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Abstract

Regime-switching rational expectations models, in which the parameters of
the model evolve according to a finite state Markov process, have properties
that differentiate them from linear models. Issues that are well understood in
linear contexts, such as equilibrium determinacy and stability under adaptive
learning, re-emerge in this new context. This paper outlines these issues and
defines two classes of equilibria that emerge from regime-switching models. The
distinguishing feature between the two classes is whether the conditional density
of the endogenous state variables depends on past regimes. An assumption on
whether agents condition their expectations on past regimes has important im-
plications for determinacy and equilibrium dynamics. The paper addresses the
stability properties of the different classes of equilibria under adaptive learning,
extending the learning literature to a non-linear framework.
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1 Introduction

A given forward-looking macroeconomic model may admit different classes of ratio-
nal expectations equilibria. Solutions can differ in terms of the set of state variables
that agents use when forming expectations. For example, standard linear stochastic
rational expectations models, depending on the precise parameterization, may admit
minimal state variable solutions or solutions that depend on extrinsic random vari-
ables (i.e. sunspots). These existence issues are well understood in linear models with
constant parameters; however, in a growing area of research that focuses on models
with changing parameters, these issues are re-emerging.1 In regime-switching mod-
els, which constitute the focus of this paper, parameters evolve according to a finite
state Markov process. Since the parameters of the resulting expectational difference
equation evolve stochastically, regime switching models incorporate – in a non-linear
manner – state variables not present in their constant parameter counterparts. The
method for characterizing solutions to models that take this form, and the appropriate
class of solutions to consider, are open – and much debated – questions.

This paper addresses the existence and stability of different classes of rational
expectations equilibria in regime-switching models. The non-linear structure of the
model prevents a complete characterization of the full class of rational expectations
solutions and so, motivated by the work of Davig and Leeper (2007) and Farmer,
Waggoner and Zha (2007), we define and illustrate the properties of two classes of
solutions. The distinguishing feature between the two classes is whether the resulting
equilibrium’s conditional distribution exhibits explicit dependence on both current
and lagged regimes. To fix terminology, we define the class where lagged regimes are
restricted from entering the state vector as Regime-Dependent Equilibria (RDE) and
the other class, where lagged regimes enter the state vector, as History-Dependent
Equilibria (HDE).

Each class of equilibria in this paper has been recently analyzed in the context of
some ‘off-the-shelf’ macroeconomic models. For example, Davig and Leeper (2007)
introduce a condition known as the Long Run Taylor Principle (LRTP) that ensures
a unique RDE. Farmer, Waggoner, and Zha (2006, 2007) expand on this work by
constructing an HDE admitting sunspot shocks even when the LRTP holds, implying
that indeterminacy may be an even greater concern in models with regime-switching.
This paper generalizes some of these earlier results in a multivariate setting. Adapting
Davig-Leeper, whose LRTP is defined in the context of monetary models, we intro-
duce the Conditionally Linear Determinacy Condition (CLDC) – whose meaning will
become apparent below – as the condition that guarantees existence of a unique RDE.

1Some examples of work in this area include Leeper and Zha (2003), Andolfatto and Gomme
(2003), Davig (2004), Zampolli (2006), Chung, Davig and Leeper (2007), Davig and Leeper (2007),
Farmer, Waggoner, and Zha (2006, 2007), and Svensson and Williams (2007). Brainard (1967) is an
early example of work on parameter instability.

2



Also, adapting the main theorem of Farmer, Waggoner, and Zha (2007), we generalize
the representation of HDE.

Since the essential distinction between RDE and HDE concerns the variables on
which agents condition when forming expectations, it is natural to ask whether, and
under what conditions, an equilibrium can emerge if agents formulate expectations
using a reasonable learning algorithm. This bounded rationality perspective follows
an extensive literature in dynamic macroeconomics that adopts learning as an equilib-
rium selection device: a rational expectations equilibrium is considered theoretically
plausible if it can be obtained through a reasonable learning process on the part of
agents.2 This paper studies the stability under learning of RDE and HDE, thereby ex-
tending the learning literature, which usually focuses on linear models, to a non-linear
framework.

This paper adopts the viewpoint that rational expectations equilibria are plausible
only if they are attainable through a process of learning on the part of private-sector
agents. As is standard in the learning literature, agents employ forecasting models
consistent with the class of equilibria under consideration and update the parameters
of the forecasting models as new data become available. Agents form expectations
using their forecasting models, and we then determine whether the economy converges
over time to a rational expectations equilibrium.

Of central interest to us is whether sunspot equilibria, within either the RDE
or HDE class, can be stable under learning. In a constant parameters model, the
stability under learning of a sunspot equilibrium may depend on the functional form
of the forecasting model used by agents, and furthermore, a given sunspot equilibrium
may be consistent with a number of natural forecasting models. For example, Evans
and McGough (2005) show that, in a simple univariate model with a lag, if agents use
a “general form representation” as their forecasting model – in which they condition
on two lags of the endogenous variable and an unforecastable susnpot shock – then
the associated equilibrium is not stable under learning. However, if agents adopt a
“common factor representation” as their forecasting model – in which they condition
on one lag of the endogenous variable and a forecastable sunspot shock – then the
associated rational expectations equilibrium may be stable under learning.

Building on the insight that stability may depend on the particular forecasting
model adopted by agents, this paper generalizes the notions of general form and
common factor representations to regime-switching models. A primary result of this
paper is that if there exists a unique RDE and simultaneously there exist HDE, then
the unique RDE and the HDE are E-stable provided agents use a common factor
representation. Conversely, in two examples, the general form representations of
HDE are E-unstable.

