return  as follows:

 =
1− 

1−  (1− )
 −  (1− )

1−  (1− )
 +



1−  (1− )


The objective of the bank can then be written as ( − ) − (). Taking first order condition with
respect to  and using the zero profit condition, we have that the optimal value of  = ∗ as defined
at the beginning of Section 4. Using the market clearing condition for bank capital and for loans,

we have that:

 =


1−  (1− )
Γ∗∗ =



1−  (1− )
[1− (∗ )] 

which can be used to determine the equilibrium level of ∗ and Γ
∗. Since ∗ = ∗ − 0 (∗), we

can use the definition of  to determine the equilibrium level of ∗. By definition, the capital and
reserves constraints hold with equality. Following the same logic as in Part 1 of this Appendix, we

can determine threshold values for  and  so that the liquidity constraint is not binding. The rest

of the equilibrium variables are easily derived from simple substitution.
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Part 3: A more detailed discussion of some related literature

Sargent and Wallace (1975). The paper is considered the first to demonstrate price level indeter-

minacy under rational expectations when the monetary authority attempts to implement policy by

following an interest rate rule. In contrast, in my model the monetary authority is not conducting

monetary policy by following an interest rate rule. In the stationary equilibrium, policy determines

the growth rate of monetary assets, set at a fixed number . In Sargent and Wallace’s 1975 model,

if the monetary authority targets the quantity of money in the economy, then the price level is

uniquely determined. Hence, the type of indeterminacy that I study is clearly very different than

the one discussed by Sargent and Wallace (1975).

In Proposition 4, the monetary authority pays interest on reserves at market rates. That is, in

equilibrium, both the “market rate” and the rate of interest paid on reserves are the same. However,

the key distinction is that the monetary authority has to pay the rate determined in the market. It

does not control the market rate once the growth of monetary assets has been chosen.

Sargent and Wallace set up a loglinear model with three key equations: a Lucas supply curve,

an aggregate demand curve (which they call an “IS curve”) and a money demand equation (which

they call an “LM” curve). For the purpose of understanding the indeterminacy result, the model

can be simplified significantly.28 In the notation of this paper, consider the following three-equations

model:

 = 

 =  () 

 =  ( ) 

where  is output at time ,  is the real rate of interest, and  is the nominal rate of interest.

Furthermore, assume that:

1 +  =
¡
+1

¢
(1 + ) 

This “Fisher” equation is effectively an arbitrage equation between real and nominal returns that

would be familiar to the reader since it was repeatedly used in the main body of this paper.29

Note that the real interest rate gets determined by the equation  () = . When the monetary

authority targets a fixed nominal interest rate  the Fisher equation pins down the growth rate of

prices and the money demand equation determines the growth rate of monetary assets. However,

there is nothing that pins down the level of  and  in the model. There is a continuum of

possible combinations of 0 and 0 consistent with that policy.

On the other hand, note that once the monetary authority fixes a sequence for , as I do in

this paper, the nominal interest rate and the price level are uniquely determine. My paper, hence,

identifies a distinct indeterminacy that originates in the payment of interest on reserves as “market”

rates.

Sargent and Wallace (1985). In this paper, Sargent and Wallace use a two-period-lived overlapping

generations model to study the effects of paying interest on reserves on equilibrium outcomes. They

consolidate the private sector and ignore the currency component of the monetary base, so all base

money earns interest. As a consequence, they do not discuss the endogenous split between currency

and reserves, which is an important element in my analysis. The Sargent-Wallace result has a

similar flavor as the result in Proposition 4 in this paper in the sense that they find that when the

monetary authority pays interest on reserves at the market rate, there is a continuum of stationary

equilibria, each with a different price level. An important difference, however, is that in the Sargent

and Wallace model the real rate of interest is not pinned down by the parameters of the model and

it is different across the multiple equilibria. In Proposition 4, the (gross) real rate is given by 1

in all the possible equilibria.

