
Investment, Interest Rate Policy, and Equilibrium Stability∗

Takushi Kurozumi† Willem Van Zandweghe‡

First draft: March 2005; this version: May 2007

Abstract

Carlstrom and Fuerst (2005) show that in the presence of investment activity and price

stickiness, indeterminacy of equilibrium is induced by forward-looking monetary policy that

sets the interest rate in response only to future inflation. In a stochastic version of their

model, we find that this indeterminacy problem is due to a cost channel of monetary policy,

whereby inflation expectations become self-fulfilling, and the problem can be overcome once

the forward-looking policy responds also to current output or contains sufficiently strong

interest rate smoothing, since this prevents the self-fulfilling expectations. We also show

that when E-stability is adopted as the selection criterion from multiple equilibria, even

the forward-looking policy generates a locally-unique non-explosive E-stable fundamental

rational expectations equilibrium as long as the policy response to expected future inflation

is sufficiently strong.
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1 Introduction

Since the time of Keynes and Hicks, macroeconomics has stressed the importance of investment

dynamics in business fluctuations. In line with this view, recent analyses show that investment

activity induces critical implications for forward-looking monetary policy. In the face of the

widespread belief that the Taylor principle (i.e. active policy) is an essential condition for

equilibrium determinacy, Dupor (2001) finds that in a continuous time model with investment

and sticky prices, local determinacy is ensured by passive policy that sets the interest rate in

response only to instantaneous inflation, whose discrete time counterpart is future inflation.1

In an associated discrete time model, Carlstrom and Fuerst (2005) (henceforth, CF) show that

indeterminacy of equilibrium is induced by forward-looking policy that adjusts the interest

rate in response only to future inflation, which is in stark contrast with another result of

CF that determinacy is guaranteed by active current-looking policy that responds only to

current inflation.2 This indeterminacy problem is also pointed out by Huang and Meng (2007a),

although they find that the problem is less severe when the cost share of capital decreases, when

the price stickiness or the steady state price markup or inflation rate increases, or when prices

are modeled as predetermined variables rather than as non-predetermined ones.3

In this paper we address the question of what prescription for the forward-looking mone-

tary policy overcomes the indeterminacy problem, using a stochastic version of CF’s model.4

1A similar result is obtained by Xiao (2007), who uses a discrete time model with an increasing returns to

scale production technology.

2Sveen and Weinke (2005) find that the active current-looking policy is more likely to induce indeterminacy

as prices become stickier. Under the current-looking policy, determinacy depends on the effects of a cost channel

of monetary policy relative to an aggregate demand channel, as mentioned later. Benhabib and Eusepi (2005)

provide an analysis of global determinacy under the current-looking policy.

3While CF use a Calvo (1983) style sticky price model, Huang and Meng (2007a) employ a quadratic price

adjustment cost model.

4This model assumes the presence of a competitive rental market for capital. Sveen and Weinke (2005)

study firm-specific capital and show that a sticky price model with such capital is equivalent in terms of local

equilibrium dynamics to an associated rental-capital-market model with a higher degree of price stickiness.
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This issue is critical because central banks, inflation-targeting ones in particular, are concerned

about expected future inflation rather than actual inflation, as also emphasized by Huang and

Meng (2007a). We examine the following two prescriptions. One is whether the problem can

be ameliorated if the forward-looking policy adjusts the interest rate in response also to output

or contains interest rate smoothing, as empirical studies such as Clarida et al. (2000) and Or-

phanides (2004) use for a better description of actual monetary policy.5 Another prescription

is: when we adopt E-stability as the criterion for selecting one rational expectations equilibrium

(REE) from multiple such equilibria, does the forward-looking policy generate a locally-unique

E-stable fundamental REE?6 As Evans and Honkapohja (2001) show in a broad class of linear

stochastic models, if a fundamental REE is E-stable and non-explosive, it is least-squares learn-

able, i.e. stable under least-squares learning. Therefore, E-stability is an essential condition

for any REE to be regarded as plausible, as stressed by McCallum (2003).7

As for the first prescription, we show that the indeterminacy problem remains when the

forward-looking policy sets the interest rate in response also to expected future output.8 By

contrast, we find that the problem can be overcome if the policy responds to current output

or contains sufficiently strong interest rate smoothing. This provides a qualification of CF’s

conjecture that “[i]ncluding output in the Taylor rule would have only minor effects on the local
5Sveen and Weinke (2005) and Benhabib and Eusepi (2005) find that the current-looking policy ensures

determinacy with a wider range of model parameters when it responds also to current output.

6Throughout the paper, “fundamental” refers to Evans and Honkapohja’s (2001) minimal state variable

(MSV) solutions to linear RE models so as to distinguish them from McCallum’s (1983) original MSV solution.

We do not examine E-stability of non-fundamental REE such as sunspot equilibria, which may exist in cases

of indeterminacy. For E-stability analysis of these REE, see e.g. Honkapohja and Mitra (2004), Carlstrom and

Fuerst (2004), and Evans and McGough (2005), who all use associated models without investment. See also

footnote 13. We leave E-stability analysis of non-fundamental REE in our model for future work.

7McCallum argues that in cases of indeterminacy there may be a unique non-explosive REE that is E-stable

and thus least-squares learnable, whereas a determinate REE that is E-unstable and thus not least-squares

learnable is arguably not a plausible candidate for equilibrium that could be observed in the actual economy.

8Xiao (2007) shows that in an associated model with a finite labor supply elasticity and a capital adjustment

cost, a mild policy response to expected future output can ameliorate the indeterminacy problem.
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determinacy conditions” (footnote 7). Before presenting an intuition for our result, we consider

what makes the forward-looking policy induce the indeterminacy problem. As its cause, CF

focus attention on households’ arbitrage activity in bond and capital markets, while Huang and

Meng (2007a) stress firms’ price setting behavior in monopolistically competitive good markets.

Our position is that both of these two are critical to the indeterminacy problem. Any passive

forward-looking policy of course induces indeterminacy, and so does even an active policy due to

a cost channel of monetary policy, whereby inflation expectations become self-fulfilling.9 To see

this, consider a sunspot increase in inflation expectations. The active policy then leads to a rise

in the real interest rate, so that the expected future real rental price of capital increases via a no-

arbitrage condition between bonds and capital. This raises expected future real marginal cost

and hence expected future inflation via an aggregate price adjustment equation. Consequently,

the inflationary expectations become self-fulfilling and therefore indeterminacy is induced.10

With sufficiently strong interest rate smoothing, the active forward-looking policy brings about

determinacy. Interest rate smoothing means a policy response to the lagged interest rate and

hence makes the forward-looking policy respond also to current and past inflation, so that it

guarantees determinacy similarly to the current-looking policy examined by CF.11 The policy

response to current output ameliorates the indeterminacy problem dramatically as long as the

policy is active, or more accurately, it satisfies the long-run version of the Taylor principle: in
9This cost channel is similar to that in the existing literature such as Christiano and Eichenbaum (1992) and

Barth and Ramey (2001) in that a rise in the interest rate increases firms’ marginal cost. The difference crucial

for equilibrium determinacy is that the real interest rate affects expected future real marginal cost in our cost

channel, while the nominal interest rate affects current real marginal cost in the literature.

10As prices become stickier, the real marginal cost elasticity of inflation decreases, which slightly mitigates

the effect of the cost channel and hence the indeterminacy problem. This is in stark contrast with Sveen and

Weinke (2005), who obtain the exactly opposite result under the current-looking policy as noted in footnote 2.

11Kurozumi and Van Zandweghe (2006) obtain a necessary and sufficient condition for determinacy under

monetary policy that sets the interest rate in response to a weighted average of future and current inflation in

CF’s model, and show that determinacy is more likely with a higher weight on current inflation. They also find

that determinacy is likely under interest rate policy that responds only to past inflation.
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the long run the nominal interest rate should be raised by more than the increase in inflation.12

This is because the policy responses to both current consumption and investment subdue any

change in the real interest rate stemming from inflation expectations: a rise (decline) in the real

interest rate decreases (increases) consumption and investment, both of which reduce the real

rate rise (decline) by the policy responses to them. These two types of feedback on policy are

absent from the policy response to expected future output, so that the indeterminacy problem

remains. We also show that the feedback from current investment rather than consumption

is crucial to determinacy, since the latter feedback on policy is limited due to consumption

smoothing. This demonstrates that investment dynamics, which have been widely viewed as an

important determinant of business fluctuations, are likewise of crucial importance in generating

determinacy of REE, suggesting that central banks pay special attention to investment activity.