2This view has been most forcefully advanced by Bray and Savin (1986), Marcet and Sargent
(1989), Evans and Honkapohja (2001), and Bullard and Mitra (2002).
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A theoretical contribution of this paper is that it provides a formal definition of
rational expectations equilibria in regime switching models and illustrates the key
dynamic and equilibrium selection properties of these equilibria. The results of the
paper are distinct from constant parameter models and suggest that a priority for
future research should be to test the distinct empirical implications of RDE and
HDE and to study the design of rule based monetary policy in Markov switching
environments.3

The paper is organized as follows : Section 2 introduces the techniques and ap-
proach we apply to regime switching models by first presenting results for the special
case of constant parameters; Section 3 defines the two classes of equilibria and studies
E-stability for each class of equilibria, Section 4 provides two examples that illustrate
the general results, and considers real time learning; Section 5 presents further dis-
cussion; and, Section 6 concludes.

2 Equilibria and learning in a constant parameters

model

To fix ideas, we begin by presenting results on equilibrium characterization and learn-
ing in a multivariate forward-looking linear model with an autoregressive shock. The
analysis that follows is a generalization of results in Evans and Honkapohja (2001)
and Evans and McGough (2005). Although the paper’s main results are in the fol-
lowing sections, it is useful to begin with the constant parameter model to illustrate
the techniques and approach to solving regime-switching models.

The model is given by

yt = βEtyt+1 + γrt, (1)

rt = ρrt−1 + εt, (2)

where yt is an (n × 1) vector of random variables, β and γ are conformable matri-
ces, with β invertible and having distinct eigenvalues, and rt is a (k × 1) exogenous
stationary VAR(1) process.4

A rational expectations equilibrium of the model is a solution to (1) that also satis-
fies a boundary condition. Often the definition of the boundary condition is somewhat

3Svensson and Williams (2007) derive a framework for designing optimal policy from a time-
less perspective in general Markov-switching environments. Whether the instrument rules that
implement those policies avoid the multiple equilibria problem is an open question. Though, it is
well-known (e.g. Bernanke and Woodford (1997)) that, in constant parameter models, the nominal
interest rate rules that implement optimal policy may render a model indeterminate.

4If β does not have distinct eigenvalues, the results presented here can be obtained using the
Jordan decomposition.
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vague, given as “non-explosiveness” and justified by appealing to a transversality
condition, even though the usual transversality condition implies that solutions not
explode “too quickly.”As an alternative, sometimes the boundary condition requires
the paths of variables in a rational expectations equilibrium remain conditionally
uniformly bounded, such as in Evans and McGough (2005).

For our purposes, a strong notion of boundedness is useful. Specifically, we will
focus on processes satisfying the following property:

Definition. A stochastic process yt, with initial condition y0 is uniformly bounded
(almost everywhere) or UB if ∃M (y0) so that supt ||yt||∞ < M (y0), where || · ||∞ is
the L∞ or “essential supremum” norm.

With this definition available, we may define a rational expectations equilibrium:

Definition. A Rational Expectations Equilibrium is any UB stochastic process sat-
isfying (11).

While uniformly bounded (UB) may appear to be an a priori strong notion of
boundedness, it is common in the linear rational expectations literature. In linear
models with constant parameters, uniform boundedness is consistent with the usual
notion of model determinacy, such as in Blanchard and Kahn (1980). Also, UB
“bounds the paths” of all endogenous variables and is often desirable when using a
first-order approximation to a nonlinear model around a fixed point, such as a steady
state. Deviations too far from the steady state can render the dynamics from the first-
order approximation invalid. Instead of bounding the paths, however, the following
alternative assumption bounds expectations:

Definition. A stochastic process yt is conditionally uniformly bounded (CUB) in
expectation if supt Et|yt+s| < ∞.

Conditionally uniformly bounded (CUB) processes remain bounded in expecta-
tion, but may assume temporarily explosive trajectories. An alternative notion of
boundedness, mean-square stability, has been advanced in the engineering literature
and requires a particular bound placed on the first two unconditional moments of
a stochastic process. Svensson and Williams (2007) adopt these bounds when solv-
ing linear-quadratic policy problems in forward-looking rational expectations models
with regime-switching parameters. For an example of CUB solutions in a Markov-
switching context see Farmer, Waggoner, and Zha (2006).

In many linear, constant-parameter models, the two definitions of boundedness are
operationally equivalent.5 In a regime-switching framework, expectations can remain
bounded, but the path of a variable can temporarily diverge. So, the definitions have
different implications for equilibrium dynamics in a switching model when assessing

5Of course, the literature on recurrent rational bubbles is a notable exception.
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conditions delivering a unique “bounded” equilibrium. Throughout, we will define
rational expectations solutions so that the equilibria are uniformly bounded. We
will briefly discuss the implication of relaxing the UB assumption and demonstrate
that sunspot equilibria abound if one is willing to accept CUB as the appropriate
restriction on equilibrium processes.

2.1 Determinacy and Equilibrium Representation

The model (1) is often called determinate if it has a unique rational expectations equi-
librium – that is, if there is a unique UB solution to (1) – and indeterminate if there
are multiple rational expectations equilibria. Methods of assessing the determinacy
properties of (1) are well-known – see e.g. Blanchard and Kahn (1980). This simple
model is determinate if and only if all eigenvalues of β are inside the unit circle.

If the model is determinate, the unique rational expectations equilibrium may be
written yt = brt where6

vec(b) = (In − ρ′ ⊗ β)
−1

vec(γ).

and b is n × k. In the case of indeterminacy, there is still a solution of the form
yt = brt – often called the minimal state variable (MSV) solution – but there are also
many others. Let Λu ⊕ Λs be the diagonal matrix of the eigenvalues of β−1 written
in decreasing order of modulus so that the nu eigenvalues outside the unit circle are
those on the diagonal of Λu, and the ns eigenvalues inside the unit circle are those on
the diagonal of Λs. Write

S (Λu ⊕ Λs ⊕ ρ) S−1 =

(
β−1 −β−1γ
0 ρ

)
.

It can be shown that yt is a rational expectations equilibrium if and only if there is
an ns-dimensional martingale difference sequence ξt and nu × (ns + k) matrix Q so
that (

yt

rt

)
= S(0 ⊕ Λs ⊕ ρ)S−1

(
yt−1

rt−1

)
+

(
Q

I(ns+k)

)(
ξt

εt

)
. (3)

Equivalently, since rt is exogenous, we may take yt to solve

yt = byt−1 + crt−1 + ξ̃t (4)

where ξ̃t is a linear combination of the exogenous shock εt and the sunspot ξt, and
the coefficients b and c can be calculated from (3). Equation (4) is the general form
representation of the sunspot equilibria to (1).

