Household leveraging and deleveraging

Alejandro Justiniano, Federal Reserve Bank of Chicago

Giorgio Primiceri, Northwestern University

Andrea Tambalotti, Federal Reserve Bank of New York

RED conference on Money, Credit, and Financial Frictions
St. Louis Fed
December 6, 2013
1990s: relative stability

a) HH Mortgages/GDP

b) House Prices (CS)

c) Real Estate/GDP

d) HH Mortgages/Real Estate
2000-2006: unprecedented leveraging

a) HH Mortgages/GDP

b) House Prices (CS)

c) Real Estate/GDP

d) HH Mortgages/Real Estate
2000-2006: unprecedented leveraging
2007-present: deleveraging

a) HH Mortgages/GDP

b) House Prices (CS)

c) Real Estate/GDP

d) HH Mortgages/Real Estate
2007-present: deleveraging

- **a)** HH Mortgages/GDP
- **b)** House Prices (CS)
- **c)** Real Estate/GDP
- **d)** HH Mortgages/Real Estate

Spikes
Stylized Facts

- 1990s: stability of household debt and house prices
- 2000s: unprecedented leveraging and then deleveraging, driven by house prices
This paper

- Quantitative model of household borrowing with houses as collateral
- Calibrated to match aggregate and micro data from the Survey of Consumer Finances
This paper

- Quantitative model of household borrowing with houses as collateral

- Calibrated to match aggregate and micro data from the Survey of Consumer Finances

- Laboratory to investigate causes and consequences of HH leveraging-deleveraging cycle
Summary of the results

- Causes of credit cycle
Summary of the results

- Causes of credit cycle
 - Looser collateral requirements and reversal \(\rightarrow \) very poor fit
 - House prices barely move
 - Debt dynamics at odds with the data
Summary of the results

- **Causes** of credit cycle

 - Looser collateral requirements and reversal ➔ very poor fit
 - House prices barely move
 - Debt dynamics at odds with the data

 - **Valuation story** more promising: Change of borrowing constraint through other mechanisms that affect the value of houses
Summary of the results

- **Causes of credit cycle**
 - Looser collateral requirements and reversal ➔ very poor fit
 - House prices barely move
 - Debt dynamics at odds with the data
 - Valuation story more promising: Change of borrowing constraint through other mechanisms that affect the value of houses

- **Macro consequences of credit cycle**: Not very large
 - Credit expansion: Borrowers and lenders behave in opposite ways
 - Credit contraction: Do not hit the ZLB
Outline

- Sketch of the model
- Parameterization
- Results
 - Credit market liberalization and its reversal
 - Valuation experiment
Model
Model

- Build on
 - Iacoviello (2005)
 - Campbell and Hercowitz (2006)
Agents in the model

- 2 groups of households
 - Impatient → Borrowers
 - Patient → Lenders

- Producers of
 - Houses
 - Intermediate goods
 - Final goods

- The government
The problem of the borrowers

\[E_0 \sum_{t=0}^{\infty} \beta_b^t \left[\log C_{b,t} + \phi \log H_{b,t} - \varphi \frac{L_{b,t}^{1+\eta}}{1+\eta} \right] \]
The problem of the borrowers

\[
E_0 \sum_{t=0}^{\infty} \beta_b^t \left[\log C_{b,t} + \phi \log H_{b,t} - \varphi \frac{L_{b,t}^{1+\eta}}{1+\eta} \right]
\]

\[
H_{b,t+1} = (1 - \delta_h)H_{b,t} + \Xi_{b,t}
\]
The problem of the borrowers

\[
E_0 \sum_{t=0}^{\infty} \beta_b^t \left[\log C_{b,t} + \phi \log H_{b,t} - \varphi \frac{L_{b,t}^{1+\eta}}{1+\eta} \right]
\]

\[
H_{b,t+1} = \left(1 - \delta_h\right) H_{b,t} + \Xi_{b,t}
\]

\[
P_tC_{b,t} + P_t^h \Xi_{b,t} + P_T T_{b,t} + R_{t-1} D_{b,t-1} \leq W_{b,t} L_{b,t} + D_{b,t}
\]
The collateral constraint

- Debt is limited by a collateral constraint

\[D_{b,t} \leq \bar{D}_t \]
The collateral constraint

- Debt is limited by a collateral constraint

\[
D_{b,t} \leq \bar{D}_t = \begin{cases}
\theta_t P_t^h H_{b,t+1} &
\end{cases}
\]
The collateral constraint

