Credit Crunches and Credit Allocation in a Model of Entrepreneurship

Marco Bassetto1 Marco Cagetti2 Mariacristina De Nardi3

1UCL, Chicago Fed, and IFS
2CEA and Board of Governors of the Federal Reserve System
3UCL, Chicago Fed, IFS, and NBER

December 3, 2013
Introduction

- Large debate about “credit crunch”
- Perception that small firms are particularly vulnerable
- Output losses may be more persistent
Our Questions and our Goal

Can a shock to an economy’s financial sector generate a large and lasting recession?

- Start from a model that matches well:
 - distribution of wealth
 - size of entr. firms
 - Entry and exit

- Analyze effects of financial shocks
Asset Accumulation by Potential Entrepreneurs

[Graph showing asset accumulation over time]

Assets today vs. Assets tomorrow
Summary of the Actors

- Households (entrepreneurs and workers)
- Corporate firms
- Financial intermediaries
- Government
- No aggregate uncertainty
Household Preferences and Demographics

• Young households: prob $1 - \pi_y$ become old
• Old households: prob $1 - \pi_o$ die, reborn as young (full altruism)
• Period utility: $\frac{c_t^{1-\sigma}}{1-\sigma}$
• Discount factor: β
Household Occupational Choice

- As workers (young): supply y_t units of effective labor
- As entrepreneurs (young and old): can use k_t and n_t to produce
 $$\theta_t (k_t^\gamma (1 + n_t)^{(1-\gamma)})^\nu$$
- As retirees (old): collect social security benefits (irreversible choice)
- Markov process for (y_t, θ_t)
Credit Friction: Entrepreneurs

• k_t in excess of own assets must be borrowed from intermediaries

• Entrepreneur can run away with $f_t k_t$, be worker for one period
Corporate Sector

- Neoclassical production function:

\[F(K^c_t, L^c_t) = A(K^c_t)^\alpha (L^c_t)^{1-\alpha} \]
Corporate Sector

• Neoclassical production function:

\[F(K_t^c, L_t^c) = A(K_t^c)^\alpha (L_t^c)^{1-\alpha} \]

• Needs outside financing for fraction \(\xi_t \) (exogenous)
Corporate sector: Optimization Problem

Firm owns its capital and can use some retained earnings:

\[
J_t(A^C_t) = \max_{K^C_t, L^C_t, B_t, A^C_{t+1}} \ F(K^C_t, L^C_t) + (A^C_t + B_t - K^C_t)(1 + i_t) - \\
wt L^C_t - (1 + r_t)B_t - \delta K^C_t - A^C_{t+1} + \frac{1}{1 + i_{t+1}} J_{t+1}(A^C_{t+1}),
\]

subject to

\[
K^C_t \leq A^C_t + B_t
\]

and minimum external financing

\[
B_t \geq \xi_t K^C_t.
\]
Optimality Conditions for Corporate Firms

Labor:

\[F_L(\hat{K}_t^C, \hat{L}_t^C) = w_t, \]

Capital (except period 0):

\[F_K(\hat{K}_t^C, \hat{L}_t^C) = \delta + (1 - \xi)i_t + \xi r_t, \quad t > 0 \]
Financial Intermediaries

- Competitive, CRS technology
- Requires (exogenous) ϕ_t units of goods to intermediate 1 unit of capital

\[r_t = i_t + \phi_t \]
Government

- Spends a constant amount
- Pays a constant fraction of wages as pensions
- Levies taxes on income (labor+capital) and consumption
Preferences, Technology, and Demographics

\[\sigma = 1.5 \quad \text{Attanasio et al (1999)} \]
\[\delta = 0.06 \quad \text{Stokey and Rebelo (1995)} \]
\[\alpha = 0.33 \quad \text{Gollin (2002)} \]
\[\phi = 0.015 \quad \text{Baa-Treasury spread} \]
\[\xi = 0.33 \quad \text{Flow of funds} \]
\[\pi_y = 0.98 \quad \text{average working life: 45 years} \]
\[\pi_o = 0.91 \quad \text{average retirement life: 11 years} \]
Labor-Income Process and Social Security Payments

- 5 income states;
- Tauchen-Hussey approximation to AR(1) with autocorrelation .95 (Huggett, 1996, Lillard et al., 1978);
- Replacement ratio: 40% of avg. income (Kolitkoff et al., 1999)
Public expenditure, government debt, and taxes

- Govt spending/GDP: 18.7% (NIPA)
- Govt debt: so that SS interest payments are 3% of GDP (Altig et al., 2001)
- Consumption tax: 11% (Altig et al., 2001)
- Marginal income taxes for workers (income in $25,000):
 \[T'(Y) = 0.32[1 - (0.22Y^{0.76} + 1)^{-1/0.76}] + \tau^y \]

 Marginal income taxes for entrepreneurs:
 \[T'(Y) = 0.26[1 - (0.42Y^{1.4} + 1)^{-1/1.4}] + \tau^y \]

