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Abstract

This paper reconciles two widely-used decompositions into trend and cycle that

are both model-based but yield starkly contrasting results. Beveridge-Nelson implies that

stochastic trend accounts for most of the variation in output, while Unobserved

Components implies that cyclical variation is dominant instead. Which characterization is

correct has broad implications for identifying the source of aggregate fluctuations, and

the conflicting results remain a puzzle in the literature. We show that these differ because

of the restriction usually imposed in the UC framework that trend and cycle innovations

are uncorrelated. When this restriction is relaxed the two approaches yield identical

decompositions, and the zero restriction is rejected for U.S. quarterly GDP.

JEL classification:  C22, C5, E32.
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The decomposition of real GDP into trend and cycle remains a problem of

considerable practical importance, but two widely used methods yield starkly different

results. The unobserved component approach, introduced by Harvey (1985) and Clark

(1987), implies a very smooth trend with a cycle that is large in amplitude and highly

persistent. In contrast, the approach of Beveridge and Nelson (1981) implies that much of

the variation in the series is attributable to variation in the trend while the cycle

component is small and noisy. This conflict is apparent in Figures 1 and 2 in this paper

where the two cycle components are plotted, and has been widely noted; see Watson

(1986), Stock and Watson (1988) among others.

It should surprise us that the unobserved component (UC) and Beveridge-Nelson

(BN) methods produce very different trend-cycle decompositions since both are model-

based. Each implies an ARIMA representation. Neither imposes smoothness in the trend

component a priori as does the smoother of Hodrick and Prescott (1997) or as in the

polar case of a linear trend that forces all variation, save constant growth, into the cycle.

The UC and BN both "let the data speak for itself" in this regard. While it is often stated

that BN assumes a perfect negative correlation between trend and cycle innovations, that

is a property of the estimated trend and cycle, not the unobserved components, and it is a

property shared with the UC decomposition. This paper attempts to find out why we do

not, after decades of research, have a consistent picture of how variation in a series like

real GDP should be allocated between trend and cycle.

Briefly, section 1 demonstrates the theoretical equivalence between the

approaches. Section 2 investigates the source of the difference observed in practice.

Section 3 concludes.



4

1. Theoretical Equivalence of the Beveridge-Nelson and Unobserved Component

Estimates of Trend and Cycle

The detrending problem is motivated by the idea that the log of aggregate output

is usefully thought of as the sum of a nonstationary trend component that accounts for

long-term growth and a stationary component that allows for transitory deviations of

output from trend. We follow custom in referring to the latter as the “cycle” even if it is

not periodic. The UC model takes the form:

(1a) yt = τt + ct

(1b) τt = τt-1 + µ + ηt; η ~ i.i.d. N(0, 2
ησ )

(1c) ct is stationary and ergodic

where {yt} is the observed series, {τt} is the unobserved trend assumed to be a random

walk with average growth rate µ, and {ct} is the unobserved stationary cycle component.1

The UC-ARMA adds the condition that {ct} is a stationary and invertible ARMA(p,q)

process with innovations that may be contemporaneously cross-correlated with trend

innovations,

(1d) φp(L) ct = θq(L) εt; ε ~ i.i.d. N(0, 2
εσ ); Cov(εt, ηt+k) = σεη  for k=0; 0 otherwise.

In some implementations the rate of drift µ is allowed to evolve as a random walk,

although this has little influence on the estimated cycle component for U.S. GDP, and an

additional irregular term is sometimes added. Harvey (1985) and Clark (1987), and

Harvey and Jaeger (1993) suggest specifying p=2 which allows the cycle process to be

periodic in the sense of having a peak in its spectral density function. They and others

further assume that the trend and cycle innovations are uncorrelated, setting

                                                          
1 As noted by Blanchard and Quah (1989), the structural trend of output does not necessarily follow a
random walk. Therefore, a cycle component that represents the deviation from a random walk trend may
reflect both transitory effects of supply shocks and cyclical movements due to demand shocks.
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(1e) σεη = 0,

thereby casting the UC model in state-space form by treating (1a) as the measurement

equation and (1b) as the state transition equation, see the technical appendix for details.