- Debt is limited by a collateral constraint

\[
D_{b,t} \leq \bar{D}_t = \begin{cases}
\theta_t P_t^h H_{b,t+1} & \text{loosening}
\end{cases}
\]
The collateral constraint

- Debt is limited by a collateral constraint
 - Asymmetric to mimic mortgages

\[
D_{b,t} \leq \overline{D}_t = \begin{cases}
\theta_t P_t^h H_{b,t+1} & \text{loosening} \\
(1 - \delta_h)\overline{D}_{t-1} + \theta_t P_t^h \Xi_{b,t} & \text{tightening}
\end{cases}
\]

\[
\Xi_{b,t} = H_{b,t+1} - (1 - \delta_h)H_{b,t}
\]

Newly purchased houses
The problem of the lenders

- Similar to the problem of the borrowers

- Two exceptions
 - Higher discount factor
 - Accumulate capital
Agents in the model

- 2 groups of households
 - Impatient → Borrowers
 - Patient → Lenders

- Producers of
 - Houses
 - Intermediate goods
 - Final goods

- The government
Parameter values

- Calibrate parameters to match 1990-2000
- Aggregate data: Flow of Funds + NIPA
- Micro data: Survey of Consumer Finances
Baseline Calibration: key parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Source/Target</th>
</tr>
</thead>
<tbody>
<tr>
<td>Discount factor lender (β_l)</td>
<td>0.998</td>
<td>3% real interest rate</td>
</tr>
<tr>
<td>Discount factor borrower (β_b)</td>
<td>0.99</td>
<td>Krusell & Smith (1998), Campbell & Hercowitz (2006)</td>
</tr>
<tr>
<td>Share of borrowers (ψ)</td>
<td>0.61</td>
<td>Share of credit constrained agents in SCF (Kaplan & Violante, 2012)</td>
</tr>
<tr>
<td>Production function par (ν)</td>
<td>0.5</td>
<td>Relative wages of borrowers and lenders (59%)</td>
</tr>
<tr>
<td>Preference for houses (ϕ)</td>
<td>0.1</td>
<td>Real estate / GDP (120%)</td>
</tr>
<tr>
<td>Loan to value ratio (θ)</td>
<td>0.85</td>
<td>Debt / GDP (44%)</td>
</tr>
<tr>
<td>Evidence from Duca et al. (2012)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Baseline Calibration: key parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Source/Target</th>
</tr>
</thead>
<tbody>
<tr>
<td>Discount factor lender (β_l)</td>
<td>0.998</td>
<td>3% real interest rate</td>
</tr>
<tr>
<td>Discount factor borrower (β_b)</td>
<td>0.99</td>
<td>Krusell & Smith (1998), Campbell & Hercowitz (2006)</td>
</tr>
<tr>
<td>Share of borrowers (ψ)</td>
<td>0.61</td>
<td>Share of credit constrained agents in SCF (Kaplan & Violante, 2012)</td>
</tr>
<tr>
<td>Production function par (ν)</td>
<td>0.5</td>
<td>Relative wages of borrowers and lenders (59%)</td>
</tr>
<tr>
<td>Preference for houses (ϕ)</td>
<td>0.1</td>
<td>Real estate / GDP (120%)</td>
</tr>
<tr>
<td>Loan to value ratio (θ)</td>
<td>0.85</td>
<td>Debt / GDP (44%) Evidence from Duca et al. (2012)</td>
</tr>
</tbody>
</table>
Outline

- Model
- Parameterization

Results
- Credit market liberalization and its reversal
- Valuation experiment
Credit liberalization and its reversal

- Exogenous change in the collateral constraint
Credit liberalization and its reversal

- Exogenous change in the collateral constraint

\[D_{b,t} \leq \overline{D}_t = \begin{cases}
\theta_t P_t^h H_{b,t+1} & \text{loosening} \\
(1 - \rho)\overline{D}_{t-1} + \theta_t P_t^h \Xi_{b,t} & \text{tightening}
\end{cases} \]
Evidence on LTV: Duca et al. (2011)

Cumulative LTV for 1st time homebuyers

Dashed blue line reflects estimated effects of the savings and loan bailout, solid blue line nets out estimated effects.