28 Sargent and Wallace are interested in optimal monetary policy when the economy is subject to shocks. However,

the stochastic aspect of the economy is not crucial for the price-level indeterminacy issue.
29This is an important equation because it is where rational expectations about the future value of the price level

come into play. Sargent and Wallace show that under adaptive expectations the price level is determinate.
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It is important to realize that in Sargent and Wallace’s model the main role of money is as a

store of value (from one period to the next). In the model of this paper, money plays a role in

transactions, instead. The idea behind the Sargent-Wallace result can be explained using a very

stripped-down description of the model. Basically, the model is a standard overlapping generations

endowment economy with money. Agents solve a two-period intertemporal optimization problem

by deciding an amount of real savings  ( ) as a function of the real interest rate and endowments

net of taxes  . Call  the nominal interest rate paid on cash (Sargent and Wallace’s interest on

reserves),  the inverse of the price level at time , and  the amount of monetary assets in the

economy (constant over time). We have that in equilibrium the following equations must hold:

 (  ) = 

1 +  =
¡
+1

¢
(1 + ) , and

+1 =  

for all , where the last equation is the budget constraint of the monetary authority and the first

equation is the standard money market clearing equation in monetary overlapping generations mod-

els. The second equation is again interest arbitrage equation. In a stationary equilibrium, this

system simplifies to:

 ( ) = 0

 = , and

0 =  

which, after substitutions, can be reduced to  ( ) =  . This is one equation in two unknowns

and under standard assumptions Sargent and Wallace show that there is a continuum of solutions

( ). In turn, for each ( ) there is a different equilibrium value of 0.

When the monetary authority does not pay interests on reserves  = 0 and  = 0. Furthermore,

by arbitrage, we also have that  = 0. In such a situation, under standard assumptions, there is a

unique stationary monetary equilibrium with a constant price level 0 that satisfies  (0 0) = 0.

This is a well-known result in monetary theory. In particular, what is required for the existence of

a monetary equilibrium is that endowments are such that  (0 0)  0.

Sargent and Wallace’s result is a departure from this traditional price level determination mech-

anism in the monetary overlapping generations model. A way to understand their result is to think

about the policy setting process implicit in their formulation. Note that if the monetary authority

chooses a value of the interest on reserves, then the stationary equilibrium conditional on that value

of the interest rate, would be unique. However, the idea behind the multiplicity is that the monetary

authority chooses the nominal interest rate on reserves to make it equal to whatever rate is observed

in the market. So, if the rate in the market is 1, then the monetary authority would set  = 1; and

if the rate in the market is 2 6= 1, then the monetary authority would choose a different interest

on reserves ( = 2), which would validate the different real rate of interest 2. In a sense, the

indeterminacy is the result of the endogeneity of policy. The monetary authority is “chasing” the

market, making policy endogenous and the equilibrium indeterminate. This is not the same source

of multiplicity as in Proposition 4 of this paper. The nominal and the real interest rates are constant

across all the equilibria in Proposition 4.

An important aspect of the Sargent and Wallace analysis is that by changing the nominal interest

rate on reserves the monetary authority can validate any given equilibrium real rate of interest (in

a continuum). In a monetary equilibrium of the Sargent and Wallace model, money cannot be

dominated in rate of return and by changing the return on money the monetary authority changes

the real return on savings. By contrast, in the model in this paper, the real rate faced by consumers

is independent of policy.

Note that if the monetary authority in the Sargent and Wallace’s model were to exogenously set

a fix value of  , then, again, the stationary equilibrium would be unique. Taxes are endogenous in

their model. This is a point of contact with the model in this paper, where taxes also are assumed to
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accommodate endogenously to finance the payment of interest on reserves required by the different

equilibria. Perhaps this aspect of the model suggests that my results and those of Sargent and

Wallace are not too far apart in this fundamental level.