We denote this constrained zero-covariance UC-ARMA model as UC-0.

In practice, the parameters are unknown and are estimated from the data series

(y1, .., yn) by putting the model in state-space form and using the maximum likelihood

method of Harvey (1981) based on the prediction error decomposition generated by the

Kalman Filter. Given the parameters, the Kalman filter is used to compute the

expectation of the stochastic trend component conditional on data through time t:

[ ] ),..,( 1 tttttt yyYYE ==   where, ττ) .

Alternatively, the BN estimate of stochastic trend for an I(1) time series {yt} is

defined to be the limiting forecast as horizon goes to infinity, adjusted for the mean rate

of growth; so

[ ]tMt
M

t YMyEBN µ−= +∞→
lim .

BN showed that the time series {BNt} will be a random walk with drift, the deviation

from trend is a stationary process, and that the innovations of {BNt} and {yt - BNt} are

perfectly correlated. The series {BNt} is typically calculated from  an estimated ARIMA

representation of {yt}, which in principle is unique after cancellation of any redundant

AR and MA factors2.

It is well known that the UC–ARMA model always implies a univariate ARIMA

representation for {yt}. This is what Nerlove, Grether, and Carvalho (1979) refer to as the

                                                          
2 The theoretical justification for the BN decomposition and its relationship to Martingale decompositions
is given in Phillips and Solo (1992). A corresponding decomposition for seasonal time series is given in
Box, Pierce, and Newbold (1987).
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canonical form of the UC model, and it may be useful to think of it as the reduced form.

Substituting (1b) and (1d) into (1a), taking first differences, and rearranging we obtain

(2a) φp(L) (1-L)yt = φp(1)µ + φp(L) ηt + θq(L) (1-L)εt .

Recognizing that the right hand side will have non-zero autocorrelations through lag

max(p, q+1), Granger’s Lemma (see Granger and Newbold (1986) pg. 29) implies that

the univariate representation will be

(2b) φp(L) (1-L)yt = µ∗ + )(*
* L

q
θ  ut; u ~ i.i.d. N(0, 2

uσ ); q* = max(p, q+1)

where the coefficients of )(*
* L

q
θ  and 2

uσ   are obtained by matching the autocovariances

of the right hand side of (2a) and (2b); see Watson (1986). This ARIMA reduced form

fully describes the joint distribution of the {yt} and therefore the conditional distribution

of future observations given the past and is unique. Note that the BN trend for the

reduced-form ARIMA model (2b) may be derived from the Wold representation of (2b)

and expressed as

(2c) ∑
=

− =+=
t

j
jttt uuBNBN

1
1 )1()1( ψψ ,

where ψ(1) = )1(*
*q

θ /φp(1) and BN0 = 0. From (2a) it can be seen that the variance of the

innovation to the BN trend is 22)1( uσψ . The BN cycle is obtained by subtracting from yt

the BN trend and other deterministic components.

Correspondingly, there is always at least one UC representation of any given

ARIMA process; as Cochrane (1988) pointed out, the existence of the BN decomposition

guarantees this. In general, however, there will not be a unique UC representation since

the parameters may not all be identified. For example, consider the ARIMA(0,1,1)

process so that in the notation of (2b) the orders are p=0 and q*=1. By inspection of (2a)

it is clear that this implies q=0, hence the ARIMA(0,1,1) process has a UC representation
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as a random walk plus noise, and the first differences are autocorrelated at lag one only.

However, the parameters of the UC representation of the ARIMA(0,1,1) process are not

all separately identified. This is easy to see from the relation between the two non-zero

autocovariances jγ  at lags 0 and 1 (values of which can be inferred from data), and the

UC parameters as follows:

2,0

22
2

1

22
0

≥=

−−=

++=

jjγ

σσγ

σσσγ

εηε

εηεη

While there are three parameters in this case, there are only two pieces of information.