When we consider our second prescription for the indeterminacy problem, i.e. we adopt E-

stability as the criterion for selection from multiple REE, we find that even the forward-looking

policy generates a locally-unique non-explosive E-stable fundamental REE if its inflation coef-

ficient lies in either of the following two intervals, both of which satisfy the Taylor principle.

One interval is extremely narrow, in which the inflation coefficient exceeds one and is very close

to one. This contains all the inflation coefficients that bring about determinacy of REE. An-

other interval requires that the inflation coefficient be sufficiently greater than one and its lower

bound increase with stickier prices. Any inflation coefficient in these two intervals succeeds in

guiding temporary equilibria under non-rational expectations toward the unique E-stable REE.

Further, if the forward-looking policy adjusts the interest rate in response also to current out-

put, almost every pair of the inflation and output coefficients that meets the long-run version of

the Taylor principle generates the unique E-stable REE. Therefore, the indeterminacy problem

is not critical from the perspective of E-stability or least-squares learnability of fundamental
12As Woodford (2003), Bullard and Mitra (2002), and Kurozumi (2006) show with associated models without

investment, the long-run version of the Taylor principle is an essential condition for Taylor style interest rate

policy to ensure determinacy and E-stability of REE. If the policy responds only to inflation, the long-run version

is consistent with the usual Taylor principle.

5



REE.13 Our E-stability result is a generalization of Bullard and Mitra (2002), who use an as-

sociated model without investment to show that the forward-looking policy yields the unique

E-stable REE if and only if it meets the Taylor principle. In the absence of investment activity,

monetary policy contains only an aggregate demand channel, whereby any active policy can

successfully guide temporarily non-rational expectations toward the rational expectations. In

the presence of investment activity, the cost channel emerges and reduces the guiding effect of

the demand channel. As a consequence, all non-explosive fundamental REE fail to be E-stable

if the inflation coefficient lies in the intermediate interval, if any, between the two intervals of

inflation coefficients that generate the unique E-stable REE.

The remainder of the paper proceeds as follows. Section 2 presents a stochastic version of

CF’s model. Section 3 examines our first prescription for the indeterminacy problem induced by

the forward-looking policy. Section 4 investigates the second one. Finally, Section 5 concludes.

2 A stochastic version of Carlstrom and Fuerst’s model

We use the same model as CF except in the following two respects. The utility function is

assumed to contain uncertain disturbances ξt and to be separable between consumption Ct and

real money balances Mt+1/Pt,14 where Mt+1 is nominal balances held at the end of period t

and Pt is the price level. The period utility function with leisure 1 − Lt then takes the form

U(Ct,Mt+1/Pt, 1 − Lt; ξt) = V (Ct; ξt) + W (Mt+1/Pt; ξt) − Lt.

Another difference from CF is the specification of monetary policy. CF study a forward-
13The indeterminacy problem may not be critical even if we extend our analysis to non-fundamental REE.

Carlstrom and Fuerst (2004) show with an associated model without investment that a sunspot equilibrium is

E-stable only if a central bank believes in the sunspot. Clearly, this condition is not practical.

14This separability assumption implies that our results can also be obtained with an associated cashless

economy model. If the utility functions are non-separable between consumption and real money balances as in

CF, a higher degree of the non-separability makes equilibrium indeterminacy more likely under monetary policy

that sets the interest rate in response not only to inflation but also to output, as Kurozumi (2006) shows in an

associated model without investment.
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looking policy that sets the nominal interest rate Rt in response only to expected future inflation

Etπt+1. We generalize this policy so that it responds also to current output Yt or expected

future output EtYt+1 or contains interest rate smoothing,

Rt = (Rt−1)
φ
R

[
R

(
Etπt+1

π

)φπ
(

EtYt+j

Y

)φ
Y

]1−φ
R

, j ∈ {0, 1}, φπ, φY ≥ 0, 0 ≤ φR < 1, (1)

where Et is the rational expectation operator conditional on information available in period t

and R, π and Y denote steady state values of the interest rate, inflation and output. This

generalization is motivated by empirical studies such as Clarida et al. (2000) and Orphanides

(2004), who use it for a better description of actual monetary policy.

The equilibrium conditions log-linearized around a steady state are given by15

R̂t − Etπ̂t+1 = −σ−1[(Ĉt − gt) − (EtĈt+1 − Etgt+1)], (2)

R̂t − Etπ̂t+1 = [1 − β(1 − δ)](Et ẑt+1 + EtŶt+1 − K̂t+1), (3)

σ−1(Ĉt − gt) = ẑt + α(1 − α)−1(K̂t − Ŷt), (4)

K̂t+1 = (1 − δ)K̂t + δÎt, (5)

Ŷt = s
C
Ĉt + s

I
Ît, (6)

π̂t = βEtπ̂t+1 + λẑt, (7)

R̂t = φ
R
R̂t−1 + (1 − φ

R
)(φπEtπ̂t+1 + φ

Y
EtŶt+j), j ∈ {0, 1}. (8)

Eq. (2) is the Euler equation for households’ optimal consumption decisions with an intertem-

poral substitution elasticity σ > 0 and preference shocks gt, which are assumed to follow a

stationary first order autoregressive process with a parameter |ρ| < 1 and a white noise εt

gt = ρgt−1 + εt. (9)
15We omit an equilibrium condition for money balances, since the remaining conditions determine local dy-

namics of REE. We also assume as in CF that fiscal policy is “Ricardian”, i.e. it appropriately accommodates

consequences of monetary policy for the government budget constraint. We thus leave hidden the government

budget constraint and fiscal policy. For analysis of equilibrium determinacy under interest rate policy and non-

Ricardian fiscal policy, see e.g. Benhabib et al. (2001), Benhabib and Eusepi (2005), Linnemann (2006), and

Kurozumi (2005).
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Eq. (2) presents the Fisher relation between the nominal interest rate, expected future inflation,

and the real interest rate. Eq. (3) is the no-arbitrage condition between bonds and capital,

where zt is firms’ real marginal cost, Kt+1 is the capital stock at the beginning of period t + 1,

β ∈ (0, 1) is a discount factor, and δ ∈ (0, 1) is the depreciation rate of capital. The right-hand

side of (3) can be derived from firms’ cost minimization problem, which implies that the real

rental price of capital rt satisfies rt = αztYt/Kt in the presence of a competitive rental capital

market and a Cobb-Douglas production technology Yt = Kα
t L1−α

t with a cost share of capital

α ∈ (0, 1). It also implies that the real wage rate wt satisfies wt = (1 − α)zt(Kt/Yt)α/(1−α),

and thus (4) is the labor market condition that matches the wage rate to the marginal rate

of substitution between consumption and leisure, where we assume as in CF that the labor

supply elasticity is an infinity. Eq. (5) describes capital accumulation and (6) is the resource

constraint with steady state output shares of consumption and investment s
C
, s

I
∈ (0, 1). Eq. (7)

describes Calvo (1983) style staggered price setting of monopolistically competitive firms with

indexation to steady state inflation, where the so-called Calvo parameter ν ∈ (0, 1) (i.e. the

probability of not optimally setting prices) gives rise to the real marginal cost elasticity of

inflation λ = (1 − ν)(1 − βν)/ν > 0.

Here, it is important to stress that in the system of (2)−(9) there are two channels of

monetary policy, which yield exactly opposite effects on inflation. One is the conventional

aggregate demand channel, where Euler equation (2) leads a rise in the real interest rate to

dampen consumption and hence output, both of which lower real marginal cost ẑt via labor

market condition (4), thereby reducing current inflation via Phillips curve (7). Another is a

cost channel, which is one of the main points of this paper. No-arbitrage condition (3) makes

a rise in the real interest rate increase the expected future real rental price of capital Etr̂t+1,

which is matched to the expected future marginal product of capital adjusted by expected

future real marginal cost, EtŶt+1 − K̂t+1 + Etẑt+1, in equilibrium. From (4) we have

Etẑt+1 = α(EtŶt+1 − K̂t+1 + Etẑt+1) + σ−1(1 − α)Et[Ĉt+1 − gt+1].