Hornstein (2010). Following Canzoneri et al. (2008), Hornstein (2010) studies a macroeconomic

model with a banking system that may hold securities and reserves in the process of fulfilling its

function. Banks take deposits from households and give loans to households that need them to

buy the so-called “credit goods.” Banks need to hold liquidity to service their deposits and both

government bonds and reserves are perfect substitutes as a source of liquidity. Using the notation

in this paper, Hornstein’s liquidity constraint can be re-stated as follows: each bank must satisfy

a technological constraint  + +1 = +1 with   1. Banks are also subject to a reserve

requirement constraint,  ≥  with   . There is no bank capital constraint in Hornstein’s

model and, as a result, bank capital plays no role.

Hornstein’s model can be interpreted as a particular case of the model in this paper when  = 0

and  = 0. Note, however, that the liquidity constraint is further simplified relative to the one being

used in this paper. The more complex specification seems to me more amenable to the interpretation

given it here but this is not a fundamental distinction between the models of the two papers.

The model in Hornstein’s paper has many features in common with the one studied in this paper.

However, the focus of his analysis is different. Hornstein studies the dynamic stability properties

of the steady state under the kind of monetary and fiscal policy rules analyzed by Leeper (1991).

In that sense, Hornstein’s framework is in the Neo-Wicksellian tradition, which is interested in

macroeconomic behavior when the monetary authority is following an interest rate rule. Determinacy

in Hornstein’s analysis refers to the path of inflation and nominal interest rates, but there is no

discussion of the level of equilibrium prices.

As Hornstein shows, it is still the case in his model that when the interest on reserves is equal

to the return on government bonds, the equilibrium quantity of reserves is indeterminate in a range

that depends on the parameters  and . More formally, in the notation of this paper, when

 = , Hornstein shows that  ∈ [ ]  It is also the case in Hornstein’s model that
households have a well-defined demand for cash. In particular, Hornstein uses a money-in-the-

utility-function specification and the household demand for cash is given by:

 = 


 − 1

where  is a parameter in the utility function. Since there is a representative bank and a rep-

resentative household, we have that  =  and  = . Just as in the model of this paper,

 +  = in equilibrium. Note then that for a given value of  changes in  within the

interval [ ] will be associated with changes in  that would be reflected in different values

of  to the extent that aggregate consumption and the nominal interest rate remain invariant to

changes in the composition of the monetary aggregate.

From this logic I conclude that for a given level of monetary aggregates there is, in fact, a

continuum of steady state equilibria in Hornstein’s model that can be indexed by the price level.

It is true, however, that the set of variables that are the focus of study in Hornstein’s model are

invariant across these multiple steady states and the stability properties described in Hornstein’s

paper are the relevant ones when considering the behavior of the real economy under a policy regime

that is committed to following Leeper-like interest rate and fiscal rules.30

The discussion about the limits on the ability of the central bank to change the monetary ag-

gregate without a necessary adjustment to the price level does not arise in the context of policy

based on interest rate rules. In such a setting the monetary aggregates adjust to whatever values

are consistent with maintaining the targeted levels of the interest rate and long-run inflation. In

30Toward the end of his article, Hornstein discusses the problems that arise when the demand for government bonds

is indeterminate, given that the fiscal policy rule is specified as taxes contingent on government bond demand. He

proposes some simple solutions to this problem and hints at some of the issues discussed here (see, for example,

footnote 17 in Hornstein, 2010).
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consequence, the fact that more than one value of the monetary aggregate is consistent with the

policy target is not consequential for the Neo-Wicksellian approach to monetary policy.

Williamson (2012). Williamson studies a model in the tradition of the money-search literature. The

economy is populated by two groups of agents: buyers and sellers. Each period, agents interact

in two consecutive markets. First, agents trade in a centralized market. At the end of centralized

trading, agents find out if they will be in a monitored or in a non-monitored bilateral match later

in the period during the decentralized-trading phase.31 Each buyer is randomly matched with a

seller during decentralized trading, but only a (fixed) proportion of those buyers are in a monitored

match. Each of the rest of the buyers form part in non-monitored bilateral matches.