Note, however that the variance of the trend innovations may be inferred by adding 2γ1 to

γ0, while the variance of the cycle innovations and the covariance between them are not

separately identified, only their sum is. This reflects a basic theme of this paper: the trend

is identified from the univariate properties of the series though the cycle may not be. It is

also possible to infer some inequality restrictions; see the discussion in Nelson and

Plosser (1981). It is easily shown that there will be at least as many non-zero moment

relations as parameters if 2+≥ qp , a fact which we use later to identify the covariance

in the Harvey-Clark UC model. However, the fact that the covariance is not identified in

a case as familiar as the random walk plus noise may well have contributed to the

impression evident in the literature that zero covariance is always an identifying

restriction for the UC model.

Given that a time series will not in general have a unique UC representation, it

seems surprising to us that the BN trend is the conditional expectation of the random

walk component of an I(1) process. As pointed out by Watson (1986), this is true

regardless of the covariance structure of the unobserved components. To see this,

consider the unconstrained UC model defined by (1a)-(1c), so cycle and trend

innovations may be cross-correlated. The conditional expectation of the trend component

at time t is
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[ ] [ ]tMtttt YcEYE ++= ττ

for large enough M, since the cycle, by its ergodicity, has expectation zero far enough in

the future. Further, the expected value of any future innovation in the trend is zero, so we

have

[ ] 







++= +

=
+∑ tMt

M

j
jtttt YcEYE

1

ηττ .

Recognizing that the terms of the right include all the elements of yt+M except the

accumulated drift, we have

[ ] [ ] ttMttMt

M

j
jtttt BNYMyEYcEYE =−=








++= ++

=
+∑ µηττ

1

.

Then the conditional expectation of the cycle at time t is simply

[ ] [ ] ttttttt BNyYEyYcE −=−= τ .

Thus, we can always compute conditional expectation estimates of trend and

cycle at any point in time from the ARIMA representation of the observed series. The

two assumptions, (a) the trend is a random walk, and (b) the cycle is ergodic, are

sufficient to identify the components, and this does not depend on knowing the

covariance between trend and cycle innovations. Intuitively, the forecast at a long enough

horizon reflects only the permanence of the random walk trend. Stronger assumptions

may be needed to identify the parameters of a UC representation, but they are irrelevant if

the only objective is to estimate trend and cycle. In that case, only the conditional
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expectation of the future given the past is required, and the ARIMA reduced form

provides the relevant conditional distribution.

It follows that if a particular time series does have a representation as a UC-0

process, then the Kalman filter and BN estimates of trend and cycle will be the same, as

long as the parameters of the ARIMA model are those implied by the UC-0

representation. In that case, BN is just another way to compute ttτ̂  and ttĉ ; the time

series of those estimates will be the same and they will have the same properties. In

particular, their innovations will both be functions of the innovation in yt since it is only

new information that will cause the long range forecast, the trend, to change. Thus, UC-0

and BN share the often-noted property of the BN decomposition, that the innovations of

the estimated trend and cycle series are perfectly correlated, as discussed in the paper.

Further, none of these results depend on limiting UC representations that might be

modeled to the constrained UC-0 case; the corresponding ARIMA representation will

always be an equivalent way of obtaining the information relevant to estimating the trend.

To sum up this section, we have shown that whether one uses the UC approach to

trend-cycle decomposition based on a state-space representation and the Kalman filter, or

the BN approach based on long-range forecasts from a univariate ARIMA model, the

specific results should be the same. UC and BN are simply alternative ways of

calculating the same conditional expectation of the unobserved trend and cycle at a point

in time. The fact that the two have produced such different estimates of trend and cycle in

practice implies, then, that they must be based on conflicting representations of the data.

Identifying the source of the conflict is the subject of the next section.