 (Functional form: Gouveia and Strauss, 1994; parameter estimates: Cagetti and De Nardi, 2009)
- \(\tau^y \) adjusted to meet govt budget constraint: 2%
Remaining Parameters to Match Target Moments

- Discount factor: $\beta = 0.91$
- Entrepreneurial talent levels: $\theta \in \{0, 1.16\}$
- Prob. of switching from low to high: 2.3%
- Prob. of switching from high to low: 22%
- Decreasing returns limits to span of control: $\nu = 0.88$
- Returns to capital in the entrepreneurial sector: $\gamma = 0.80$
- Fraction of working capital that can be absconded: $f = 0.75$
- Tax on bequests: 16% above 5.4 Million
Target Moments

<table>
<thead>
<tr>
<th>Target Moment</th>
<th>Target</th>
<th>Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capital-output ratio</td>
<td>2.9-3.0</td>
<td>3.0</td>
</tr>
<tr>
<td>% Entrepreneurs</td>
<td>7.5-7.6</td>
<td>7.7</td>
</tr>
<tr>
<td>% Exiting Entrepreneurs</td>
<td>22.0-24.0</td>
<td>22.4</td>
</tr>
<tr>
<td>% Workers Entering Entrepreneurship</td>
<td>2.0-3.0</td>
<td>2.4</td>
</tr>
<tr>
<td>Median Net Worth of Entr. to Workers</td>
<td>5.3-6.5</td>
<td>6.2</td>
</tr>
<tr>
<td>% People at Zero Wealth</td>
<td>7-13</td>
<td>11.9</td>
</tr>
<tr>
<td>% Entrepreneurs Hiring on the Labor Market</td>
<td>57.4-64.6</td>
<td>58.8</td>
</tr>
<tr>
<td>Revenue from Estate Taxes (% of GDP)</td>
<td>0.2-0.3</td>
<td>0.27</td>
</tr>
<tr>
<td>% Estates Paying Estate Taxes</td>
<td>1.5-2.0</td>
<td>1.9</td>
</tr>
</tbody>
</table>
Outcomes of the model not matched by construction

- Fit the distribution of wealth for both workers and entrepreneurs very well.
- Match that about 50% of total capital is invested in the entr. sector.
- About 35% of efficiency units of labor employed in the entr. sector (data: 50% of bodies)

<table>
<thead>
<tr>
<th>Labor hiring</th>
<th>25%</th>
<th>50%</th>
<th>75%</th>
<th>90%</th>
<th>95%</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCF, # workers</td>
<td>0</td>
<td>1</td>
<td>5</td>
<td>18</td>
<td>49</td>
</tr>
<tr>
<td>Model, efficiency units</td>
<td>0</td>
<td>0.4</td>
<td>2.9</td>
<td>8.8</td>
<td>16</td>
</tr>
</tbody>
</table>

Table: Workers hiring in the SCF data and in the model.

Levels of efficiency for each worker in the economy:
[0.25, 0.44, 0.77, 1.31, 2.37]
First Experiment

- Start from SS in period 1
- Surprise in period 2, perfect foresight from period 2
- $\phi_2 = \phi_3 = 3.5\%$ for three years, then back to 1.5\%.
Value added across sectors, PE with \(g \) adjusting

Entrepreneurial sector (green), corporate (blue), SS=100
Value added across sectors, GE with τ adjusting

Entrepreneurial sector (green), corporate (blue), SS=100
PE with g adjusting (blue), GE with g adjusting (green), GE with τ adjusting (red), $SS=100$
Number of Entrepreneurs

PE with g adjusting (blue), GE with g adjusting (green), GE with τ adjusting (red), SS=100
Average Capital Employed by an Entrepreneur

PE with g adjusting (blue), GE with g adjusting (green), GE with τ adjusting (red), SS=100
Employment in the Entrepreneurial Sector Relative to Corporate

GE with g adjusting (green), GE with τ adjusting (red), SS=100
The role of endogenous credit constraints

- Our shock hits ϕ_t...
- but it also *endogenously* tightens borrowing limits!
Avg. Capital Employed by an Entrepreneur, PE, g adjusts

Endogenous borrowing constraints (green), fixed borrowing limits (blue), SS=100
GDP, GE with τ adjusting

Endogenous borrowing constraints (green), fixed borrowing limits (blue), SS=100
Second Experiment

• Timing as first experiment
• ξ_t varies so as to shield corporate sector from shock
• This means $\xi_t \phi_t$ constant
GDP across sectors, GE, τ adjusts

Entrepreneurial sector (green), corporate (blue), SS=100
GDP, GE, τ adjusts

Shock to ϕ (green), shock to ϕ and ξ (blue), SS=100
Avg. Capital Employed by an Entrepreneur, GE, τ adjusts

Shock to ϕ (green), shock to ϕ and ξ (blue), SS=100
Conclusion

- Recessions starve small entrepreneurs of funding
- Long-lasting echo
- When recessions cause tax increases, echo much more prolonged
Thank you!
Asset Accumulation by Potential Entrepreneurs

![Graph showing asset accumulation by potential entrepreneurs](chart.png)

- **Assets today** vs. **Assets tomorrow**
- The graph illustrates how potential entrepreneurs accumulate assets over time.