There are two assets in the economy: fiat money and interest-bearing government bonds. Buyers

in decentralized non-monitored matches pay sellers using fiat money. During the centralized market,

agents can form coalitions that resemble banks. Agents make deposits in banks and banks make

a portfolio decision and issue claims that buyers can later use in monitored decentralized matches

to pay to sellers in exchange for goods. When the real return on bonds is higher than the real

return on money, banks provide insurance to agents by pooling the risk that they will end up in

a non-monitored match where they need to make payments using money. Since the proportion of

non-monitored matches is a known fixed (exogenous) parameter, banks can choose the portfolio of

money and bonds so as to have enough money to distribute to all buyers in non-monitored matches.

Williamson studies several possible equilibrium configurations. For example, it is possible in the

model to have a stationary equilibrium where both bonds and money have a real return that is

lower than the inverse of the discount factor. In this situation, the nominal interest rate is equal

to zero. Williamson calls this a “liquidity trap.” Agents are willing to hold assets and money (or

claims to those assets in banks) because both money and bonds are useful for making transactions

in the decentralized market. Interestingly, since money and bonds have the same real rate of return,

banks may hold reserves (in the form of currency) in this equilibrium. All these reserves constitute

“excess reserves,” since Williamson does not consider reserve requirements being imposed on banks.

Whenever the nominal interest rate is positive, banks choose to hold only bonds and no currency.

To consider the case of “excess reserves,” Williamson extends the analysis to a situation where the

monetary authority pays interest on reserves at the level of interest paid by government bonds

(Williamson, 2012, p. 2584). In other words, Williamson focuses on the case when the monetary

authority pays interest on reserves at “market rates,” according to the language I have used in this

paper (see Propositions 4 and 5).

Just as I did here, Williamson considers the “realistic” case in which the monetary authority issues

a total amount of monetary assets and the split between currency and bank-reserves is determined

endogenously in equilibrium. In Williamson’s economy, under certain conditions, interest-bearing

assets (bonds and reserves) play a transactions role. This feature can influence substantially the

way the economy works. However, when interest-bearing assets are plentiful (so that their marginal

contribution to the execution of transactions in monitored matches is nil) the economy studied by

Williamson share several properties with the one studied in this paper.

In particular, with plentiful interest-bearing assets and a real interest rate equal to the inverse

of the discount factor, the price level in the economy is indeterminate and can take any value in a

continuum.32 Williamson does not discuss this case in detail. He, instead, chooses to focus on the

case when interest-bearing assets are not plentiful, showing that changes in the interest on reserves

can have real effects in the economy and can move the price level in determinate ways. This result,

in fact, aligns well with the finding of this paper. The transaction role of interest-bearing assets

(including reserves) pins down the real value of those assets in equilibrium and, hence, the real value

of reserves (given the amount of outstanding government bonds). In Williamson’s model, just as in

31The timing is as follows: first, agents produce and consume the centralized-market good and make deposits in

banks. After that, agents find out if they will be in a monitored or non-monitored match (after all production and

consumption of centralized-market goods has been made). Finally, agents get to interact one more time with the bank

to withdraw cash if they need to and the centralized-market sub-period ends.
32Williamson does not consider a limit on banks’ balance sheets, such as that induced by capital requirements in

my model. For that reason, there is no natural bound on the value of equilibrium real reserves in Williamson’s model.
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the model of this paper, when the real value of reserves is pinned down in equilibrium, price-level

indeterminacy is no longer an issue.

Martin, McAndrews, Skeie (2013). The authors study a two-period model of an economy with

many similarities to the one presented here but with some important differences. There is a set of

households, a set of firms, and a set of banks. Banks take deposits from households, make loans to

firms, and do not hold bank capital. There is also a central bank that pays interest on reserves, yet

banks do not face a reserve requirement. Banks have a (convex) cost of issuing deposits, instead of

a cost of providing loans as is assumed in this paper (this difference does not seem critical, though).