Thus, such an increase in the marginal product of capital raises expected future real marginal
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cost Etẑt+1, thereby increasing expected future inflation and hence current inflation via Phillips

curve (7). Hence, by this cost channel a rise in the real interest rate increases expected future

inflation. This induces a possibility that inflation expectations become self-fulfilling and there-

fore indeterminacy of REE is induced if monetary policy sets the interest rate in response only

to expected future inflation.16

The ensuing analysis uses realistic calibrations of model parameters to illustrate conditions

for determinacy and E-stability of REE. Table 1 summarizes our baseline calibration. These

parameter values are taken from CF so that our results are comparable with theirs. Note that

under the baseline calibration the Calvo parameter takes a value of ν = 0.57, so that firms

reset optimal prices of their products, on average, once every 2.3 quarters. As noted by Sveen

and Weinke (2005) and Benhabib and Eusepi (2005), the actual value of ν is controversial in

the empirical literature. Thus we also examine two alternative values, ν = 0.67,0.80, which

imply respectively that λ = 0.18,0.052 and firms reset optimal prices, on average, once every

three or five quarters.17

3 First prescription for the indeterminacy problem

The forward-looking policy, which responds only to expected future inflation, renders REE

indeterminate in the model presented above, as shown by CF. In this section we examine our

first prescription for this indeterminacy problem: can a policy response to output or interest

rate smoothing overcome the problem?
16With no rental market, firms accumulate capital and rt, which denotes the real rental price of capital in the

presence of a rental market, represents an average reduction in firms’ labor costs due to an additional unit of

capital in place in the next period, as Woodford (2003) indicates. Although it differs from the adjusted marginal

product of capital, firms’ investment decisions still have counteracting effects on current and expected future

real marginal cost. Therefore, the cost channel exists with firm-specific capital.

17Because of the limited space, we omit to present sensitivity analysis of the other parameters. The qualitative

properties of results obtained with the baseline calibration survive in the sensitivity analysis, but of course, the

results differ quantitatively.
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3.1 Policy response to expected future output

We first analyze the policy response to expected future output, i.e. j = 1, φ
R

= 0 in (1). With

this policy specification, the system of (2)−(9) can be reduced to a system of the form

Etxt+1 = Axt + Bgt, (10)

where xt = [π̂t Ĉt Ŷt K̂t R̂t−1]′ and the coefficient matrix A is given in Appendix A.18 In this

system the first three variables, π̂t, Ĉt, Ŷt, are non-predetermined while the remaining two,

K̂t, R̂t−1, are predetermined. Hence, Proposition 1 of Blanchard and Kahn (1980) implies that

the forward-looking policy with responses to expected future output generates determinacy of

REE if and only if the coefficient matrix A has exactly two eigenvalues inside the unit circle

and the other three outside the unit circle.19 We thus obtain the following result.

Proposition 1 Suppose that b3 = a2 − (1 − a1)φY
�= 0, where a1 = 1 − β(1 − δ)(1 − α) and

a2 = 1− β(1− δ). Then, if the forward-looking policy adjusts the interest rate in response also

to expected future output, i.e. j = 1, φR = 0 in (1), it generates local determinacy of REE if

and only if either of the following two cases is satisfied: (Case I)

φπ < 1 +
a2

αλ
− sI (1 − a1)

αβλ[s
I
+ δ(1 − s

I
)]

φ
Y
, (11)

φπ +
(1 − β)[sC σ + sI (1 − α)]

λ(1 − s
I
)(1 − α)

φ
Y

> 1, (12)

φ
Y

<
λ(a1 + α)[2s

I
+ δ(1 − s

I
)]

(1 + β)[sC σδa2 + sI (2 − δ)(2 − α − a1)]

[
1 +

2a2(1 + β)
λ(a1 + α)

− φπ

]
, (13)

b2
0
− b2

3
> |b0b2 − b1b3 |, (14)

where bi, i = 0, 1, 2, are given in Appendix B;

(Case II) (14) and the three strict inequalities opposite to (11)−(13) hold.

Proof See Appendix B.
18The form of the vector B is omitted since it is not needed in what follows.

19To be precise, this condition is sufficient for determinacy but only generically necessary. Throughout the

paper, consideration of non-generic boundary cases is omitted.
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This proposition confirms CF’s result that “the presence of capital makes determinacy

essentially impossible” (p. 10) in the case of no policy response to output. While CF present

only a necessary condition for determinacy, the following corollary provides a necessary and

sufficient condition. Note that Huang and Meng (2007a) also present a necessary and sufficient

condition in an associated model with a quadratic price adjustment cost, which yields other

features of equilibrium determinacy in sticky price models with investment, e.g. indeterminacy

is less likely when the steady state price markup or inflation rate increases or when prices are

modeled as predetermined variables rather than as non-predetermined ones.

Corollary 1 The forward-looking policy, i.e. φ
Y

= φ
R

= 0 in (1), brings about local determi-

nacy of REE if and only if its inflation coefficient φπ satisfies20

1 < φπ < 1 +
a2

λ
min

{
1 − β

α
,

2(1 + β)
a1 + α

}
. (15)

This interval is extremely narrow, e.g. 1 < φπ < 1.0027 under the baseline calibration.21

What is the intuition for this indeterminacy problem? As is the case with no investment, any

inflation coefficient less than one (i.e. passive policy) induces indeterminacy due to the weakness

of the demand channel of monetary policy presented above. Also, indeterminacy is induced by

any inflation coefficient greater than an upper bound, which takes such a large value in the

absence of investment activity that indeterminacy is unlikely.22 In our model, this upper bound

is given by 1 + 2a2(1 + β)/[λ(a1 + α)], whose value is 1.52 under the baseline calibration and

thus the presence of investment activity lowers the upper bound greatly. In addition, there is
20In Proposition 1, no policy response to output, i.e. φY = 0, implies that (Case II) never holds and (12)−(14)

can be reduced to (15), since (11) is implied by (14). Corollary 1 holds in a more general case of utility functions

that are non-separable between consumption and real money balances as in CF. The proof of this case is provided

in Kurozumi and Van Zandweghe (2006).

21This interval, though we employ the same calibration, differs slightly from that of CF, 1 < φπ < 1.0057,

since they use approximate values a1 = 0.35 and a2 = 0.03.

22When the aggregate capital stock is fixed over time (i.e. Kt = K ∀t, δ = 0), this upper bound is given by

1+2(1+β)/{λ[1+ασ/(1−α)]}, which takes a value of 9.0 under the baseline calibration. See also Proposition 4

of Bullard and Mitra (2002) and Proposition 4.5 of Woodford (2003).
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another upper bound given by 1 + a2(1− β)/(λα), which takes a value extremely close to one,

e.g. 1.0027 under the baseline calibration, as noted above. This upper bound arises from the

cost channel of monetary policy illustrated above. By this channel an active forward-looking

policy makes inflation expectations self-fulfilling and hence induces indeterminacy.

One point of condition (15) is that the indeterminacy problem becomes slightly less severe

when the degree of price stickiness, ν, increases, as also indicated by Huang and Meng (2007a).23

In (15) we can see that an increase in ν reduces only the real marginal cost elasticity of inflation

λ and hence raises the upper bound on inflation coefficients that generate determinacy.24 This

is in stark contrast to Sveen and Weinke’s (2005) finding that the current-looking policy, which

responds only to current inflation, is more likely to induce indeterminacy as prices become

stickier. This contrast stems from the way the cost channel induces indeterminacy. Under the

forward-looking policy, indeterminacy is only due to this channel. Thus, stickier prices mitigate

the effect of the cost channel and hence the indeterminacy problem. Under the current-looking

policy, indeterminacy depends on the effect of the cost channel relative to the demand channel.