6Throughout the paper, ⊗ is the Kronecker product and ⊕ denotes direct summation.
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The sunspot equilibrium represented by equation (4) can be equivalently expressed
in terms of a common factor representation (Evans and McGough (2005)). To this
end, define the ns + k dimensional exogenous process ηt as follows:

ηt = (Λs ⊕ ρ)ηt−1 +
(

0 Ins+k

)
S−1

(
Q

Ins+k

)(
ξt

εt

)
. (5)

Now notice that

S−1

(
yt

rt

)
=

(
0

Ins+k

)
ηt,

implying that yt satisfies
yt = brt + cηt, (6)

for appropriate b and c. The equation (6) is the common factor representation of the
sunspot equilibria to (1), and ηt are common factor sunspots. This alternate represen-
tation for sunspot equilibria is really quite natural since it consists of a term bearing
resemblance to an MSV solution plus a common factor sunspot. MSV solutions are
often stable under learning, so the resemblance of the common factor representation
to the MSV solution gives insight into why equilibria in this form may be stable under
learning.

2.2 Stability Under Learning: E-stability

Consider again the constant parameters model

yt = βE∗

t yt+1 + γrt, (7)

now written with a (possibly) boundedly rational expectations operator E∗. The
learning approach is quite simple: instead of assuming agents in the economy are ra-
tional, they are taken to be boundedly rational in the sense that they forecast using a
reduced-form model consistent with a rational expectations equilibrium except they
do not know the parameters. Over time, agents update their parameter estimates;
if these estimates settle down (asymptotically) to the equilibrium parameter values,
then the rational expectations equilibrium is stable. Operationally, agents update
the parameters of their forecasting model via a recursive algorithm as new data be-
comes available; they form expectations using the updated forecasting model; these
expectations are imposed in (7), thereby generating new data.

We first consider the case where the model is determinate and then, below, we
examine the indeterminate case. When the model is determinate, there exists a
unique equilibrium that has the form yt = brt. Agents have a perceived law of motion
(i.e. a forecasting model) whose functional form is consistent with the equilibrium
representation

yt = A + Brt. (8)
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While there is no constant in the equilibrium representation yt = brt, it is standard
to allow agents to consider the possibility that there may be a constant term so as to
require agents to learn the steady-state values of y as well.

The parameters A and B capture agents’ perceptions of the relationship between
y and r and may be estimated using, for example, recursive least squares. Let At and
Bt be the respective estimates using data up to time t. Agents form forecasts using
the perceived law of motion E∗

t yt+1 = At−1 + Bt−1ρrt. Plugging these forecasts into
(7) leads to the actual law of motion

yt = βAt−1 + (βBt−1ρ + γ)rt.

Here we assume that agents know the true process governing rt. The actual law of
motion illustrates the manner in which time t endogenous variables are determined
by perceptions (At−1, Bt−1) and realizations of rt. Given new data on yt agents then
update the forecasting model to obtain (At, Bt). The unique rational expectations
equilibrium yt = brt is stable under learning if (At, Bt) → (0, b) almost surely. Sta-
bility under learning is non-trivial precisely because of the self-referential nature of
rational expectations models. That is, the actual law of motion depends on the
perceptions At−1, Bt−1 and convergence is not obvious.

While assessing the asymptotic behavior of the non-linear stochastic process (At, Bt)
is quite difficult, there is an extensive literature that demonstrates the technical re-
quirements for convergence often reduce to a fairly simple and intuitive condition
known as E-stability ( see Evans and Honkapohja (2001)). To illustrate, suppose
agents hold generic beliefs (A,B). The actual law of motion then defines a map
T : R

n ⊕ R
n×k → R

n ⊕ R
n×k that takes perceived coefficients to actual coefficients

T (A,B) = (βA, βBρ + γ).

Notice that the fixed point of the T-map identifies the unique rational expectations
equilibrium of the model. The rational expectations equilibrium is said to be E-stable
if it is a locally asymptotically stable fixed point of the ordinary differential equation
(o.d.e.)

d(A,B)

dτ
= T (A,B) − (A,B). (9)

The E-stability Principle states that if agents use recursive least squares – or, similar
reasonable learning algorithms – then E-stable rational expectations equilibria are lo-
cally stable under learning.7 In this simple example, if (0, b) is a locally asymptotically
stable fixed point of (9) then (At, Bt) → (0, b) almost surely.

The economic intuition behind the E-stability principle is that reasonable learning
algorithms dictate that agents update their parameter estimates in the direction of

7The connection between E-stability of an rational expectations equilibrium and its stability
under real time learning is quite deep: see Evans and Honkapohja (2001) for details.
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forecast errors. This is evident in (9), as T (A,B) − (A,B) is, in a sense, a forecast
error. If the resting point of the o.d.e. is stable then adjusting parameters in the
direction of the forecast error will lead the parameters toward the rational expecta-
tions equilibrium. Conveniently, conditions for local asymptotic stability are easily
computed by examining the eigenvalues of the Jacobian matrix DT . If all eigenvalues
of DT have real parts less than one then the rational expectations equilibrium is
E-stable. For the case at hand, the derivatives are given by β and ρ′ ⊗ β.8 Since the
model is determinate by assumption, the eigenvalues of β are inside the unit circle
and so the rational expectations equilibrium is stable under learning.