2. In What Way Do UC and ARIMA Models of U.S. Real GDP Conflict?

The results of Section 1 imply that the differing results obtained in practice must

be traceable to restrictions on the reduced form ARIMA model implied by the UC

approach that are in conflict with the unrestricted ARIMA model used in the BN

approach. Those restrictions presumably arise from the restrictions that have been placed

on the UC–ARMA representation used in implementing the Kalman filter, the particular
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ARMA(p, q) form of the cycle process and the zero correlation between trend and cycle

innovations, what we called the UC-0 model. Following Clark (1987) we set p=2, to

allow for cyclical dynamics, and q=0 in the UC-0 model and obtain for real GDP 1947:1

– 1998:2, in logs and multiplied by 100, the filtered estimate of ct t| shown in Figure 1.3

Confirming results in the literature, the estimated cycle produced by the UC-0

model is both large in amplitude and very persistent.4 It agrees reasonably well with the

NBER dating of the business cycle, although it leads the NBER dating at peaks.

Reflecting the smoothness of the trend, the cycle shown here is qualitatively similar to

that obtained by simple linear detrending of log output by least squares. For example,

both imply that the economy has been below trend throughout the 1990s.

Table 1 reports the maximum likelihood estimates of the parameters and their standard

errors for the UC-0 model. Detail of the estimation technique used is given in the

technical appendix. The roots of the estimated autoregressive polynomial are complex,

implying that the business cycle has a period of almost 8 years with a standard deviation

of about 3 percentage points around trend, confirming the visual impression of

persistence, periodicity, and amplitude in Figure 1. In contrast, the trend process

innovation has a standard deviation of only about 0.7 percentage points.

                                                          
3 The data series used is gdpq from the DRI databank. Clark (1987) allowed the drift parameter to evolve as
a random walk, but estimates of the variance are small. We have assumed that this parameter remains
constant, implying that output is I(1).
4 The smoothed estimate of the cycle is usually presented, but presents qualitatively the same picture.
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Fig. 1: UC-0 Cycle, U.S. Real GDP.
Percent deviation from trend, NBER recessions shaded

Table 1: Maximum Likelihood Estimates of UC-0 Parameters

Estimate Standard Error
Trend process
Drift: µ 0.8119 (0.0500)
Innovation: ση 0.6893 (0.1038)

Cycle process
φ1 1.5303 (0.1012)
φ2           -0.6097 (0.1140)
Innovation: σε 0.6199 (0.1319)

AR Roots (inverted) 0.7652 ± 0.1558i
Implied cycle: period 7.7 years, standard deviation .03.

Log Likelihood -286.6053
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The reduced form ARIMA representation for the UC-0 model corresponding to

(2b) is obtained as follows. Taking first differences gives

tt

ttt

LLL

cLLy

εφφηµ

τ
12

21 )1)(1(

)1()1(
−−−−++=

−+−=∆
.

Next, multiply both sides by ( )1 1 2
2− −φ φL L  to give

(3) 2
*
21

*
1

*
12211

*2
21 )1( −−−−− +++=−+−−+=∆−− ttttttttt uuuyLL θθµεεηφηφηµφφ .

The result in (3) uses the fact that the right-hand side has a representation as an MA(2) by

Granger’s Lemma with the univariate innovations ut being i.i.d. N(0, 2
uσ ), and µ* is µ(1-

φ1-φ2). It is important to recognize that the assumption σεη=0 places complicated

nonlinear restrictions on the parameters of the ARIMA(2,1,2) model (3). In particular,

Lippi and Reichlin (1992) show that the long-run persistence measure, ψ(1) = θ(1)*/φ(1),

will be less than or equal to one. Proietti and Harvey (2000) give further restrictions on

the autoregressive parameters. These restrictions are testable implications of the UC-0

model but in empirical work they are almost never tested.

While the reduced form of the UC-0 model is a restricted ARIMA(2,1,2), when

we estimate the unrestricted form of that model by exact maximum likelihood and

compute the BN cycle component from it we get the very different results seen in Figure

2. As reported in the literature, the estimated BN cycle is small in amplitude compared to

the UC-0 cycle and much less persistent. Table 2 reports the maximum likelihood

estimates of the parameters for the unrestricted reduced-form ARIMA(2,1,2) model.