Stickier prices strengthen this relative effect by reducing the effect of the demand channel more

than that of the cost channel and as a consequence, indeterminacy is more likely.25

We now illustrate the determinacy condition in Proposition 1. Note that (11)−(14) are the

empirically relevant one, since (Case II) cannot obtain with realistic calibrations of parameters

including the baseline one. Condition (12) can be given the following interpretation, which is

stressed by Woodford (2003), Bullard and Mitra (2002), and Kurozumi (2006). By (2)−(7),

each percentage point of permanently higher inflation implies permanently higher output of
23Further, an increase in the depreciation rate of capital δ or a decrease in the cost share of capital α mitigates

the indeterminacy problem.

24With a higher value of ν = 0.67 (0.80), this upper bound takes a slightly larger value of 1.0050 (1.0172).

25As shown by Sveen and Weinke (2005), a stronger policy response to current inflation increases the effect

of the demand channel more than that of the cost channel and thereby weakens the relative effect, so that

determinacy is more likely. Also, determinacy is obtained for an interval of inflation coefficients that exceed one

and are extremely close to one, regardless of the degree of price stickiness. This interval corresponds to the one

given by condition (15) of Corollary 1, in which the effect of the cost channel is negligible.
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(1 − β)[s
C
σ + s

I
(1 − α)]/[λ(1 − s

I
)(1 − α)] percentage points. The left-hand side of (12) then

shows the long-run rise in the interest rate by policy (8) for each unit permanent increase in

inflation. Hence, (12) can be interpreted as the long-run version of the Taylor principle: in the

long run the nominal interest rate should be raised by more than the increase in inflation.

Figure 1 shows a region of inflation and output coefficients of the policy that generate

determinacy under the baseline calibration. The lower bound on the inflation coefficient φπ is

provided by the Taylor principle (12), while the upper bound on the output coefficient φ
Y

is

given by (13). These two bounds arise basically from the demand channel, since we can see

the corresponding ones in Figure 3 of Bullard and Mitra (2002) who analyze determinacy in

an associated model without investment, in which monetary policy contains only the demand

channel. The presence of investment activity gives rise to the upper bound on the inflation

coefficient given by (14). The cost channel makes both the upper bounds on inflation and

output coefficients severely limit the region of the coefficients that bring about determinacy.

As shown in Corollary 1, the forward-looking policy ensures determinacy if and only if its

inflation coefficient lies in the extremely narrow interval 1 < φπ < 1.0027. Even with the policy

response to expected future output, the determinacy region of the coefficients is only slightly

widened. The output coefficient of 0.046 generates determinacy for the widest possible interval

of the inflation coefficient 0.998 < φπ < 1.008. For the output coefficient greater than 0.047,

determinacy is impossible to obtain. In short, the policy response to expected future output

cannot ameliorate the indeterminacy problem.26

3.2 Policy response to current output

We next examine the policy response to current output, i.e. j = 0, φ
R

= 0 in (1). As shown in

Appendix A, this policy specification yields a system of the same form as (10) with a different

coefficient matrix A, whose five eigenvalues are a zero and four solutions to a quartic equation
26A higher degree of price stickiness enlarges the determinacy region of the policy coefficients slightly, as is

the case with no policy response to output. For ν = 0.67 (0.80), the widest possible inflation coefficient interval,

which is obtained with the output coefficient of 0.046, is given by 0.994 < φπ < 1.018 (0.983 < φπ < 1.058).
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P (µ) ≡ µ4 + h3µ
3 + h2µ

2 + h1µ + h0 = 0. Determinacy requires that exactly two eigenvalues

lie inside the unit circle and the other three be outside the unit circle. To the best of our

knowledge, it is hard to analytically examine conditions for the quartic equation to contain

exactly one solution inside the unit circle and the other three outside the unit circle.27 We thus

carry out numerical investigations.

Figure 2 illustrates a region of inflation and output coefficients of the policy that ensures

determinacy under the baseline calibration. From the policy specification, the long-run version

of the Taylor principle yields the same inequality as the one with the policy response to expected

future output, (12), which can also be obtained from P (1) < 0. This Taylor principle (12)

provides the lower bound on the inflation coefficient φπ and hence it seems to be a necessary

condition for determinacy.28 This lower bound arises from the demand channel, as noted above.

The cost channel imposes the upper bounds on the inflation coefficient φπ, given by

P (−1) > 0

⇔ φπ < 1 +
2a2(1 + β)
λ(a1 + α)

+
(1 + β){s

I
(1 − α)(2 − δ)[1 + β(1 − δ)] + δs

C
σa2}

λ(a1 + α)[2s
I

+ δ(1 − s
I
)]

φ
Y
, (16)

(1 − h0)
(
1 − h2

0

) − h2(1 − h0)
2 + (h3 − h1)(h1 − h3h0) < 0. (17)

It seems that these two are necessary conditions for determinacy and the three inequalities

(12), (16) and (17) are a sufficient condition (see footnote 27). Figure 2 (i.e. 0 ≤ φπ ≤ 3) shows

that if the output coefficient φ
Y

exceeds 0.2, the policy guarantees determinacy as long as it

meets the Taylor principle (12).29 Therefore, the active forward-looking policy with responses
27We conjecture: if the forward-looking policy adjusts the interest rate in response also to current output,

i.e. j = 0, φR = 0 in (1), it generates local determinacy of REE if it satisfies (12), (16) and (17). Note that these

three inequalities can be reduced to condition (15) in the case of no policy response to output.

28Proposition 4.5 of Woodford (2003) shows that in an associated model without investment, the corresponding

condition is a necessary condition under which the policy response to current output ensures determinacy.

29A higher degree of price stickiness enlarges the determinacy region of the policy coefficients. For instance,

when the output coefficient is 0.5, the inflation coefficient must exceed 0.971 under the baseline calibration,

i.e. ν = 0.57, while with ν = 0.67 (0.80) this lower bound on the inflation coefficient is reduced to 0.947 (0.821).

Meanwhile, the upper bound on the inflation coefficient increases as prices become stickier.
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to current output can overcome the indeterminacy problem.

How does the policy response to current output overcome the indeterminacy problem?

The key point is that such a policy response prevents self-fulfilling inflation expectations and

thereby the active forward-looking policy generates determinacy. To see this, consider a sunspot

increase in inflation expectations. Under an active forward-looking policy, the real interest rate

rises and then increases expected future inflation by the cost channel. This induces a possibility

that the inflationary expectations become self-fulfilling and indeterminacy is generated. But,

once the policy adjusts the interest rate in response also to current output, there is feedback on

the real interest rate from movements in current consumption and investment. This subdues

the real interest rate rise stemming from the inflationary expectations in the following two

ways. A rise in the real interest rate discourages current consumption, so that such a rate rise

can be reduced by the policy response to current consumption. Also, a real interest rate rise

decreases current investment, which reduces this rate rise as long as the policy responds to

current investment. In these two ways, the policy response to current output overcomes the

indeterminacy problem.

Here, we address the question of which policy response of these two is crucial to such dra-

matic amelioration of the problem. We first examine the policy response to current consumption

by replacing policy (8) with

R̂t = φπEtπ̂t+1 + φ
C
Ĉt. (18)

Analyzing the system’s coefficient matrix A given in Appendix A yields the next proposition.

Proposition 2 If the forward-looking policy sets the interest rate in response also to current

consumption as in (18), it generates local determinacy of REE if and only if it satisfies

1 − 1 − β

λ(1 − α)
(σφ

C
) < φπ < 1 +

a2

λ
min

{
1 − β + σφC

α
,

(1 + β)(2 + σφC )
a1 + α

}
, (19)

where a1 = 1 − β(1 − δ)(1 − α) and a2 = 1 − β(1 − δ).