Now take the case where the model is indeterminate and there exists a continuum
of equilibria. Each equilibrium has a general form representation and a common
factor representation. Suppose first that agents observe a common factor sunspot ηt

and forms expectations using a forecasting model of the form

yt = A + Brt + Cηt, (10)

where η satisfies (5). The T-map is precisely the same as the determinate case for the
perceived parameters A and B, so the common factor representations often have the
same stability properties as MSV solutions. The additional component of the T-map
is C → βC(Λs⊕ρ). The derivatives DT are as above and (Λs⊕ρ)⊗β so that stability
hinges on the eigenvalues of β. Because the model is now indeterminate, some of the
eigenvalues of β will have modulus larger than one. However, as long as all these
eigenvalues have real part less than one, then the sunspot equilibrium will be stable
under learning. Thus, E-stability obtains for eigenvalues of β sufficiently negative.

Now suppose agents observe a martingale difference sequence sunspot ξt and form
expectations using a forecasting model consistent with the general form representation
(4):

yt = A + Byt−1 + Crt + Drt−1 + Fξt.

Computing the T-map provides the following derivatives

DTA = β (I + b)

DTB = b′ ⊗ β + I ⊗ (βb)

DTC = ρ′ ⊗ β + I ⊗ (βb)

DTD = DTF = βb

where b is the coefficient obtained from (4). The complicated nature of the derivatives
DT makes general statements difficult, but the central insight emerges clearly in the
univariate case (i.e. n = 1). In this case, b = β−1 implying that DTB = 2. So if
agents use general form representations to form expectations, then for n = 1, the

8Here, and below, we exploit that when the T-map decouples, we can compute derivatives sepa-
rately. Also, recall that the eigenvalues of the Kronecker product are the products of the eigenvalues.
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sunspot equilibria are never stable under learning. Also, in the univariate case, if
β < −1 then the model is indeterminate and, moreover, if agents use common factor
representations to form expectations, then the susnpot equilibria are stable under
learning. These results in the constant parameter case underscore that stability may
depend on the functional form of the forecasting model. The next Section expands
on the implications for learning of the different representations in a regime-switching
framework.

3 Equilibria and Learning In A Regime Switching

Model

We now relax the assumption of constant parameters in rational expectations models
and characterize two classes of equilibria. We focus on models whose reduced form
consists of a system of non-linear expectational difference equations such as

yt = βtEtyt+1 + γtrt, (11)

rt = ρrt−1 + εt, (12)

where yt is an (n× 1) vector of random variables, βt and γt are conformable matrices
that follow an m state Markov process with (βt = βi, γt = γi) ⇔ st = i, i = 1, 2, ...,m,
and rt is a (k × 1) exogenous stationary VAR(1) process independent of sj for all j.
The stochastic matrix P governs the evolution of the state, st, and contains elements

pij ≡ Pr [st = j|st−1 = i] ,

for i, j ∈ {1, 2, ...,m}. P is taken to be recurrent and aperiodic, so that it has a
unique stationary distribution Π. For simplicity, βi is taken to be invertible for all
i. Davig and Leeper (2007) consider a version of this model in the context of a
univariate monetary model and a bivariate New Keynesian model. Most macroeco-
nomic models feature expectational structures similar to (11) – albeit with constant
parameters – making (11) a natural laboratory to study the existence and stability of
rational expectations equilibria in regime-switching models. In Section 4, we present
a univariate example and New Keynesian example.

Analogous to the definition in Section 2, a rational expectations equilibrium is any
UB process satisfying (11). However, an important difference that arises in regime-
switching rational expectations models, versus constant-parameter models, is that
agents incorporate the probability of a regime change into their expectations. The
resulting non-linear structure that is inherent in such models presents difficulties when
seeking to characterize the full class of rational expectations equilibria. However, two
classes naturally emerge, which we define as Regime-Dependent Equilibria (RDE) and
History-Dependent Equilibria (HDE).
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3.1 Regime-Dependent Equilibria

3.1.1 Definition and Existence

The first class follows Davig and Leeper (2007) and focuses on state-contingent so-
lutions that allow the current realization of the regime, st, to enter the state vector,
but are otherwise independent of its history. The state vector also includes current
realizations of the exogenous shocks, as well as (possibly) sunspot variables. Formally,
the definition for an RDE is as follows:

Definition. Let st be the Markov process governed by P and taking values in
{1, 2, ...,m}. Let yt be a solution to (11). Then yt is a Regime Dependent Equi-
librium (RDE) if it is uniformly bounded and there exist uniformly bounded stochas-
tic processes y1t, y2t, ..., ymt, with yit independent of st+j for all integers j, such that
yt = yit ⇔ st = i.

In an RDE, depending on the realization of st, yt can take on realizations from m
stochastic processes, with each process being independent of the Markov state. To
compute these equilibria, condition (11) on each regime to get the following system

y1t = β1p11Ety1t+1 + β1p12Ety2t+1 + · · · + β1p1mEtymt+1 + γ1rt,

y2t = β2p21Ety1t+1 + β2p22Ety2t+1 + · · · + β2p2mEtymt+1 + γ2rt,
...

...
...

ymt = βmpm1Ety1t+1 + βmpm2Ety2t+1 + · · · + βmpmmEtymt+1 + γmrt,

which governs dynamics for yit for i = 1, 2, ...,m.9 The system can be recast in the
form of a ‘stacked system’, which has a more compact representation.

Definition. The Stacked System associated with the switching model (11) is the
system of multivariate linear expectational difference equations

ŷt = (⊕m
j=1βj)(P ⊗ In)Etŷt+1 + γrt (13)

where ŷt = [y′

1t, y
′

2t, ..., y
′

mt]
′ and γ′ = (γ′

1, . . . , γ
′

m)′.

The following proposition summarizes the relationship between solutions to the
stacked system (13) and UB solutions to (11).

Proposition 1 There is a bijection between the RDE of (11) and UB solutions to
(13). Specifically,

1. If ŷt solves (13) and is UB then yt = ŷit ⇔ st = i is an RDE.

9The reason history independence is needed in the definition of an RDE should now be clear.
Independence allows us to write Etyit+1 in each row of the stacked system independently of st.
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2. If yt = yit ⇔ st = i is an RDE then ŷt = (y′

1t, y
′

2t, ..., y
′

mt)
′ is a UB solution to

(13).