Sources: Flow of Funds, American Housing Survey, Duca et al., (2011) and authors’ calculations.
Credit liberalization and its reversal

- Exogenous change in the collateral constraint
 - θ from 0.85 progressively to 0.95
 - Back to 0.85 more abruptly
Model solution

- Perfect foresight
- Occasionally binding constraints
- Asymmetry of the collateral constraint
Credit liberalization and its reversal

- Exogenous change in the collateral constraint
- Does not match the data
Credit liberalization and its reversal

- Exogenous change in the collateral constraint
- Does not match the data
 - Interest rate: wrong direction during credit expansion
Credit liberalization and its reversal

- Exogenous change in the collateral constraint

- Does not match the data
 - Interest rate: wrong direction
 - House prices: barely move
Credit liberalization and its reversal

- Exogenous change in the collateral constraint

- Does not match the data
 - Interest rate: wrong direction
 - House prices: barely move
 - Debt-to-GDP: fairly modest response
Credit liberalization and its reversal

- Exogenous change in the collateral constraint

- Does not match the data
 - Interest rate: wrong direction
 - House prices: barely move
 - Debt-to-GDP: fairly modest response
 - Debt-to-collateral: increases and falls, not stable and spikes
Credit liberalization and its reversal

- Exogenous change in the collateral constraint

- Does not match the data
 - Interest rate: wrong direction
 - House prices: barely move
 - Debt-to-GDP: fairly modest response
 - Debt-to-collateral: increases and falls, not stable and spikes
 - GDP: moderate effects
The role of the asymmetric constraint

(a): θ

(b): House prices

(c): Debt-to-real estate ratio

(d): Debt-to-GDP ratio

(e): GDP

(f): Nominal interest rate (annualized)
Valuation experiment

- To get macro dynamics right need house prices to go up
Valuation experiment

- To get macro dynamics right need house prices to go up

- Shortcut: change in demand for houses

 - Iacoviello and Neri (2010); Liu, Wang, Zha (2011)
 - **NOT** an explanation of U.S. house prices
 - Highlight transmission of changes in collateral values
Valuation experiment

- To get macro dynamics right need house prices to go up
- Shortcut: change in demand for houses
 - Iacoviello and Neri (2010); Liu, Wang, Zha (2011)
 - NOT an explanation of U.S. house prices
 - Highlight transmission of changes in collateral values
Valuation Experiment

- Real estate & debt variables in line with data
Valuation Experiment

- GDP & interest rates
 - Relatively small effects
 - Similar to credit cycle experiment
Conclusions

- Quantitative model of household borrowing
- Calibrated to match aggregate and SCF data

We find:

- Causes of leveraging-deleveraging cycle
 - Not loosener collateral requirements and reversal
 - Valuation story more promising

- Macro consequences of leveraging-deleveraging cycle
 - Not very large
Still missing...

- Model of the extensive margin
 - Ortalo-Magne and Rady (2006)
 - Piazzesi and Schneider (2012)

- Why did house prices increased so much?
 - Geanakoplos (various)
 - Burnside, Eichenbaum and Rebelo (2011)
 - Low interest rates
 - Non-fundamental stories
Production of houses

- Competitive producers transform final goods into houses

\[
\Xi_t = \left(1 - S_h\left(\frac{I^h_t}{I^h_{t-1}}\right)\right) I^h_t
\]

- Adjustment costs for changing housing investment
 - Determine elasticity of housing supply

- Fixed or sluggish supply of houses
Related literature

- **Housing and HH debt**
 - Iacoviello (2005)
 - Campbell and Hercowitz (2006)

- **Credit market liberalization (mostly in open economy)**
 - Kiyotaki, Michaelides and Nikolov (2010)
 - Favilukis, Ludvigson and Van Nieuwerburgh (2012)
 - Garriga, Manuelli and Peralta-Alva (2012)
 - Boz and Mendoza (2011)

- **Macro consequences of deleveraging**
 - Eggertsson and Krugman (2012)
 - Guerrieri and Lorenzoni (2012)
 - Midrigan and Philippon (2011)
Production of goods

- Producers of intermediate goods

$$Y_{i,t} = A_t K_{i,t}^{\alpha} \left[\left(\psi L_{b,i,t} \right)^{\nu} \left((1 - \psi) L_{l.i,t} \right)^{1-\nu} \right]^{1-\alpha}$$