Confirming the visual impression from Figure 2, the period of the cycle implied by the

AR parameters here is much shorter, only 2.4 years instead of 8. The fact that the value of

the log likelihood is greater by roughly 2 for the unrestricted ARIMA must reflect

restrictions in the UC-0 model not imposed in the reduced form, in particular the zero
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correlation between trend and cycle innovations. Another indication that the zero

correlation restriction may not be supported by the data is that the estimated value of

persistence, ψ(1), is greater than one. To see what correlation is implied by the ARIMA

parameters, we next solve for the parameters of the unrestricted UC model of equations

(1a)-(1d) that correspond to the estimated unrestricted ARIMA parameters.
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Fig. 2: Beveridge-Nelson Cycle, U.S. Real GDP.
Percent deviation from trend, NBER recessions shaded.

Table 2: Maximum Likelihood Estimates for ARIMA(2,1,2)

Estimate Standard Error
Drift µ 0.8156 (0.0864)
φ1 1.3418 (0.1519)
φ2            -0.7059 (0.1730)
θ1            -1.0543 (0.1959)
θ2 0.5188 (0.2250)
SE of Regression 0.9694 (0.0478)
ψ(1) 1.2759 (0.1543)

AR roots (inverted) 0.6709 ± 0.5057i
Implied cycle: period 2.4 years
MA roots (inverted) 0.5271 ± 0.4908i

Log Likelihood -284.6507
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First note that the AR parameters are the same in both the UC and ARIMA

reduced form since the AR polynomial on the left side of (2) is the AR polynomial of the

UC cycle. Now the observable moments on the MA side of (2) are the mean, which

identifies µ, and the autocovariances:

(4)

γ φ φ σ σ φ σ

γ φ φ σ σ φ φ σ

γ φ σ φ σ

γ

η ε ηε

η ε ηε

η ηε

0 1
2

2
2 2 2

1

1 1 2
2 2

2 1

2 2
2

2

1 2 2 1

1 1

0 3

= + + + + +

= − − − − − +

= − −

= ≥

( ) ( )

( ) ( )

,j j

The autocovariances on the left-hand-side of (4) are

.

)1(

)1(

2
2

2

21
2

1

2
2

2
1

2
0

θσγ

θθσγ

θθσγ

u

u

u

=

+=

++=

The system of equations in (4) can be written in matrix form as

































−−
+−−−−−

+++
=

















ηε

ε

η

σ
σ
σ

φφ
φφφφ

φφφ

γ
γ
γ

2

2

22

1221

121

2

1

0

0

)1(1)1(

)1(221

or

..σγ Φ=

Assuming Φ is invertible, of which a necessary condition is φ2≠0, we can solve for the

UC-0 parameters as

(5) γσ 1−Φ= .

Hence, the three non-zero autocovariance for the MA(2) are just sufficient to identify the

three remaining parameters of the UC representation, namely ση
2 , σ ε

2 , and σηε . We note

that in a particular case the solution to (4) might not imply a positive definite covariance

matrix for the trend and cycle innovations, in which case there would not exist a

corresponding UC-ARMA(2,0) representation.
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Table 3 compares the estimates from Table 1 for the UC-0 model with the implied

estimates from the unrestricted ARIMA(2,1,2) reduced form obtained from (5). While the

parameters for the cycle component are somewhat similar, the unrestricted reduced form

implies a standard deviation for the trend innovation that is almost twice as large

compared to the UC-0 estimate, and a correlation between trend and cycle innovations

that is large and negative instead of zero. It is important to note that the correlation

presented in Table 3 is the estimated correlation between unobserved innovations, not the

correlation between innovations in the observed estimated series ttτ̂  and ttĉ . The UC-0

model restricts the correlation between unobserved innovations to be zero, while the

unrestricted ARIMA reduced form estimates that correlation implicitly. Thus, the

difference in correlation estimates seen in Table 3 reflects a difference between the two

models, not a difference in detrending methods.