All proofs are contained in the Appendix. The power of this proposition is that
all the results and techniques reviewed in Section 2 can be brought to bear on the
stacked system (13). For example, necessary and sufficient conditions for a unique
RDE are as follows:

Corollary 2 There is a unique RDE if and only if the eigenvalues of (⊕m
j=1βj)(P⊗In)

are inside the unit circle.

In the context of monetary analysis, Davig and Leeper (2007) refer to the unique-
ness condition as the Long Run Taylor Principle (LRTP). In this respect, Davig and
Leeper (2007) completely characterize the uniqueness conditions for RDE in some
standard monetary models. Davig and Leeper, however, restrict attention to mod-
els with monetary policies with positive feedback so that the eigenvalues of ⊕βj are
positive. The condition in Corollary 2 is more general and so we refer to it as the
Conditionally Linear Determinacy Condition (CLDC), since it is the necessary and
sufficient condition for existence of a unique RDE.

In a monetary model, the CLDC permits a central bank to briefly engage in
‘dovish’ monetary policy without inducing sunspot equilibria, though such policy does
result in greater volatility in response to exogenous shocks. To illustrate intuition,
Davig and Leeper (2007) present a simple example of a univariate monetary model
with a closed form solution and an analytically tractable uniqueness condition. The
example assumes st ∈ {1, 2} and yt is univariate. The following corollary gives the
CLDC for this special case.

Corollary 3 For st ∈ {1, 2}, β−1
i > 1 for some i and β−1

i > pii for all i, there exists
a unique RDE if and only if

β1β2 + (1 − β2)β1p11 + (1 − β1)β2p22 < 1. (14)

Subsequent sections show a close connection between the conditions for unique RDE
and E-stable rational expectations equilibria, and so the CLDC takes on added im-
portance below.

3.1.2 E-Stability of RDE

We now consider representations of RDE and their stability properties under learning.
Suppose conditions for a unique RDE are satisfied then the unique RDE will have
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the following minimal state variable representation

yt = B(st)rt. (15)

To solve for B(st) for st ∈ {1, 2, ...,m}, use the stacked system and set B = (B(1)′, ..., B(m)′)′,
which yields ŷt = Brt, where

vec(B) =
(
Inm − ρ′ ⊗

(
⊕m

j=1βj

)
(P ⊗ In)

)−1
vec(γ).

It is worth remarking at this point that the class of RDE includes the MSV solution
to the regime-switching model.

When the uniqueness conditions are not satisfied, the RDE may depend on ex-
traneous sunspot variables. In this case, we may proceed to analyze the stacked
system using precisely the methods described in Section 2. In particular, if the ma-

trix
((
⊕m

j=1βj

)
(P ⊗ In)

)−1
has ns eigenvalues inside the unit circle then for each

ns-dimensional martingale difference sequence ξt there is a martingale difference se-
quence ξ̃t and an equilibrium ŷt with a general form representation given by

ŷt = bŷt−1 + crt−1 + ξ̃t, (16)

There is a sense, though, in which the general form sunspot equilibria are not ‘in the
spirit’ of regime dependent equilibria. In (16) the reduced-form expression depends
explicitly on ŷt−1 and so to forecast using this equation agents will condition on both
st and st−1. It is more natural instead to focus on common factor sunspots. It
is straightforward to verify that there also exists an ns + k-dimensional martingale
difference sequence ξ̂t so that if10

ηt = (Λns
⊕ ρ)ηt−1 + ξ̂t (17)

then ŷt has the common factor representation

ŷt = brt + cηt. (18)

Here, Λs has the stable eigenvalues of
((
⊕m

j=1βj

)
(P ⊗ In)

)−1
on its diagonal. Finally,

if (i.) ξ̂t is any ns + k-dimensional martingale difference sequence, (ii.) ηt satisfies
(17), and (iii.) ŷt satisfies (18) then ŷt is an RDE.

Using the representations (15) and (18) as our guide to specifying a perceived
law of motion, we now turn to the stability of RDE under learning. Throughout, we
assume that agents observe the current state st and know the true transition prob-
abilities. This is consistent with the conventions of the adaptive learning literature
that assumes agents observe contemporaneous exogenous variables, but not current
values of endogenous variables.

10ξ̂t is also a linear combination of εt and ξt.
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First, assume the CLDC is satisfied so that there is a unique RDE – that is, the
eigenvalues of

(
⊕m

j=1βj

)
(P ⊗ In) are inside the unit circle. Agents have a perceived

law of motion (PLM) of the following form, which is consistent with the MSV solution,

yt = A(st) + B(st)rt (19)

where A(j) is (n×1), and B(j) is (n×k). Notice that, just as in Section 2, we assume
that agents do not know that in equilibrium the Ai = 0.11

Given the PLM in (19), expectations are state contingent, where st = j implies

Et [yt+1|st = j] = pj1A(1) + pj2A(2) + ... + pjmA(m) + (20)

(pj1B(1) + pj2B(2) + ... + pjmB(m)) ρrt. (21)

This produces a state-contingent ALM, or, equivalently, a state-contingent T-map

A(j) → βj (pj1A(1) + pj2A(2) + ... + pjmA(m))

B(j) → βj (pj1B(1) + pj2B(2) + ... + pjmB(m)) ρ + γj.

Conveniently, this state-contingent T-map may be stacked, and becomes the T-map
associated to the stacked system under the PLM ŷt = A + Brt, where, as before,
B = (B(1)′, ..., B(m)′)′, and also A = (A(1)′, ..., A(m)′)′. The T-map is given by

T (A,B)′ =
((
⊕m

j=1βj

)
(P ⊗ In) A,

(
⊕m

j=1βj

)
(P ⊗ In) Bρ + γ

)
,

and the RDE is a fixed point of T (A,B). Here T : R
(nm×1) ⊕ R

(nm×k) → R
(nm×1) ⊕

R
(nm×k).