- **Back to main talk**
Young Household Problem: Value Function

Optimal occupation choice:

\[V_t(a_t, y_t, \theta_t) = \max\{ V_t^e(a_t, y_t, \theta_t), V_t^w(a_t, y_t, \theta_t) \}, \]

Value function as entrepreneur:

\[V_t^e(a_t, y_t, \theta_t) = \max_{c_t,k_t,n_t,a_{t+1}} \{ u(c_t) + \beta \pi_y E_t V_{t+1}(a_{t+1}, y_{t+1}, \theta_{t+1}) + \beta (1 - \pi_y) E_t W_{t+1}(a_{t+1}, \theta_{t+1}) \} \]

Value function as worker:

\[V_t^w(a_t, y_t, \theta_t) = \max_{c_t,a_{t+1}} \{ u(c_t) + \beta \pi_y E_t V_{t+1}(a_{t+1}, y_{t+1}, \theta_{t+1}) + \beta (1 - \pi_y) W_{t+1}^r(a_{t+1}) \} \]
Young Household Problem: Constraints

Gross income as entrepreneur:

\[Y_t^e = \theta(k_t^\gamma (1+n_t)^{(1-\gamma)})^\nu - \delta k_t - (k_t - a_t)(r_t l_{kt>a_t} + i_t l_{kt<a_t}) - w_t n_t; \]

Gross income as worker:

\[Y_t^w = w_t y_t + i_t a_t; \]

Asset evolution

\[a_{t+1} = Y_t^i - T_t^i(Y_t^i) + a_t - (1 + \tau_t^C)c_t, \quad i = e, w; \]

Credit limit

\[u(c_t) + \beta \pi_y E_t V_{t+1}(a_{t+1}, y_{t+1}, \theta_{t+1}) + \]
\[\beta (1 - \pi_y) E_t W_{t+1}(a_{t+1}, \theta_{t+1}) \geq V_t^w (f \cdot k_t, y_t, \theta_t); \]

nonnegativity constraints \(a_t \geq 0, k_t \geq 0, n_t \geq 0. \)
Old Household Problem: Value function

Option to continue existing firm:

\[W_t(a_t, \theta_t) = \max \{ W_t^e(a_t, \theta_t), W_t^r(a_t) \}, \]

Value function of entrepreneur:

\[W_t^e(a_t, \theta_t) = \max_{c_t, k_t, n_t, a_{t+1}} \{ u(c_t) + \beta \pi_o E_t W_{t+1}(a_{t+1}, \theta_{t+1}) + \beta (1 - \pi_o) E_t V_{t+1}(a^n_{t+1}, y_{t+1}, \theta_{t+1}) \} \]

Value function of retiree:

\[W_t^r(a_t) = \max_{c_t, a_{t+1}} \{ u(c_t) + \beta \pi_o W_{t+1}(a_{t+1}) + \beta (1 - \pi_o) E_t V_{t+1}(a^n_{t+1}, y_{t+1}, \theta_{t+1}) \} \]
Old Household Problem: Constraints

Gross income as entrepreneur (same as before):

\[Y_t^e = \theta (k_t^\gamma (1+n_t)^{1-\gamma})^\nu - \delta k_t - (k_t - a_t)(r_t I_{k_t>at} + i_t I_{k_t<at}) - w_t n_t; \]

Gross income as retiree:

\[Y_t^r = p_t + i_t a_t; \]

Asset evolution (same as before):

\[a_{t+1} = Y_t^i - T_t^i (Y_t^i) + a_t - (1 + \tau_t^c)c_t, \quad i = e, r; \]

Credit limit

\[u(c_t) + \beta \pi_o E_t W_{t+1}(a_{t+1}, \theta_{t+1}) + \beta (1 - \pi_o) E_t V_{t+1}(a_{t+1}^n, y_{t+1}, \theta_{t+1}) \geq W_t^r (f \cdot k_t). \]

nonnegativity constraints \(a_t \geq 0, k_t \geq 0, n_t \geq 0. \)
Adjusting the Tax Rate (GE)
Government Debt (GE)
Aggregate Consumption of Goods

PE with g adjusting (blue), GE with g adjusting (green), GE with τ adjusting (red), SS=100
Aggregate Investment

GE with g adjusting (green), GE with $τ$ adjusting (red), SS=100
Varying f

- Timing as first experiment
- f increases, tightening borrowing constraints for entrepreneurs only (from $f = 0.75$ to $f = 0.8$)
- Magnitude such that it roughly matches output in period 5 (after shock, before taxes)
Shock to ϕ (green), shock to f (blue), SS=100
Avg. Capital Employed by an Entrepreneur (full GE)

Shock to ϕ (green), shock to f (blue), SS=100
Varying TFP

- Timing as first experiment
- TFP drops for three years
GDP, (full GE)

Shock to ϕ (green), shock to TFP (blue), SS=100
Avg. Capital Employed by an Entrepreneur, full GE

Shock to ϕ (green), shock to TFP (blue), SS=100