In contrast, innovations in the estimated components ttτ̂  and ttĉ  are perfectly

negatively correlated regardless of whether they are computed from a UC representation

using the Kalman filter or from the corresponding reduced form ARIMA representation

using BN. Recall from section 1, that the estimated components obtained by BN and

Kalman filter procedures are numerically equivalent if the underlying models have the

same reduced form, implying that the well-known perfect negative correlation of

estimated BN components is a property shared by UC filtered estimates. Another way to

see why UC estimates have the perfect negative correlation property is to inspect the

updating equations for the Kalman filter (see Harvey (1981, chapter 4)), noting that the

random walk property of the trend component implies that the innovation in the estimated

trend component is proportional to the forecast error in predicted yt, just as for the BN

estimate of trend. As Wallis (1995) has pointed out, the distinction between the

assumptions of a model (in the UC-0 case that the components are uncorrelated) and the

properties of estimates (estimated components are correlated) is perfectly consistent with

least squares estimation, but nevertheless has been the source of frequent confusion in the

literature.
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Table 3: Parameters of UC-0 Model and Those Implied by Unrestricted
ARIMA(2,1,2) Reduced Form

UC Model
UC-0 Model Implied by ARIMA

Trend process
Drift: µ 0.8119 0.8156
Innovation: ση 0.6893 1.2368

Cycle process
φ1 1.5303 1.3418
φ2 -0.6098 -0.7059
Innovation: σε 0.6199 0.7487

Covariance εησ zero (constrained) -0.8391

Correlation εηρ zero (constrained) -0.9062

The fact that εησ  is identified in this case implies that we can relax the constraint

that it is zero in the UC model and estimate it directly by maximum likelihood. The

resulting unconstrained UC-ARMA(2,0) model, denoted UC-UR, is cast in state-space

form by including the cycle component along with the trend in the state equations, as

noted by Canova (1998) and Nelson and Kim (1999b); see appendix for details. More

generally, the order condition for identification of the unconstrained UC-ARMA(p,q)

model (including the cross-correlation between trend and cycle innovations), in the sense

of having at least as many moment equations as parameters, is p≥q+2 and it is just

satisfied in this case with p=2, q=0. Intuitively, when this holds, increasing p increases

the number of moment equations corresponding to (4) on the MA side of the univariate

ARIMA representation without increasing the number of parameters to solve for, since

those are identified by the AR side.

Figure 3 displays the filtered estimate ct t|  of the transitory component for the

unrestricted UC-UR model. The estimated cycle is essentially identical to the estimated
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cycle from the BN decomposition.5 This verifies that the filtered estimates from the UC

model and the BN estimates are equivalent.

-2
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50 55 60 65 70 75 80 85 90 95

Figure 3 – UC-UR Cycle (NBER dated recessions shaded)

Table 4 reports the maximum likelihood estimates of the parameters for the

unconstrained UC model. The unconstrained model was formulated to allow estimation

of either the covariance, σεη, or the correlation, ρεη, and both estimations produce

numerically the same results and both are strongly negative. A striking feature of these

estimates is that they are all essentially the same as the implied estimates from the

unrestricted ARIMA model reported in Table 3. Note also that the estimated variance of

the permanent component, 5296.1ˆ 2 =ησ , is essentially equal to the variance of the

innovation to the BN trend from the unrestricted ARIMA(2,1,2) model,

5297.1)1(ˆˆ 22 =ψσ u . While the estimated value of φ2 is several times its standard error,

                                                          
5 The only difference is for the first observation, which is different due to the need to provide an initial
guess for the value of the random walk trend in estimation via the Kalman filter.
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supporting the p=2 specification, we note that this is not a standard testing situation since

the model is not identified if the null hypothesis that φ2=0 is true.

The log likelihood value for the UC-UR model is also the same as for the ARIMA

model, and significantly larger than for the restricted UC-0 model, thus confirming

identification of the covariance between trend and cycle innovations. The likelihood ratio

statistic for testing the restriction ρεη = 0, which may be interpreted as an

overidentification test, is 3.909, with a corresponding p-value of 0.048. As a check on the

small sample properties of this test, particularly whether this test rejects zero correlation

too often, we generated data from the UC model calibrated to the UC-0 estimates, tested

the null hypothesis ρεη = 0, and found the size to be approximately correct. Thus, we can

strongly reject the restriction of a zero correlation between permanent and transitory

shocks by comparing the results for the UC-0 model with either the results for the

reduced-form ARIMA model or the unrestricted UC model.