Martin, McAndrews, and Skeie normalize the initial price level to be equal to unity, so they are

not able to consider the type of price level indeterminacy that is the main subject of this paper

(Proposition 4). Furthermore, in Martin, McAndrews, and Skeie’s model, there is no endogenous

split between reserves and currency. The central bank can choose the initial quantity of reserves

in the banking system. Notice that since the price level is equal to unity in the initial period this

implies that by choosing the nominal quantity of reserves, the central bank also chooses the real

quantity of reserves. As a consequence, Martin, McAndrews, and Skeie need to limit the size of the

initial nominal reserves set by the central bank to be consistent with feasibility (see their assumption

A2). In contrast, in the model of this paper, since the price level is fully endogenous, I do not need

to place any restriction on nominal quantities.

In Martin, McAndrews, and Skeie’s model, the equilibrium return on bank loans is always equal

to the interest paid on reserves. In the case when the cost for banks of holding deposits is set to zero

(the frictionless model), total bank lending is exogenous (given the amount of government bonds

in the economy) and the inflation rate adjusts to equalize the nominal return on loans with the

nominal interest rate paid on reserves. For this reason, inflation moves one to one with changes

in the interest rate on reserves and there is no direct link between monetary assets and prices (or

inflation). Furthermore, the rate of return on deposits is also equal to the rate of return on reserves.

The main result from the Martin-McAndrews-Skeie model is that the total amount of reserves

provided by the central bank does not influence equilibrium bank lending. In other words, the

quantity of bank lending is independent of the quantity of bank reserves in equilibrium. This is a

strong result that cannot be confirmed using the model of this paper: While it is the case that the

central bank cannot influence steady-state lending by changing the amount of monetary assets that

it issues, in some situations there is an equilibrium correlation between total reserves and total loans

(see, for example, Proposition 1). Recall, however, that in the model of this paper both lending and

reserves are endogenously and jointly determined, so there is no obvious way in which one can be

said to be causing the other.

When the cost of holding deposits is positive in the Martin-McAndrews-Skeie model, the interest

rate on deposits can be different from (and lower than) the rate of return on reserves and loans.

However, in this situation banks do not hold bonds. This is because households hold both deposits

and bonds in equilibrium and the rates of return on these two investments need to be equalized in

equilibrium, and they do at a lower level than the return on other bank assets. In this way, the

model with costly deposits works very differently from the model of convenience yield on deposits

studied in Section 5.

With a moderate cost of holding deposits and moderate levels of reserves, households in Martin,

McAndrews, and Skeie’s model absorb the changes in the cost of holding deposits induced by the

changes in total deposits that result from changes in total reserves. As a consequence, bank lending

remains unchanged. However, when the cost of holding deposits is high, an increase in total reserves

can result in lower equilibrium levels of bank lending. This is because households have access to

a storage technology that puts a lower bound in the equilibrium return on deposits. Increases in

reserves do not result in one-to-one increases in deposits and hence, loans have to fall to maintain

consistency with the balance sheet condition of banks.

The way reserves influence outcomes in the Martin-McAndrews-Skeie model is, hence, very dif-

ferent from the way reserves interact with other variables in the model studied in this paper. In all

the propositions in this paper, with the exception of Proposition 4, the real value of total reserves
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is endogenously determined and cannot be freely manipulated by the central bank. In Proposition

4, the central bank could in principle induce a change in the real quantity of reserves outstanding,

but such a change would be fully accommodated by a change in total deposits and/or holdings of

securities by banks, without changing total bank lending. This is very different from what happens

in Martin, McAndrews, and Skeie’s model, where the central bank has full control over the real

quantity of reserves and by manipulating this quantity can induce changes in total bank lending.

Ireland (2014). Ireland studies a dynamic stochastic general equilibrium model with a banking

system where currency and bank reserves serve distinct functions and the central bank is able to

pay interest on reserves. Households combine currency and bank deposits to economize on shopping

time. Banks combine reserves and labor to “create” (produce) deposits. Both the shopping time

technology used by households and the deposit production technology used by banks are such that

there is imperfect substitutability between cash and deposits in the first case, and reserves and labor

in the second case.33 These assumptions imply that there is a well-defined demand function for

deposits (and currency) and a well-defined demand function for reserves even when reserves earn

the “market” interest rate paid by other securities such as bonds. For given values of the various