Proof See Appendix C.
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Like (12), the first inequality in (19) can be interpreted as the long-run version of the Taylor

principle. Figure 3 displays a region of inflation and consumption coefficients of policy (18)

that ensure determinacy under the baseline calibration.30 As is the case with policy responses

to output, the lower bound on the inflation coefficient φπ arises from the demand channel, while

its upper bound is induced by the cost channel. Figure 3 shows that a more vigorous policy

response to current consumption widens the interval of inflation coefficients that bring about

determinacy. If φ
C

= 0.5, this interval is 0.98 < φπ < 1.14, which is wider than 1 < φπ < 1.0027

in the case of no policy response to consumption. One point of condition (19) is that both the

lower and upper bounds contain the term σφ
C
. This implies that the intertemporal substitution

elasticity of consumption, σ, is a crucial factor in generating determinacy. As σ increases,

consumption becomes more responsive to changes in the real interest rate and as a consequence,

the policy response to current consumption becomes more important for determinacy with the

policy response to current output. Under realistic calibrations of σ, however, this is not the

case, as shown in Figure 3.31

We next consider the policy response to current investment by replacing (8) with

R̂t = φπEtπ̂t+1 + φ
I
Ît. (20)

As is the case with the policy response to current output, it seems hard to analytically examine

conditions for determinacy, since the policy specification (20) yields a system of the same form

as (10) with a different coefficient matrix A whose five eigenvalues are a zero and four solutions

to a quartic equation Q(µ) ≡ µ4 + j3µ
3 + j2µ

2 + j1µ+ j0 = 0, as shown in Appendix A.32 Thus,
30Figure 3 provides the range of the consumption coefficient given by 0 ≤ φC ≤ 2.1, which corresponds to that

of the output coefficient in Figure 2 (i.e. 0 ≤ φY ≤ 3) because 0 ≤ sC φY ≤ 0.7 × 3 = 2.1.

31A higher degree of price stickiness widens the determinacy region of the policy coefficients. With the

consumption coefficient of 0.5, determinacy with ν = 0.67 (0.80) requires the inflation coefficient to lie in the

interval 0.96 < φπ < 1.25 (0.86 < φπ < 1.84).

32We conjecture: if the forward-looking policy adjusts the interest rate in response also to current investment

as in (20), it ensures local determinacy of REE if it satisfies (21)−(23). Note that these three inequalities can

be reduced to condition (15) in the case of no policy response to investment.
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we study determinacy numerically. Figure 4 illustrates a region of inflation and investment

coefficients of policy (20) that ensure determinacy under the baseline calibration.33 The policy

specification (20) implies that the long-run version of the Taylor principle yields

φπ +
(1 − β)(s

C
σ + 1 − α)

λ(1 − s
I
)(1 − α)

φI > 1, (21)

which can also be obtained from Q(1) < 0. This Taylor principle (21) provides the lower bound

on the inflation coefficient φπ and thus it seems to be a necessary condition for determinacy.

This lower bound arises from the demand channel, while the cost channel imposes the upper

bounds on the inflation coefficient φπ, given by

Q(−1) > 0

⇔ φπ < 1 +
2a2(1 + β)
λ(a1 + α)

+
(1 + β)(2 − δ){(1 − α)[1 + β(1 − δ)] − s

C
σa2}

λ(a1 + α)[2s
I

+ δ(1 − s
I
)]

φI , (22)

(1 − j0)
(
1 − j2

0

) − j2 (1 − j0)
2 + (j3 − j1) (j1 − j3j0) < 0. (23)

It seems that these two are necessary conditions for determinacy and the three inequalities

(21)−(23) are a sufficient condition (see footnote 32). As is the case with the policy response

to current output, we can see that determinacy is likely. In Figure 4 (i.e. 0 ≤ φπ ≤ 3), if the

investment coefficient φ
I

exceeds 0.1, policy (20) generates determinacy as long as it satisfies

the Taylor principle (21).34 Therefore, the policy response to current investment ameliorates

the indeterminacy problem dramatically.

The findings above suggest that the policy response to current investment rather than con-

sumption is crucial for determinacy with the policy response to current output under realistic

calibrations. This is because current consumption has a dampened response to changes in the
33Figure 4 provides the range of the investment coefficient given by 0 ≤ φI ≤ 0.9, which corresponds to that

of the output coefficient in Figure 2 (i.e. 0 ≤ φY ≤ 3) because 0 ≤ sI φY ≤ 0.3 × 3 = 0.9.

34With stickier prices, the determinacy region of the policy coefficients enlarges. For instance, when the

investment coefficient is 0.5, the inflation coefficient must exceed 0.956 under the baseline calibration, i.e. ν =

0.57, while with ν = 0.67 (0.80) this lower bound on the inflation coefficient is reduced to 0.920 (0.729). Moreover,

the upper bound on the inflation coefficient increases as prices become stickier.

17



real interest rate due to consumption smoothing, so that determinacy requires a large pol-

icy response to consumption. Current investment responds more sharply to real interest rate

changes, and hence there is stronger feedback from current investment on interest rate policy,

which overcomes the indeterminacy problem. This desirable property is inherited by the policy

response to current output. Investment dynamics have been widely viewed as an important

determinant of business fluctuations, despite a relatively small share of investment spending in

aggregate demand. Our finding shows that investment dynamics are likewise of crucial impor-

tance in generating determinacy of REE. This suggests that central banks pay special attention

to movements in investment activity.

3.3 Interest rate smoothing

We proceed to examine whether interest rate smoothing, i.e. φ
Y

= 0 in (1), ameliorates the

indeterminacy problem. The system of (2)−(9) can be reduced to a system of the same form as

(10) with a different coefficient matrix A given in Appendix A. By investigating this coefficient

matrix, we obtain the following proposition.

Proposition 3 The forward-looking policy with interest rate smoothing, i.e. φ
Y

= 0 in (1),

generates local determinacy of REE if and only if it satisfies

1 < φπ <
1 + φR

1 − φ
R

[
1 +

2a2(1 + β)
λ(a1 + α)

]
, (24)

|d2 | > 3 or d0(d0 − d2) + d1 − 1 > 0, (25)

where a1 = 1−β(1−δ)(1−α), a2 = 1−β(1−δ), and di, i = 0, 1, 2, are given in Appendix D.35

Proof See Appendix D.

This determinacy condition is illustrated with the baseline calibration in Figure 5, which

displays a region of coefficients of inflation and interest rate smoothing that satisfy the con-

dition. The first inequality in (24) is the Taylor principle and is due to the demand channel
35Like Corollary 1, this proposition holds in a more general case of utility functions that are non-separable

between consumption and real money balances as in CF. The proof of this case is available upon request.
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of monetary policy. It gives rise to the lower bound on the inflation coefficient φπ. The cost

channel of monetary policy induces the upper bounds on the inflation coefficient, given by the

second inequalities in (24) and (25). For weak interest rate smoothing whose degree is less than

a certain threshold given by αβa2/[a1(αλ+a2)] = 0.20, the upper bound on the inflation coeffi-

cient is provided by the second inequality in (25), which severely limits the determinacy region

of the coefficients, as is the case with no interest rate smoothing. With φ
R

= 0.1, determinacy

is obtained for an inflation coefficient in the interval of 1 < φπ < 1.010. Once interest rate

smoothing is sufficiently strong, i.e. φR > 0.20, the second inequality in (24) determines the

upper bound. In the case of φ
R

= 0.5, determinacy is guaranteed by any inflation coefficient

in the interval of 1 < φπ < 4.55. Hence, determinacy is likely with a range of the inflation

coefficient and is more likely with more inertial interest rate policy.

As prices become stickier, the determinacy region of the policy coefficients widens in some

direction, as is the case with no interest rate smoothing, while it also narrows in that the

threshold of interest rate smoothing for determinacy increases. With a higher degree of price

stickiness of ν = 0.67, weak interest rate smoothing, in which φ
R

is less than an increased

threshold of 0.33, yields a slightly wider determinacy region (e.g. 1 < φπ < 1.012 for φ
R

= 0.1),

and high interest rate smoothing with φ
R

> 0.33 generates a wider determinacy region (e.g. 1 <

φπ < 6.13 for φR = 0.5). But, with a much higher degree of price stickiness of ν = 0.80, the

threshold of interest rate smoothing increases, i.e. 0.58, so that in the case of φ
R

= 0.5 the

determinacy region becomes much narrower, 1 < φπ < 1.10.

What is the intuition for this determinacy with sufficiently strong interest rate smoothing?