- Monopolistically competitive markets & sticky prices
Production of goods

- Producers of intermediate goods

\[Y_{i,t} = A_t K_{i,t}^\alpha \left[\left(\psi L_{b,i,t} \right)^\nu \left((1 - \psi) L_{l,i,t} \right)^{1-\nu} \right]^{1-\alpha} \]

- Monopolistically competitive markets & sticky prices

- Producers of final goods \(Y_t \)

 - Dixit-Stiglitz aggregators
 - Perfectly competitive markets
 - Consumption, investment goods or inputs production of houses
The government

- Balances its budget

- Taylor rule

\[
\frac{R_t}{R} = \max \left\{ \frac{1}{R} ; \left(\frac{R_{t-1}}{R} \right)^{\rho_R} \left[\left(\frac{\bar{\pi}_{t-3,t}}{\pi} \right)^{\tau_\pi} \left(\frac{Y_t}{Y^*_t} \right)^{\tau_y} \right]^{1-\rho_R} \right\}
\]
Baseline Calibration: other parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elasticity of labor supply (η)</td>
<td>1</td>
</tr>
<tr>
<td>SS growth (γ)</td>
<td>0.005</td>
</tr>
<tr>
<td>Share of capital income (α)</td>
<td>0.3</td>
</tr>
<tr>
<td>Probability of non re-optimizing prices (ξ)</td>
<td>0.75</td>
</tr>
<tr>
<td>Depreciations (δ_k and δ_H)</td>
<td>0.025 and 0.003</td>
</tr>
<tr>
<td>Investment adjustment costs (ζ_k)</td>
<td>2</td>
</tr>
<tr>
<td>Monetary policy (ρ_R, τ_π and τ_y)</td>
<td>0.8, 2 and 0.125</td>
</tr>
</tbody>
</table>
Borrowers:

\[P_t^h = \frac{1 - \xi_t}{1 - \xi_t \theta} \cdot \frac{1}{R_t} \left[MRS_{b,t+1}^h + (1 - \delta_t)P_{t+1}^h \right] \]

Lenders:

\[P_t^h = \frac{1}{R_t} \left[MRS_{l,t+1}^h + (1 - \delta_t)P_{t+1}^h \right] \]
Borrowers:

\[P^h_t = \frac{1 - \xi_t}{1 - \xi_t \theta} \cdot \frac{1}{R_t} \left[MRS_{b,t+1}^{h,c} + (1 - \delta_h)P^h_{t+1} \right] \]

Lenders:

\[P^h_t = \frac{1}{R_t} \left[MRS_{l,t+1}^{h,c} + (1 - \delta_h)P^h_{t+1} \right] \]
Borrowers:

\[P^h_t = \frac{1 - \xi_t}{1 - \xi_t \theta} \cdot \frac{1}{R_t} \left[MRS^h_{b,t+1} + (1 - \delta_h)P^h_{t+1} \right] \]

Lenders:

\[P^h_t = \frac{1}{R_t} \left[MRS^h_{l,t+1} + (1 - \delta_h)P^h_{t+1} \right] \]
Credit liberalization and its reversal

- Borrowers and lenders
Credit liberalization and its reversal

- Exogenous change in the collateral constraint

- Does not match the data
 - Interest rate: wrong direction!
 - House prices: barely move
 - Debt-to-GDP: fairly modest response
 - Debt-to-collateral: increases and falls, not stable and spikes
 - GDP: moderate effects
 - In the data house prices down before tightening of credit standards
Senior Loan Officer Opinion Survey

Net Percentage of Domestic Respondents Tightening Standards for Residential Mortgage Loans

Percent

2007-Q1

All residential

Prime
Nontraditional
Subprime

Percent
Credit liberalization and its reversal: extreme calibration

- Consider
 - Larger change in LTV (θ): from 0.75 to 0.95
 - Greater borrower impatience: $\beta_b = 0.98$
 - 50% decline in amortization rate
Credit liberalization and its reversal: extreme calibration

- Results

 - Larger effect on house prices (20%), Debt/GDP doubles, but...
Credit liberalization and its reversal: extreme calibration

Results

- Larger effect on house prices (20%), Debt/GDP doubles, but...

- Debt/Real Estate dynamics still falls short

- Problems with GDP, nominal interest rate exacerbated

- Matching calibration targets → ratio real estate holdings of borrowers to lenders: model 1.23 vs. data 0.5
Credit liberalization and its reversal: extreme calibration