rates of return, the model pins down the real value of all quantities (reserves, deposits, wages, loans,

labor allocation, etc.). In a steady state, any change in the quantity of monetary assets results in a

proportional change in the price level and leaves all real quantities unchanged. While there are no

reserve requirements in Ireland’s model, reserves (not liquidity more generally) play a unique role

in the production of deposits, and it is never the case that banks are indifferent between holding

different levels of reserves or bonds (securities). For this reason, the real quantity of reserves is

uniquely pinned down in equilibrium, and a result like the one presented in Proposition 4 of this

paper cannot be proved for Ireland’s model. Furthermore, Ireland does not study the role of bank

capital, an important element in the logic behind Corollary 4.2 in this paper.

Ireland uses his model to study the dynamic response of the economy to various shocks when

the central bank follows a Taylor-type rule for setting the market interest rate and firms face a

quadratic cost of adjusting prices. The central bank also follows a rule for setting the interest on

reserves. Since the market rate enters the interest on reserves rule, effectively, the central bank can

be viewed as setting the spread between the market rate and the interest on reserves. Ireland uses the

implied behavior of monetary aggregates to calibrate parameters of the technology for production

of monetary services. The technological relationship between reserves and labor in the production

of deposits is harder to calibrate, and Ireland conjectures parameter values and later performs

sensitivity analysis. Ireland concludes that paying interest on reserves has important effects on the

levels of reserves and other monetary assets, but not on output and inflation. Paying interest on

reserves in Ireland’s model allows the central bank to influence the real quantity of reserves, but

it is always the case that any monetary policy action intended to decrease the price level in the

long run would require a proportional reduction in the nominal supply of reserves. Breaking this

tight relationship between the price level and the nominal value of monetary aggregates (present

in Ireland’s model and most of the existing alternatives) is the main objective of this paper (see

Proposition 4).

Part 4: All-capital banks

Consider the case when  and  are equal to zero. Then, the liquidity constraint is not binding in

equilibrium. As it will become clear later, if  and  are positive, then having banks fully financed

with capital requires even higher values of the endowment of bank experts. Recall that the balance

sheet identity for the banking system implies that ∗+ ∗∗ +∗
∗
 = ∗

∗
 +∗ , and the reserves

constraint requires ∗
∗
 ≥ ∗

∗
 . Using these expressions, we can show that if   ∗, then

banks will need deposits to fund their operations. To see this, suppose not. Suppose banks have no

33 Ireland assumes a CES technology for the production of deposits, with reserves and labor as inputs. As a result,

when the opportunity cost of holding reserves goes to zero, the demand for reserves grows without bound. To obtain

a bounded demand for reserves, Ireland introduces a small labor cost of managing reserves, which puts a positive

lower bound on the opportunity cost of holding reserves.
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deposits. Then, we have:

∗ + ∗∗ + ∗
∗
 ≥ ∗   ≥ ∗ 

which contradicts the balance sheet condition for banks with no deposits. Then, to have an all-

capital bank, we need  ≥ ∗. Note that if banks are fully funded with capital, then the capital
constraint will not be binding. Furthermore, since deposits are equal to zero, banks can choose to

hold no reserves without violating the reserve requirement. Similarly, since the liquidity constraint

is not binding, banks can hold no securities. In such a situation, total bank assets equal total loans

∗ and as long as  ≥ ∗ it is feasible to have a banking system financed only with bank capital.

Define the following reference interest rate:

e ≡ 1− 


+ 0 (∗) 

Now we can show that when the central bank pays no interest on reserves and  ≥ 1− (e), the
equilibrium has banks fully funded with bank capital.

Proposition A3. Let  =  = 0 and  ≥ 1− (e) and  = 0. Given a value of  ∈ (0 1) there
exists a stationary equilibrium where banks hold no deposits or reserves and loans are fully funded

with bank capital.