The eigenvalues of the Jacobian matrices

DTA =
(
⊕m

j=1βj

)
(P ⊗ In)

DTB = ρ′ ⊗
[(
⊕m

j=1βj

)
(P ⊗ In)

]

govern E-stability. Thus, we obtain the following result:

Proposition 4 If the eigenvalues of (⊕m
j=1βj)(P ⊗ In) are inside the unit circle (i.e.

the CLDC holds), then the unique RDE is E-stable.

11In the univariate case below, we consider real time learning based on an alternative perceived
law of motion of the following form

yt = A + Â(st − 1) + Brt + B̂(st − 1)rt,

where st acts as a dummy variable. While this formulation is more natural for real time learning,
the E-stability results are identical in both cases and so we focus on the more parsimonious (19) As
an additional alternative, agents can have a PLM with the same form as the stacked system.
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This result states that an economy described by the main expectational difference
equation (11), with expectations formed using (20) and updated using least squares,
will converge to the unique RDE.

Now we turn to the case of multiple RDE. To examine the stability of RDE
sunspot solutions we assume agents have a PLM consistent with the common factor
representation of yt. As discussed above, examining E-stability based on the general
form representation of the RDE is not natural because it involves a lagged term, which
will make the perceived law of motion depend on st−1, which is not in the spirit of
regime dependent equilibria.

Assume
((
⊕m

j=1βj

)
(P ⊗ In)

)−1
is diagonalizable and has ns eigenvalues inside the

unit circle. For a given ns-dimensional martingale difference sequence ξt let

ηt = (Λns
⊕ ρ)ηt−1 + ξ̂t. (22)

be the associated common factor sunspot. Agents are given the PLM

ŷt = A(st) + B(st)rt + C(st)ηt, (23)

where the dimension of C(st) is n× (ns + k). Setting C = (C(1)′, ..., C(m)′)′, we find
that the T-maps for A and B are the same as in case of unique RDE, and the T-map
for C is given by

C →
(
⊕m

j=1βj

)
(P ⊗ In) C(Λns

⊕ ρ),

so
DTC = (Λns

⊕ ρ)′ ⊗
((
⊕m

j=1βj

)
(P ⊗ In)

)
.

The following proposition summarizes the stability properties for the common factor
representation of sunspot RDE.

Proposition 5 Common factor RDE sunspot solutions are E-stable provided the real
parts of the diagonal entries in Λ−1

ns
are less than −1.

This proposition indicates that common factor sunspot representations of the RDE
will not be E-stable unless the economic model generates sufficiently strong negative
feedback. The canonical New Keynesian model, augmented with a nominal inter-
est rate rule that responds to inflation and output, features positive expectational
feedback. Other interest rate rules – for example, a rule that responds to expected
inflation and output – may generate negative feedback.

3.2 History Dependent Equilibria

3.2.1 Definition and Existence

Farmer, Waggoner, and Zha (2007) consider whether UB solutions exist that are not
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within the class of RDE. They show that UB solutions admitting sunspots do exist,
even when there is a unique RDE. The central element in Farmer, Waggoner, and
Zha (2006, 2007) (FWZ), is they allow lagged states to enter the state vector. That
is, FWZ have agents conditioning their expectations on an expanded state vector
that includes st−1. For this reason, we call the class of solutions History Dependent
Equilibria (HDE). By assuming agents condition on current and past realizations of
the state variable st, the class of bounded equilibria now include solutions that depend
on arbitrary sunspot variables.

Definition. Let st be the Markov process governed by P , taking values in {1, 2, ...,m}.
Let yt be a solution to (11). Then yt is a History Dependent Equilibrium (HDE) if it is
uniformly bounded and its distribution conditional on st differs from its distribution
conditional on st and st−1; that is, yt|st 6∼ yt|(st, st−1).

Remark. The definition of a History Dependent Equilibrium restricts solutions to
the class of uniformly bounded stochastic processes whose conditional density exhibits
dependence on st and st−1. Notice that if yt is an RDE then yt|st ∼ yt|(st, st−1). Then
by definition and Proposition 1, HDE can not solve the stacked system.

We now turn to representations of HDE, which we use to conduct stability anal-
ysis. We illustrate representations and stability results assuming γt = 0 for all t, as
the presence of exogenous shocks do not alter the results and do distract from the
presentation. Note that if ξt is any m.d.s., then yt = β−1

t−1yt−1 + ξt is a solution to
(11). Farmer, Waggoner, and Zha (2007) show that there exist multiple uniformly
bounded HDE that have the following representation

yt =

(
cst−1

v′
st−1

vst−1

vst
v′

st−1

)
yt−1 + vst

ξt, (24)

provided there exists c1, . . . , cm and v = (v′

1, . . . , v
′

m)′ 6= 0 so that |cj| ≤ 1 and c and
v solve [(

⊕m
j=1βj

)−1
−
((
⊕m

j=1cj

)
P
)
⊗ In

]
v = 0. (25)

Here ξt is independent of st+n for all n. The condition (25) is essentially derived
from the method of undetermined coefficients. When (25) is satisfied, solutions to
the representation (24) are solutions to (11).12 The construction of the autoregressive
parameter in the representation (24) is chosen so that, regardless of the history of
realizations of st, these parameters are bounded in matrix norm and, hence, the
solutions are uniformly bounded.

The HDE also have a common factor representation, which we take to have the

12If one were to literally use the method of undetermined coefficients, the v in (25) would be yt.
However, if v is taken to be a vector of initial conditions chosen to lie on the stable manifold, and
if (25) is satisfied at t = 1, then it will be satisfied for all t.
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form
yt = ηt (26)

where

ηt =

(
cst−1

v′
st−1

vst−1

vst
v′

st−1

)
ηt−1 + vst

ξt.

The common factor representation here is different in nature than in the constant
parameters model and the RDE where the extrinsic noise was independent of st.
Here the dependence is explicit in the autoregressive parameter. This has important
implications for stability under learning of HDE.

Farmer, Waggoner, and Zha (2007) illustrate that in a multivariate model, it is
possible for there to exist HDE even when the RDE is unique. In this case, conditions
ensuring uniqueness within the class of RDE, such as the CLDC, does not ensure
equilibrium determinacy in the regime-switching rational expectations framework.