Interest rate smoothing means a policy response to the lagged interest rate and hence makes

the forward-looking policy respond also to current and past inflation. As shown by CF and

Kurozumi and Van Zandweghe (2006), equilibrium determinacy is possible with the current-

looking or backward-looking policy, which sets the interest rate in response only to current or

past inflation. Also, Sveen and Weinke (2005) show that the current-looking policy is more

likely to induce indeterminacy as prices become stickier. Therefore, the forward-looking policy
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with interest rate smoothing inherits these properties from the current-looking and backward-

looking policies. In sum, interest rate smoothing helps the forward-looking policy generate

determinacy of REE, although its amelioration of the indeterminacy problem is not so effective

as the policy response to current output.

4 Second prescription for the indeterminacy problem

We turn next to our second prescription for the indeterminacy problem: when E-stability is

adopted as the criterion for selecting one from multiple REE, does the forward-looking pol-

icy generate a locally-unique E-stable fundamental REE?36 Following the literature, our E-

stability analysis is based on the so-called “Euler equation” approach suggested by Honkapohja

et al. (2003). Specifically, the rational expectation operator Et is replaced with a possibly non-

rational one Êt in the system of (2)−(9) with φ
Y

= φ
R

= 0. Also, this system can be reduced

to a system of the form

Fyt = GÊtyt+1 + HK̂t + Jgt, (26)

where yt = [π̂t Ĉt Ŷt K̂t+1]′ and the coefficient matrices F,G,H are given in Appendix E.37

Then, fundamental RE solutions to system (26) are given by

yt = c̄ + Φ̄K̂t + Γ̄gt, (27)

where the coefficient matrices are determined by

c̄ = 04×1, H = (F − GΦ̄[01×3 1])Φ̄, Γ̄ = {F − GΦ̄[01×3 1] − ρG}−1J.

Note that Γ̄ is uniquely determined given a Φ̄, but Φ̄ is not generally uniquely determined,

which induces multiplicity of fundamental REE.
36Recall that in this paper we refer to Evans and Honkapohja’s (2001) MSV solutions to linear RE models as

fundamental and do not undertake E-stability analysis of non-fundamental REE (see footnote 6).

37The form of the vector J is omitted, since it is not needed in what follows.
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Following Section 10.5 of Evans and Honkapohja (2001), we analyze E-stability of funda-

mental REE.38 Corresponding to fundamental RE solutions (27), all agents are assumed to be

endowed with a perceived law of motion (PLM) of yt

yt = c + ΦK̂t + Γgt. (28)

Using a forecast from the PLM and the relation K̂t+1 = [01×3 1]yt to substitute Êtyt+1 out of

(26) leads to an actual law of motion (ALM) of yt

yt = F−1G(I + Φ[01×3 1])c + F−1(GΦ[01×3 1]Φ + H)K̂t

+ F−1{G(Φ[01×3 1]Γ + ρΓ) + J}gt (29)

provided that F is invertible. Here, I denotes a conformable identity matrix. Then, a mapping

T from the PLM (28) to the ALM (29) can be defined by

T (c,Φ,Γ) =
(
F−1G(I + Φ[01×3 1])c, F−1(GΦ[01×3 1]Φ + H),

F−1{G(Φ[01×3 1]Γ + ρΓ) + J}) .

For a fundamental RE solution (c̄, Φ̄, Γ̄) to be E-stable, the matrix differential equation

d

dτ
(c,Φ,Γ) = T (c,Φ,Γ) − (c,Φ,Γ)

38System (26) contains a predetermined variable K̂t, so that we can consider two learning environments,

which are studied respectively in Section 10.3 and 10.5 of Evans and Honkapohja (2001). One environment

allows agents to use current endogenous variables in expectation formation, whereas another does not. In this

paper we present only E-stability analysis with the latter environment, as in Bullard and Mitra (2002). This

is because any inflation coefficient that generates a locally-unique non-explosive E-stable fundamental REE in

the latter environment does so in the former one, as Kurozumi (2006) shows in an associated model without

investment. An intuition for this is that in forming future expectations, agents have more information by

the current endogenous variables and hence E-stability is more likely in the former environment than in the

latter one. Another reason for our focus on the latter environment is that the former induces a problem with

simultaneous determination of the expectations and current endogenous variables, which is critical to equilibrium

under non-rational expectations as indicated by Evans and Honkapohja (2001) and Bullard and Mitra (2002).
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must have local asymptotic stability at the solution, where τ denotes a notional time. Then,

we have

DTc(c,Φ) = F−1G(I + Φ[01×3 1]),

DTΦ(Φ) = F−1G([01×3 1]ΦI + Φ[01×3 1]),

DTΓ(Φ,Γ) = F−1G(ρI + Φ[01×3 1]).

Therefore, it follows that a fundamental RE solution (c̄, Φ̄, Γ̄) is E-stable if and only if all

eigenvalues of three matrices, DTc(c̄, Φ̄), DTΦ(Φ̄), DTΓ(Φ̄, Γ̄), have real parts less than one.

We summarize this result in the following lemma.

Lemma 1 Suppose that the coefficient matrix F is invertible. A fundamental RE solution to

the system of (2)−(9) with the forward-looking policy (i.e. φ
Y

= φ
R

= 0) is E-stable if and only

if all eigenvalues of three matrices, F−1G(γI + Φ̄[01×3 1]), γ = 1, ρ, Φ̄4, have real parts less

than one, where Φ̄4 is the fourth element of the RE solution vector Φ̄.

With this lemma, we investigate E-stability of fundamental REE numerically, since it seems

impossible to analytically solve the matrix equation for Φ̄ in fundamental RE solutions (27) and

thus to obtain explicit conditions for the E-stability. To compute (27), we use the method of

Klein (2000) and McCallum (1998), which is a generalization of Blanchard and Kahn (1980). As

pointed out by McCallum, different non-explosive fundamental REE are obtained for different

groupings of stable generalized eigenvalues of the matrix pencil for system (26).39

The E-stability analysis shows that in the presence of investment activity, the forward-

looking policy generates a locally-unique non-explosive E-stable fundamental REE if its infla-

tion coefficient lies in either of the following two intervals, both of which satisfy the Taylor

principle, i.e. φπ > 1. One interval is extremely narrow, where the inflation coefficient exceeds

one and is very close to one. This contains the interval of inflation coefficients that bring about

determinacy of REE, given by condition (15) of Corollary 1. Under the baseline calibration,
39In cases of indeterminacy, the baseline calibration shows order one or two indeterminacy and hence two or

three distinct fundamental REE.
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the interval for the unique E-stable REE is 1 < φπ < 1.0032, which includes the one for deter-

minacy, 1 < φπ < 1.0027. Another interval requires that the inflation coefficient be sufficiently

greater than one and its lower bound increase with stickier prices. This interval is φπ > 1.26

under the baseline calibration.40 Any policy response to expected future inflation in these two

intervals succeeds in guiding temporary equilibria under non-rational expectations toward the

unique E-stable REE by the demand channel of monetary policy. As noted in footnote 25, the

effect of the cost channel of monetary policy is negligible for inflation coefficients extremely

close to one, and hence such policy responses yield the unique E-stable REE. Also, when the

inflation coefficient is sufficiently greater than one, the effect of the cost channel relative to the

demand channel is weak enough to generate the unique E-stable REE. Further, if the forward-

looking policy responds also to current output, almost every pair of the inflation and output

coefficients that meets the long-run version of the Taylor principle (12) generates a unique non-

explosive E-stable fundamental REE including the determinate REE, which is also E-stable.

These results suggest that the indeterminacy problem induced by the forward-looking policy,

which is emphasized by CF, is not critical from the perspective of E-stability or least-squares

learnability of fundamental REE.

Our E-stability results are a generalization of Bullard and Mitra (2002), who use an asso-

ciated model without investment to show that the forward-looking policy generates a locally-

unique non-explosive E-stable fundamental REE if and only if it meets the Taylor principle.