Note that the estimate of ρεη is –0.906 with an estimated standard error of 0.073,

so a Wald-type t-test implies a far smaller p-value than the likelihood ratio test reported

above. Since the estimated value of ρεη is near the boundary of admissible values the

small estimated standard error might give a misleading impression of precision. To

reconcile the two tests, we estimated the UC-ARIMA model for fixed values of ρεη = -

0.95, -0.9, .., 0.9, 0.95 and, for each model computed the likelihood ratio statistic for the

hypothesis that ρεη is equal to the imposed value. Figure 4 gives a plot of these likelihood

ratio statistics as a function of the hypothetical ρεη. The horizontal line indicates the 95

percent quantile from the chi-square distribution with 1 degree of freedom. The shape of

the plot clearly indicates a global maximum of the likelihood at the estimated value of ρεη

and the sharpness of the likelihood around that point is reflected in the small standard

error. The implied 95 percent confidence interval for ρεη obtained by “inverting” the

likelihood ratio statistic is fairly wide but excludes ρεη = 0. Thus, the difference between

the Wald and likelihood ratio test results is traced to local verses global behavior of the

likelihood function.
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Table 4: Maximum Likelihood Estimates for the UC-UR Model

Estimate Standard Error
Trend process
Drift: µ 0.8156 (0.0865)
Innovation: ση 1.2368 (0.1518)

Cycle process
φ1 1.3419 (0.1456)
φ2 -0.7060 (0.0822)
Innovation: σε 0.7485 (0.1614)

Roots of AR process 0.6710 + 0.5058i
0.6710 - 0.5058i

Covariance: σεη -0.8389 (0.1096)
Correlation:  ρεη -0.9063 (0.0728)

Log Likelihood Value -284.6507
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Figure 4 – Likelihood Ratio Statistics for testing ρεη=ρεη,0
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3. Summary and Conclusions

We have shown that trend-cycle decompositions based on unobserved component

models cast in state-space form and on the long run forecast implied by an ARIMA

model differ not because they differ in principle but because the underlying empirical

models differ. In particular, the restriction that innovations in the unobserved trend and

cycle are uncorrelated has been imposed in the former but in the latter. We note that

when this restriction is relaxed in the state-space model, the two approaches lead to

identical trend-cycle decompositions and identical univariate representations. Further, the

restriction of zero correlation is strongly rejected by the data for U.S. real GDP, quarterly

1947-1998.

If we accept the implication that innovations to trend are strongly negatively

correlated with innovations to the cycle, then the case for the importance of real shocks in

the macro economy is strengthened. As pointed out by Stock and Watson (1988) in their

influential paper, real shocks tend to shift the long run path of output, so short term

fluctuations will largely reflect adjustments toward a shifting trend if real shocks play a

dominant role. For example, a positive productivity shock, such as the invention of the

Internet, will immediately shift the long run path of output upward, leaving actual output

below trend until it catches up. This implies a negative contemporaneous correlation

since this positive trend shock is associated with a negative shock to the cycle. In

contrast, a positive nominal shock, say a shift in Fed policy towards stimulus will be an

innovation to the cycle without any impact on trend.

Closing with a few caveats, we note that the decompositions considered here

share a common restriction, that the cycle process is symmetric. Recent business cycle

research suggests that asymmetry has been an important feature of postwar U.S.

experience - recessions being characterized as an occasional sharp drop followed by more

gradual recovery; see Neftci (1984), Sichel (1993, 1994), Beaudry and Koop (1993), and

Kim and Nelson (1999a). The inference that variation in GDP is dominated by variation

in trend may reflect primarily the long periods of expansion when actual output is

relatively close to potential and any cycle is short-lived and small in amplitude. Finally,
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the decompositions considered here are univariate with only two sources of shocks, and

additional information introduced in a multivariate setting may affect estimates of trend

and cycle.
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Appendix

This appendix contains notes on how to calculate the BN decomposition for an

ARIMA model and how to set up the state-space model in order to estimate the UC1

model via the Kalman filter.