By defining HDE as rational expectations equilibria representations that exhibit
dependence on both st and st−1, it is possible to generalize the existence of equilibria
even further than (26). Assume HDE take the form13

yt = B(st−1, st)yt−1 + C(st−1, st)ξt. (27)

It is straightforward to verify, for this posited solution, that HDE must satisfy
(

In − βj

(
m∑

k=1

pjkBjk

))
B(i, j) = 0 (28)

(
In − βj

(
m∑

k=1

pjkBjk

))
C(i, j) = 0 (29)

Notice that provided non-zero B(i, j) satisfy (28), then C(i, j) is arbitrary. We have
the following result.

Proposition 6 Let yt be a solution to (11). Then yt is an HDE if it is also a
solution to (27) such that B(i, j), C(i, j) satisfy (28)-(29) for all i, j and there exists
real numbers M1, ...,Mm so that ‖B(i, j)‖ < Mi

Mj
.

Remark. It is straightforward to verify that (24) is a solution to (27). Also, Farmer,
Waggoner, and Zha (2007) prove a theorem providing sufficient conditions for the
existence of the numbers Mi mentioned in the proposition and thereby establish a
fairly general existence result.

13Adopting the earlier notation, since γt = 0 it follows that ξ̃t = ξt.
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3.2.2 E-Stability of HDE

We begin by considering the stability of the general form representation. In this case,
the PLM takes the following form:

yt = A(st−1, st) + B(st−1, st)yt−1 + C(st−1, st)ξt (30)

where ξt is the m.d.s. sunspot variable independent of the Markov states. The PLM
makes clear the primary distinction of HDE from the class of RDE solutions, since
coefficients depend explicitly on st and st−1, whereas coefficients in the PLM for the
RDE only depend on st.

Taking expectations conditional on the PLM given by (30) and values of (st−1, st)
yields

Et(yt+1|st−1 = i, st = j) =
m∑

k=1

pjkA(j, k) +

(
m∑

k=1

pjkB(j, k)

)
(A(i, j) + B(i, j)yt−1 + C(i, j)vt) .

The T-map is given by

A(i, j) → βj

[
m∑

k=1

pjkA(j, k) +

(
m∑

k=1

pjkB(j, k)

)
A(i, j)

]
, (31)

B(i, j) → βj

(
m∑

k=1

pjkB(j, k)

)
B(i, j), (32)

C(i, j) → βj

(
m∑

k=1

pjkB(j, k)

)
C(i, j). (33)

E-stability is determined by the Jacobian DT (Ā, B̄, C̄), where Ā, B̄, C̄ are the HDE
parameters found by solving (28)-(29). Given the complexity of the Jacobian, we are
not able to obtain general E-stability results for the general form representation of
HDE. The next Section presents results for a univariate and New Keynesian example.

We now analyze the common factor representation of HDE. Assume agents hold
a PLM consistent with (26)

yt = A(st−1, st) + Bηt,

where ηt is a sunspot that follows an AR(1) process with regime switching parameters

ηt = φ(st−1, st)ηt−1 + θ(st−1, st)ξt. (34)
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This is the FWZ common factor representation for appropriately defined φ, θ. Notice
that the perceived coefficient on the sunspot shock ηt in (34) is not state-dependent.
Due to its construction, the common factor sunspot ηt is state dependent whereas in
equilibrium, its coefficient is not. Taking expectations conditional on this PLM leads
to the T-map

A(i, j) → βj

m∑

k=1

pjkA(j, k), (35)

and T (B) = B.14

The following proposition provides E-stability conditions for common factor rep-
resentations of HDE.

Proposition 7 Assume HDE exist. If there exists a unique E-stable RDE, then the
common factor representation of the HDE is E-stable.

Remark. When the CLDC does not hold, and there exists HDE and indeterminate
RDE, then the common factor representations of HDE and RDE are E-stable under
the same set of conditions. We, thus, conclude that the same conditions govern E-
stability of rational expectations equilibria in regime-switching models regardless of
the class of equilibria that is of particular interest.

That HDE are E-stable, provided they exist, when there exists unique E-stable
RDE is a primary result of this paper. In particular, if the model is parameterized
to ensure uniqueness within the class of RDE (perhaps via a policy rule), then this
is not sufficient to guarantee agents’ learning process will not settle down on sunspot
equilibria. Such a result does not arise in constant parameter models where conditions
for ruling out sunspot equilibria are more straightforward, and the expectational
stability of sunspot equilibria is often elusive.

4 Examples

In this Section we illustrate the results of this paper by examples. Using a simple
univariate model, we consider HDE, its properties, and real time learning of RDE. In
a New Keynesian example, we consider the stability of the RDE and the HDE based
on an empirically realistic calibration.

14The result T (B) = B is standard in models with sunspots and reflects the fact that multiples of
sunspots are typically also sunspots. The same type of result obtains for general form representations.
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4.1 Univariate Model: RDE and HDE

To provide a concrete illustration of the class of solutions, we consider the special
case where yt is univariate, st takes values in {1, 2}, and γt = 0. Then

yt = βtEtyt+1. (36)

Note that in this case, if there is a unique RDE, it is, trivially, yt = yit ⇔ st = i,
where yit = 0 for i = 1, 2.