In the presence of investment activity, the cost channel emerges and reduces the guiding effect

of the demand channel. As a consequence, all non-explosive fundamental REE fail to be E-

stable if the policy response to expected future inflation lies in the intermediate interval, if any,

between the two intervals of the inflation coefficients that generate the unique E-stable REE.
40As prices become stickier, both the upper bound of the narrower interval and the lower bound of the wider

interval increase, e.g. 1 < φπ < 1.0059 (1.0202), φπ > 1.54 (2.71) for ν = 0.67 (0.80).
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5 Concluding remarks

In the presence of investment activity and price stickiness, indeterminacy of REE is induced

by forward-looking monetary policy that sets the interest rate in response only to expected

future inflation, as first shown by CF. This indeterminacy problem is due to a cost channel of

monetary policy, whereby inflation expectations become self-fulfilling. We have examined two

prescriptions for the problem. The first prescription has shown that the indeterminacy problem

can be ameliorated once the forward-looking policy adjusts the interest rate in response also to

current output or contains sufficiently strong interest rate smoothing, as empirical studies use it

for a better description of actual monetary policy. In particular, the policy response to current

output dramatically overcomes the indeterminacy problem in two ways: via policy responses

to current consumption and investment. Both of these policy responses subdue changes in

the real interest rate stemming from inflation expectations, thereby preventing self-fulfilling

inflation expectations and hence indeterminacy. We have also demonstrated that the policy

response to current investment rather than consumption is crucial to the determinacy with

the policy response to current output in our model, since feedback from current consumption

on interest rate policy is limited due to consumption smoothing. The second prescription

has shown that when we adopt E-stability as the REE selection criterion, even the forward-

looking policy generates a locally-unique non-explosive E-stable fundamental REE as long as

its inflation coefficient is sufficiently strong. Further, if the policy adjusts the interest rate in

response also to current output, almost every pair of the inflation and output coefficients that

meets the long-run version of the Taylor principle generates the unique E-stable REE.

We use a stochastic version of CF’s model. In the actual economy, aggregate variables such

as consumption and investment display more considerable persistence than in our model. In or-

der to fit models to actual data, recent business cycle literature such as Christiano et al. (2005)

and Smets and Wouters (2003) allows for habit formation in preferences for consumption, a

finite labor supply elasticity, staggered nominal wage setting in monopolistically competitive

labor markets, adjustment costs in investment or capital, variable capital utilization, and so
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forth, which all are absent in our model. A few recent studies incorporate some of these features

into our fundamental model to investigate equilibrium determinacy numerically. Xiao (2007)

uses such a model incorporating a finite labor supply elasticity and a capital adjustment cost

and then shows that a mild policy response to expected future output helps the forward-looking

policy ensure determinacy. Huang and Meng (2007b) employ a similar model to Xiao to find

that under an empirically reasonable labor supply elasticity, the policy response to current out-

put fails to make the forward-looking policy generate determinacy, but once staggered nominal

wage setting is incorporated into their model, the role of such a policy response in guaranteeing

determinacy is greatly enhanced. These studies suggest that one topic of our future research

is to examine what empirically relevant extension of our fundamental model may or may not

help the forward-looking policy bring about equilibrium determinacy.

Another topic is E-stability analysis of non-fundamental REE. In this paper we have inves-

tigated only fundamental REE. Some readers may consider this focus unappealing. Carlstrom

and Fuerst (2004), however, show that a sunspot equilibrium is E-stable only if a central bank

believes in the sunspot, using an associated model without investment. Because this condition

is not practical, our focus on fundamental REE might be plausible. To make sure of the valid-

ity of our focus, we will examine E-stability of non-fundamental REE in our model, following

recent analyses with associated models without investment, such as Honkapohja and Mitra

(2004), Carlstrom and Fuerst (2004), and Evans and McGough (2005).
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Appendix

A Coefficient matrices in systems of form (10)

Let a1 = 1− β(1− δ)(1−α) and a2 = 1− β(1− δ). When the forward-looking policy responds

also to expected output, i.e. j = 1, φ
R

= 0 in (1), the coefficient matrix A of system (10) is

given by

A = [Amn] =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
β − λ

βσ − αλ
β(1−α)

αλ
β(1−α) 0

A21 A22 A23 A24 0

A31 A32 A33 A34 0

0 − δs
C

s
I

δ
s
I

1 − δ 0

A51 A52 A53 A54 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (30)

where

A21 = Ã21, A22 = Ã22 + 1, A23 = Ã23, A24 = Ã24, Ã2n = σ[A1n(φπ − 1) + A3nφ
Y
],

A31 = Ã31, A32 = Ã32 +
a2[A42 − (1 − α)/σ]

a2 + (a1 − 1)φ
Y

, A33 = Ã33 +
a2A43

a2 + (a1 − 1)φ
Y

,

A34 = Ã34 +
a2A44

a2 + (a1 − 1)φ
Y

, Ã3n =
A1n(1 − a1)(φπ − 1)

a2 + (a1 − 1)φ
Y

,

A51 = Ã51, A52 = Ã52, A53 = Ã53, A54 = Ã54, Ã5n = A1nφπ + A3nφ
Y
.

When the forward-looking policy responds also to current output, i.e. j = 0, φ
R

= 0 in (1),

the system takes the same form as (10) with the same coefficient matrix A as (30), except

A21 = Ā21, A22 = Ā22 + 1, A23 = Ā23 + σφ
Y
, A24 = Ā24, Ā2n = σA1n(φπ − 1),

A31 = Ā31, A32 = Ā32 + A42, A33 = Ā33 + A43 +
(1 − α)φ

Y

a2

, A34 = Ā34 + A44,

Ā3n = (1 − α)
[
A1n(φπ − 1)

a2

− A2n

σ

]
,

A51 = Ā51, A52 = Ā52, A53 = Ā53 + φY , A54 = Ā54, Ā5n = A1nφπ.

The characteristic equation of the coefficient matrix A is given by

µ P (µ) = µ
(
µ4 + h3µ

3 + h2µ
2 + h1µ + h0

)
= 0,
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where

h3 = −2 − 1
β
− δ(1 − sI )

sI

+
λa1

βa2

(φπ − 1) − 1 − a1

a2

φ
Y
,

h2 =
1
β

+
(

1 +
1
β

)[
1 +

δ(1 − s
I
)

sI

]
− λ

βa2

{
α + a1

[
1 +

δ(1 − s
I
)

sI

]}
(φπ − 1)

+
{

(1 − a1)[2 − δ + β(1 − δ)2]
βa2(1 − δ)

+
δsC σ

s
I

}
φ

Y
,

h1 = −
[
1 +

δ(1 − sI )
sI

][
1
β
− λα

βa2

(φπ − 1)
]
−

{
(1 − a1)[1 + β(1 − δ)(2 − δ)]

β2a2(1 − δ)
+

δsC σ

βsI

}
φ

Y
,

h0 =
1 − a1

β2a2

φY .

When the forward-looking policy responds also to current consumption as in (18), the

system takes the same form as (10) with the same coefficient matrix A as the one with the

policy response to current output, except A22 = Ā22 + σφC + 1, A23 = Ā23, A32 = Ā32 + A42 +

(1 − α)φ
C
/a2 , A33 = Ā33 + A43, A52 = Ā52 + φ

C
, A53 = Ā53.

When the forward-looking policy responds also to current investment as in (20), the system

takes the same form as (10) with the same coefficient matrix A as the one with the policy

response to current output, except A22 = Ā22 − σs
C
φ

I
/s

I
+ 1, A23 = Ā23 + σφ

I
/s

I
, A32 =

Ā32 + A42 − (1 − α)sC φI /(sI a2), A33 = Ā33 + A43 + (1 − α)φI /(sI a2), A52 = Ā52 − sCφI /sI ,

A53 = Ā53 + φ
I
/s

I
. The characteristic equation of the coefficient matrix A is given by

µ Q(µ) = µ
(
µ4 + j3µ

3 + j2µ
2 + j1µ + j0

)
= 0,

where

j3 = −2 − 1
β
− δ(1 − s

I
)

sI

+
λa1

βa2

(φπ − 1) − 1 − a1 − s
C
σa2

sI a2

φ
I
,

j2 =
1
β

+
(

1 +
1
β

)[
1 +

δ(1 − s
I
)

s
I

]
− λ

βa2

{
α + a1

[
1 +

δ(1 − s
I
)

s
I

]}
(φπ − 1)

+
{

(1 − a1)[2 − δ + β(1 − δ)2]
βs

I
a2(1 − δ)

− sC σ[1 + β(1 − δ)]
βs

I

}
φ

I
,

j1 = −
[
1 +

δ(1 − s
I
)

sI

][
1
β
− λα

βa2

(φπ − 1)
]
−

{
(1 − a1)[1 + β(1 − δ)(2 − δ)]

β2sI a2(1 − δ)
− s

C
σ(1 − δ)
βsI

}
φ

I
,

j0 =
1 − a1

β2s
I
a2

φ
I
.

