Repos, Fire Sales, and Bankruptcy Policy

Gaetano Antinolfi, Francesca Carapella*, Charles Kahn, Antoine Martin, David Mills, Ed Nosal

*Federal Reserve Board

December 5th, 2013

Conference on Money, Credit, and Financial Frictions
Federal Reserve Bank of St Louis

1The opinions are the authors' and do not necessarily reflect those of the Federal Reserve Board or its staff.
Question

Optimal bankruptcy policy for repos: exempt from automatic stay?

- A repo is a sale of securities coupled with an agreement to repurchase the securities at a specified price on a later date
- Automatic stay: creditors cannot collect debts due or seize/liquidate collateral in the event of bankruptcy
Answer

- Effects of exemption from automatic stay:
 1. Increases volume of trade in repo mkt
 2. May cause externalities on other mkts (fire sales)

- Our results: exemption optimal when
 - market for collateral assets is liquid ⇒ no externalities
 - on net, externalities are beneficial
Fire Sale

- *Literature*: associates fire sales with welfare loss due to financial market frictions

- *Empirically*: market for collateral assets is Over The Counter

- *Model*: fire sales arise when search friction gets worse
Why do we care

- Repo: large market ($5-10 trillions in 2008) for funding and securities lending
- Repo lenders of large defaulting borrowers may (have to) sell lots of collateral ⇒ fire sales
 - 1998: Long Term Capital Management
 - 2008: Term Securities Lending/Primary Dealer Credit Facility
 - Stein: *prices being below long-run fundamental values may involve externalities...securities financing transactions are a leading example of the kind of arrangement that can give rise to such externalities*
Model

- 2 goods: \(a \) (durable), \(c \) (perishable)
- 4 types of agents, physically separated, can commit

\[
\begin{align*}
\text{\(t = 1 \)} & \quad \text{\(t = 2 \)} & \quad \text{\(t = 3 \)} \\
\text{L alive} & \quad \text{L alive} & \quad \text{L alive} \\
\text{B alive} & \quad \Delta B \text{ die w.p. } \delta & \quad \text{I alive} \\
\text{I alive} & \quad \text{T alive}
\end{align*}
\]
Date 1 - Lenders and Borrowers

- **Lender**
 - produces c at date 1
 - consumes c after date 1
 - likes c more than a
 - $U^L = -c_1 + u(c_2) + \gamma(a_2 + a_3) + c_3$ with $\gamma < 1$

- **Borrower**
 - likes a at date 2
 - produces c at date 2
 - can convert $c \rightarrow a$, 1 for 1
 - $U^B = a_2 - c_2$

- Mutually beneficial trade between L and B
w.p. δ a fraction Δ of borrowers die

- if $\delta > 0$ and borrower dies holding asset a, asset dies with him
 - e.g. asset loses value because of default costs
Date 3 - Traders and Investors

- **Trader**
 - endowment: \bar{c} units of good c
 - Preferences: $U^T = a_T^3 + c_T^3$

- **Investor**
 - endowment: \bar{a} units of good a
 - technology f produces good c using good c as an input
 - f is increasing and $f'(\bar{c}) > 1$
 - Preferences: $U^I = a - a_I^3 + f(c^I)$

$\delta = 0 \rightarrow$ boring; $\delta > 0 \rightarrow$ interesting (L may cause congestion)
Summary

$t = 1$

L and B trade

$L \rightarrow c_1 \rightarrow B$

\downarrow

$L \leftarrow a_1 \leftarrow B$

$t = 2$

If B alive:

$B \rightarrow c_2 \rightarrow L$

\downarrow

$B \leftarrow a_2 \leftarrow L$

$t = 3$

T: \bar{c}

$I: \bar{a}$

$c_3 = f(c^I)$

L: a_2

If B defaults:

L has a_2
Goal

Model

Results

Conclusion

Date 3 Matching (OTC)

$M^{ij} =$ probability agent i is matched with agent j

- assume Leontief matching function and $M^{jj} = 0$

- no borrower dies: I matched with T

 $M^{IT} = \frac{\min(n^I, n^T)}{n^I}$

- $\delta \Delta$ borrowers die: I and L matched with T

 $M^{dIT} = \frac{\min(n^I + \theta \Delta M^{LB}, n^T)}{n^I + \theta \Delta M^{LB}} \leq M^{IT}$ \textit{(congestion)}
Decision problems

\[U^L = \max_{c_1} \left\{ -c_1 + (1 - \delta \Delta) u(c_1) + \delta \Delta \theta \left[M_{dLT}^{LT} c_1 + (1 - M_{dLT}^{LT}) \gamma c_1 \right] + \delta \Delta (1 - \theta) \gamma c_1 \right\} \]

\[U^I = \bar{a} + \left[(1 - \delta) M_{dIT}^{IT} + \delta M_{dIT}^{IT}(\theta) \right] (f(\bar{c}) - \bar{a}) \]
Fire sale

- Recall: in default *congestion* externality
 \[M_{d}^{IT}(\theta) \leq M^{IT} \]

- Price of good \(a \) to investors
 \[
 p_{a} = M^{IT} f'(c^{I}) + (1 - M^{IT}) \\
 p_{a}^d = M_{d}^{IT}(\theta)f'(c^{I}) + (1 - M_{d}^{IT}(\theta))
 \]
 \[\Rightarrow \quad p_{a}^d \leq p_{a} \]
Important effects

1. **Insurance effect**: c_1 is weakly increasing in θ

2. **Investment effect**: $M_{dIT}(\theta)$ is weakly decreasing in θ

⇒ **1** and **2**: trade off for policy (θ)
Optimal bankruptcy policy

- If the date-3 mkt for c is **liquid**: $\Delta M^{LB} + nI \leq n^T$
Optimal bankruptcy policy

▶ If the date-3 mkt for c is **liquid**: $\Delta M^{LB} + nI \leq n^T$

▶ Optimal policy: $\theta = 1$
Optimal bankruptcy policy

- If the date-3 mkt for \(c \) is **liquid**: \(\Delta M^{LB} + nI \leq n^T \)
- Optimal policy: \(\theta = 1 \)

- If the date-3 mkt for \(c \) is **illiquid**: \(\Delta M^{LB} + nI > n^T \)
Optimal bankruptcy policy

- If the date-3 mkt for \(c \) is **liquid**: \(\Delta M^{LB} + n^I \leq n^T \)
 - Optimal policy: \(\theta = 1 \)

- If the date-3 mkt for \(c \) is **illiquid**: \(\Delta M^{LB} + n^I > n^T \)
 - Optimal policy depends on:

 \[
 (1 - \gamma) \cdot c_1(\theta) - (f(c^I) + \bar{a} - a_3^I)
 \]

 Size of repo loan

 - If \(n^I > n^T \) then either \(\theta = 0 \) or \(\theta = 1 \)
 - If \(n^I < n^T \) then either \(\theta = \theta^* \) or \(\theta = 1 \)

 where \(\theta^* = \{\theta \in (0, 1) : \theta \Delta M^{LB} + n^I = n^T\} \)
This paper:

- Simple comparison of costs and benefits of exemption
 - insurance vs investment effect (congestion externality)
 - size of repo loan at $t = 1$
- liquidity of mkt for collateral at $t = 3$
Exemption from automatic stay optimal if and only if

\begin{align*}
\text{a. market for collateral is liquid } & \Rightarrow \text{ no externalities occur} \\
\text{b. investment effect vs insurance effect small } & \Rightarrow \text{ externalities are beneficial}
\end{align*}