Proof. In a stationary equilibrium, if the central bank pays no interest on reserve, we have that

1+∗ = 1 (1 + ) ≤ 1. Furthermore, we have that if deposits were positive, then 1+∗ = 1+∗ =
1 (from the households’ problem). From the bank experts’ problem, we have that 1 + ∗ ≥ 1
Assume now that the capital constraint is not binding. We will confirm this later. Then, we have

that 1 + ∗ = 1. Going back to the bank’s problem, when the capital constraint is not binding,
the bank solves the following problem:

max (∗ − ∗)  +
¡
∗ − ∗

¢
 + (

∗
 − ∗) − (∗ − ∗)

− ¡∗ − ∗
¢



 −  () 

subject to

 ≥  ≥ 0
Given the equilibrium rates of return postulated above, a direct implication of the bank’s first

order condition with respect to  is that the reserve requirement must be binding. The first order

condition with respect to deposits is:

(∗ − ∗) − (∗ − ∗) ≤ 0

which implies that deposits must be equal to zero (if deposits were not equal to zero, the first order

condition would have to hold with equality and from the household problem we have to have that

1+∗ = 1, which produces a contradiction). Since 
∗
 = ∗, the banks are indifferent regarding their

holdings of securities. The banking system balance sheet condition implies that ∗+∗∗ = ∗ . The
bank’s first order condition with respect to loans, combined with the zero profit condition for banks,

gives us that  = ∗ and ∗ = e. The loan market equilibrium implies that ∗ = 1 −  (e) ≤ .

Hence, for all values of ∗ such that 
∗
 ≤  we have that the market for bank capital clears at

the rate ∗ and the bank capital constraint is not binding since 
∗ + ∗∗ = ∗   (∗ + ∗∗ ).¥

While this proposition indicates that there is nothing in the model inconsistent with having

banks funding their operations only with bank capital, it is also clear from the conditions involved

that the case of all-capital banks is unlikely to be empirically relevant. In particular, it has to be

the case that expertise on banking issues is so abundant in the economy that banks can fund all

their lending using the resources directly available to this specialized group of agents.

40



Part 5: Some extra data

The value of  Calculating the equivalent of the reserve ratio  in the data is delicate. In the

United States only transaction accounts are subject to reserve requirements. Reserve requirements

are also non-linear with a minimum amount not subject to requirements and two segments: For

the amount in transaction accounts between $13.3 million and $89.0 million, the requirement is 3

percent; and for amounts larger than $89.0 million, the requirement is 10 percent. In the model,

there is only one type of deposit accounts. We could think that “producing” deposits requires a

technologically given composition of some transaction accounts and some non-transaction accounts.

In the data, the composition of deposits has been shifting significantly in the last couple of decades

away from transaction accounts and toward non-transaction accounts (see Figure A1). In the pro-

posed interpretation, one can say that the technology for producing deposits has been shifting over

time. Reserve requirements, on the other hand, have not changed significantly. This is reflected in

the ratio of required reserves over transaction account deposits in Figure A2. If we consider  to be

the amount of reserves needed to produce deposits, then the value of  has been trending down, due

to the technological shift in the production technology for deposits (see Figure A3).

Figure A1 Figure A2

Figure A3

Banks liquid assets. A large proportion of the securities held by banks are Treasury and Agency

securities (see Figure A4). Going back to Figure 2 in the Introduction, we see that total securities as
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a proportion of assets remained fairly stable during the period when reserves increased significantly

(starting in 2008). At the same time, the proportion of Treasury and Agency securities in total

securities was also relatively stable during that period. From this I conclude that there is not strong

evidence of reserves substituting for other liquid assets in banks’ balance sheets. See also re-enforcing

evidence in Ennis and Wolman (2014).

Figure A4

U.S. Inflation. We see in Figure A5 that after the 2008 recession, inflation was relatively stable even

though there were periods between 2010 and 2013 when reserves were growing at a significant speed

(see Figure 9).

Figure A5
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Rates of return. This is a detailed version of Figure 10 where I zoom in on rates from the beginning

of 2009 to the end of 2013 to show better the behavior of short-term rates in the U.S. during the

period of large excess reserves.

Figure A6
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