In the case of the forward-looking policy with interest rate smoothing, i.e. φ
Y

= 0 in (1),

the system takes the same form as (10) with the same coefficient matrix A as the one with the
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policy response to current output, except A23 = Ā23, A25 = σφ
R
, Ā2n = σA1n[(1− φ

R
)φπ − 1],

A33 = Ā33 + A43, A35 = (1 − a1)φR
/a2 , Ā3n = (1 − α){A1n[(1 − φ

R
)φπ − 1]/a2 − A2n/σ},

A53 = Ā53, A55 = φR , Ā5n = A1n(1 − φR)φπ.

B Proof of Proposition 1

For the system’s coefficient matrix A given in Appendix A, we can show that its five eigenvalues

are two zeros and three solutions to the cubic equation

b3µ
3 + b2µ

2 + b1µ + b0 = 0,

where

b3 = a2 − (1 − a1)φY
, a1 = 1 − β(1 − δ)(1 − α), a2 = 1 − β(1 − δ),

b2 = − a2

[
2 +

1
β

+
δ(1 − s

I
)

s
I

]
+

λa1

β
(φπ − 1) +

{
(1 − α)[2 − δ + β(1 − δ)2] +

δs
C
σa2

s
I

}
φY ,

b1 =
a2

β

[
2 + β +

δ(1 + β)(1 − s
I
)

s
I

]
− λ

β

{
α + a1

[
1 +

δ(1 − s
I
)

s
I

]}
(φπ − 1)

−
{
(1 − α)

[
1
β

+ (1 − δ)(2 − δ)
]

+
δs

C
σa2

βs
I

}
φ

Y
,

b0 = − a2

β

[
1 +

δ(1 − sI )
s
I

]
+

λα

β

[
1 +

δ(1 − sI )
s
I

]
(φπ − 1) +

1 − a1

β2
φ

Y
.

Because the policy generates local determinacy of REE if and only if the matrix A has

exactly two eigenvalues inside the unit circle and the other three outside the unit circle, it

follows that the necessary and sufficient condition for determinacy is that all three solutions

to the cubic equation are outside the unit circle. Hence, determinacy requires that the cubic

equation have non-zero solutions. This implies that b0 �= 0 and the cubic equation can be

rewritten as, letting µ̃ = 1/µ,

b0 µ̃
3 + b1 µ̃

2 + b2 µ̃ + b3 = 0.

The necessary and sufficient condition is now that all three solutions to this new cubic equation

are inside the unit circle. Then, from the Schur-Cohn criterion,41 it follows that determinacy
41See e.g. Proposition 5.3 of LaSalle (1986).
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is obtained if and only if either of the following two cases is satisfied.

(Case I) b0 < 0, b0 + b1 + b2 + b3 < 0, b0 − b1 + b2 − b3 < 0, b2
0
− b2

3
> |b0b2 − b1b3 |;

(Case II) b0 > 0, b0 + b1 + b2 + b3 > 0, b0 − b1 + b2 − b3 > 0, b2
0
− b2

3
> |b0b2 − b1b3 |.

Then, the first three inequalities in (Case I) can be reduced to (11)−(13), respectively.

C Proof of Proposition 2

For the system’s coefficient matrix A given in Appendix A, we can show that its five eigenvalues

are two zeros, 1 + δ(1/s
I
− 1) > 1, and two solutions to the quadratic equation

µ2 + c1µ + c0 = 0,

where c1 = −1 − 1/β + λa1(φπ − 1)/(βa2) − σφC , c0 = 1/β − αλ(φπ − 1)/(βa2) + σφC /β,

a1 = 1 − β(1 − δ)(1 − α), and a2 = 1 − β(1 − δ).

From an analogous argument to that in the proof of Proposition 1, it follows that the

necessary and sufficient condition for local determinacy of REE is that both solutions to the

quadratic equation are outside the unit circle. By Proposition C.1 of Woodford (2003), this is

the case if and only if either of the following two cases is satisfied.

(Case I) c0 > 1, c0 + c1 > −1, c0 − c1 > −1;

(Case II) c0 + c1 < −1, c0 − c1 < −1.

The three inequalities in (Case I) can be reduced to (19). To complete the proof, it suffices

to show that (Case II) never obtains. To see this, the two inequalities in (Case II) can be

reduced to

φπ − 1 < −σ(1 − β)
λ(1 − α)

φ
C
, φπ − 1 >

2a2(1 + β)
λ(a1 + α)

+
σa2(1 + β)
λ(a1 + α)

φ
C
.

Combining these two yields a contradiction

0 <
2a2(1 + β)
λ(a1 + α)

+
σa2(1 + β)
λ(a1 + α)

φ
C

< φπ − 1 < −σ(1 − β)
λ(1 − α)

φ
C

< 0.
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D Proof of Proposition 3

For the system’s coefficient matrix A given in Appendix A, we can show that its five eigenvalues

are 0, 1 + δ(1/sI − 1) > 1, and three solutions to the cubic equation

µ3 + d2µ
2 + d1µ + d0 = 0,

where d2 = −1− 1/β + λa1 [(1− φ
R
)φπ − 1]/(βa2)− φ

R
, d1 = 1/β −αλ[(1− φ

R
)φπ − 1]/(βa2) +

[λa1/(βa2)+1+1/β]φR , d0 = −[αλ/(βa2)+1]φR/β, a1 = 1−β(1−δ)(1−α), and a2 = 1−β(1−δ).

From an argument similar to that in the proof of Proposition 1, it follows that the necessary

and sufficient condition for local determinacy of REE is that one solution to the cubic equation

is inside the unit circle and the other two are outside the unit circle. By Proposition C.2 of

Woodford (2003), this is the case if and only if either of the following two cases is satisfied.

(Case I) 1 + d2 + d1 + d0 < 0, −1 + d2 − d1 + d0 > 0;

(Case II) 1 + d2 + d1 + d0 > 0, −1 + d2 − d1 + d0 < 0, |d2 | > 3 or d0(d0 − d2) + d1 − 1 > 0.

The first two inequalities in (Case II) can be reduced to (24). To complete the proof, it

suffices to show that (Case I) never obtains. To see this, the two inequalities in (Case I) can

be reduced to

φπ >
1 + φ

R

1 − φ
R

[
1 +

2a2(1 + β)
λ(a1 + α)

]
, φπ < 1.

Combining these two yields a contradiction

1 <
1 + φ

R

1 − φ
R

[
1 +

2a2(1 + β)
λ(a1 + α)

]
< φπ < 1.

E Coefficient matrices in system (26)

The coefficient matrices F,G,H of system (26) are given by, letting a2 = 1 − β(1 − δ),

F =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0

0 0 0 a2
1−α

0 −s
C

1 − s
I
δ

1 −λ
σ − λα

1−α 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
, G =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

−σ(φπ − 1) 1 0 0

−(φπ − 1) a2
σ

a2
1−α 0

0 0 0 0

β 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
, H =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

− s
I
(1−δ)

δ

− λα
1−α

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
.
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Table 1: Baseline calibration

β discount factor 0.99

σ intertemporal substitution elasticity of consumption 1

λ real marginal cost elasticity of inflation 1/3

α cost share of capital 1/3

δ depreciation rate of capital 0.02

s
C

steady state output share of consumption 0.7

s
I

steady state output share of investment 0.3

ρ autoregression parameter for preference shocks 0.35
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Figure 1: Region of policy coefficients generating local determinacy of REE: case of expected future

output
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Figure 2: Region of policy coefficients generating local determinacy of REE: case of current output
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Figure 3: Region of policy coefficients generating local determinacy of REE: case of current consumption
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Figure 4: Regions of policy coefficients ensuring local determinacy of REE: case of current investment
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Figure 5: Region of policy coefficients generating local determinacy of REE: case of interest rate

smoothing
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