BN decomposition

Numerous practical methods for calculation of the exact BN decomposition have

been proposed in the literature, including Newbold (1990) and Ariño and Newbold

(1998). As discussed in Morley (2001), a particularly convenient way to calculate the

exact BN decomposition for an ARIMA model is to first convert the model into its state-

space companion form. For the ARIMA(2,1,2) model, this is given as follows:
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, (A.1)

or, more compactly,

β βt t tF v= +−1 (A.1')

when the eigenvalues of F have modulus less than 1 and there are no canceling roots so

that F is invertible. Then, the BN trend can be calculated at any given point of time as

[ ] tttt FIFyBN |
1)(0001 β−−+= , (A.2)

where β βt t t tE| [ ]=  can be obtained from the Kalman filter used in exact maximum

likelihood estimation of the ARIMA(2,1,2) model. We define the BN cycle as the gap

between real GDP and the BN trend, ( tt BNy − ).
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The State-Space Model

One possible explanation for prevalence of the unnecessary zero correlation

assumption in empirical work is the way the state-space model for a UC model is

traditionally set up and estimated. In particular, the random walk trend is often treated as

the state variable, while the AR(2) cycle is treated as a residual in the observation

equation; for example, see Clark (1987). Given this setup, estimation via the Kalman

filter requires an assumption of independence between trend and cycle innovations.

However, as demonstrated in Kim and Nelson (1999), there are other ways of

setting up the state-space  representation for a UC model. One possibility is to make the

observation equation an identity, with both the trend and cycle treated as state variables.

This is the approach we take:

Observation Equation:
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or, more compactly,

y Ht t= β , (A.3’)

State Equation:
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or, more compactly,
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β µ βt t tF v= + +−
~

1 . (A.4’)

Then, we can use the Kalman filter to estimate the model, even if we allow the trend and

cycle innovations to be correlated. That is,
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The Kalman filter is given by the following six equations:

β µ βt t t tF| |
~

− − −= +1 1 1 , (A.6)

P FP F Qt t t t| |− − −= ′ +1 1 1 , (A.7)

y y y Ht t t t t t− = −− −| |1 1β , (A.8)

f HP Ht t t t| |− −= ′1 1 , (A.9)

β βt t t t t t t tK y y| | |( )= + −− −1 1 , (A.10)

P P K HPt t t t t t t| | |= −− −1 1 , (A.11)

where β β ψt t t tE| [ | ]− −≡1 1 , for example, is the expectation of βt  conditional on

information up to time t − 1 ; Pt t| −1  is the variance of βt t| −1 ; f t t| −1  is the variance of

( )|y yt t t− −1 ; and K P H ft t t t t≡ ′− −
−

| |1 1
1  is the Kalman gain.6

                                                          
6 For a more general discussion of the Kalman filter and state-space models, as well as details on the
derivation of the Kalman gain, refer to Hamilton (1993, 1994) and Kim and Nelson (1999).
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Given some initial values β0 0|  and P0 0|  (as discussed below), we can iterate through

(A.6)-(A.11) for t T= 1,...,  to obtain filtered inferences about βt  conditional on

information up to time t. Also, as a by-product of this procedure, we obtain ( )|y yt t t− −1

and f t t| −1 , which we can use to find maximum likelihood estimates of the hyper-

parameters based on the prediction error decomposition:
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where )',,,,,( 21 ηεεη σσσφφµθ =  and τ gives the number of start-up values skipped in

the evaluation of the log-likelihood. We set τ = 2.

In terms of the initial values β0 0|  and P0 0| , we specify the initial value of the data

for the random walk component, but assign it an extremely large variance. For the

transitory component, we use the unconditional mean and variance of the AR(2) process.

In the process of the maximizing the log-likelihood function we impose stationarity

constraints on the autoregressive parameters and a positive definiteness constraint on the

innovation covariance matrix.