To compute an HDE, recall that a rational expectations equilibrium is a process
yt such that

yt = β−1
t−1yt−1 + ξt (37)

where ξt is an m.d.s. that satisfies Et−1ξt = 0. Of particular interest is the case in
which “one regime is determinate and one regime is indeterminate,” or, formally, for
example, |β1| < 1 < β2. In this case, the non-degenerate case is where the exploding
regime is not absorbing so that p22 > 0. Define

ξt =






−β−1
1 yt−1 + δ11vt (st−1, st) = (1, 1)

P11

P12

β−1
1 yt−1 + δ12vt (st−1, st) = (1, 2)

−β−1
2 yt−1 + δ21vt (st−1, st) = (2, 1)

P21

P22

β−1
2 yt−1 + δ22vt (st−1, st) = (2, 2)

where δij ∈ R is arbitrary, and vt is any martingale difference sequence with uniformly
bounded support. Dynamics for yt follow

yt =






δ11vt (st−1, st) = (1, 1)
1

P12

β−1
1 yt−1 + δ12vt (st−1, st) = (1, 2)

δ21vt (st−1, st) = (2, 1)
1

P22

β−1
2 yt−1 + δ22vt (st−1, st) = (2, 2)

, (38)

Note that provided |β2P22| > 1, yt is UB. The process given by (38) is an HDE, since
dynamics explicitly depend on st and st−1. Notice that the indeterminacy of region
2 spills over across regimes so that there is sunspot dependence in both regimes. It
should be clear from this representation of an HDE that it is not possible to represent
this class of equilibria in terms of a stacked system. In an RDE yt switches between
two stochastic processes that are independent of the underlying Markov state. In
an HDE the value of yt depends on the current state st and also explicitly on the
Markov state in the previous period. This dependence is self-fulfilling in the sense
that it exists only because agents expect it.

We now turn to the learnability of the univariate HDE given in (38). In this case,
the parameters A,B,C in the PLM (30) are elements of the real line. Computing
conditional forecasts using this PLM, we obtain the following T-map for B:

B(i, j) −→ βj (Pj1B(j, 1) + Pj2B(j, 2)) B(i, j) (39)
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Ignoring the boundedness requirement, a fixed point of this map identifies an HDE.
The only restrictions, then, are the following:

1 = β1 (P11B(1, 1) + P12B(1, 2)) = β2 (P21B(2, 1) + P22B(2, 2)) . (40)

In particular, there is a two dimensional continuum of coefficients on lagged y pro-
viding fixed points.

Farmer, Waggoner, and Zha (2006) focus on particular fixed points, given by

B(1, 1) = B(2, 1) = 0, B(1, 2) =
β−1

1

P12

, B(2, 2) =
β−1

2

P22

,

and d(i, j) = δij.

To analyze stability we compute the eigenvalues of DT . The first four equations
decouple, and, when evaluated at the fixed point, provide the following Jacobian:

DT =





1 0 0 0
0 1 β−1

1 β2P21/P12 β−1
1 β2P21/P22

0 0 1 0
0 0 P21/P22 2



 .

The Jacobian has an eigenvalue of 2, which implies that the general form HDE is
E-unstable. Importantly, this computation is fixed point specific, so we can only
conclude that this particular equilibrium is unstable.

However, the HDE also has a common factor representation given by

yt = ηt

where

ηt =






δ11vt (st−1, st) = (1, 1)
1

P12

β−1
1 ηt−1 + δ12vt (st−1, st) = (1, 2)

δ21vt (st−1, st) = (2, 1)
1

P22

β−1
2 ηt−1 + δ22vt (st−1, st) = (2, 2)

The PLM consistent with the common factor representation is

yt = a(st−1, st) + bηt, (41)

yielding
a(i, j) → βj (pj1a(j, 1) + pj2a(j, 2)) , (42)

and, as in the general case, b → b. The eigenvalues of the Jacobian DTa are a pair of
zeros and the eigenvalues of (β1 ⊕ β2) P . Therefore,
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Proposition 8 In the univariate model where st takes values in {1, 2}, if HDE exist
then

1. The general form representation of the HDE given in (38) is E-unstable.

2. Given βi there exists β̄j < 0, j 6= i, so that βj < β̄j implies that the common
factor representation of the HDE given in (38) is E-stable.

4.2 Real Time Learning of RDE

So far we have identified E-stability with stability under real-time learning. This
connection is made in constant parameter models by Evans and Honkapohja (2001).
However, it is not clear that the results in Evans and Honkapohja (2001) apply to the
regime-switching framework. To address this issue, we present a real time learning
formulation of regime dependent equilibria.

We again take yt to be univariate, and assume st takes values in {1, 2}, but now
we allow γt to be non-trivial. The model is given by

yt = βtEtyt+1 + γtrt. (43)

Assume (β1 ⊕ β2)P has eigenvalues inside the unit circle, so that there is a unique
RDE. To consider the stability under learning of this RDE, we provide agents with
the following forecasting model

yt = A + Âŝt + Brt + B̂ŝtrt,

where ŝt = st−1. To simplify notation, let θ =
(
A, Â, B, B̂

)′
and X = (1, ŝt, rt, ŝtrt)

′.

Agents estimate θ by regressing yt on Xt. Letting θt be the time t estimate of θ, the
recursive formulation of this estimation procedure is given by

θt = θt−1 + t−1R−1
t Xt

(
yt − θ′t−1Xt

)
(44)

Rt = Rt−1 + t−1 (XtX
′

t − Rt−1) .

The matrix R consists of the sample second moments of the regressors. The agents
use these estimates, together with their forecasting model, to form expectations.
These expectations are embedded into the expectational difference equation to obtain
the actual law of motion and associated T-map: the ALM may then be written
yt = T (θt−1)Xt. The T-map is given by

A → β1(A + Â(1 − P11))

Â → β2(A + ÂP22) − β1(A + Â(1 − P11))

B → β1(B + B̂(1 − P11))ρ

B̂ → β2(B + B̂P22)ρ − β1(B + B̂(1 − P11))ρ.
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Imposing this into the algorithm (44) identifies a dynamic system that can be analyzed
using the theory of stochastic recursive algorithms. Letting θ∗ be the fixed point of
the T-map identifying an RDE, the learning question is, does θt converge to θ∗ almost
surely? We have the following proposition.

Proposition 9 If γt = 0, then, locally, θt → θ∗ almost surely.15

The restriction γt is needed to simplify the proof, though we feel it is very likely
that the proposition holds for γt 6= 0. The difficulty raised by non-zero γ reflects the
fact that the state dynamics are not conditionally linear and so the usual theorems
of stochastic recursive theory do not apply.

To illustrate this result for γ 6= 0, we use simulations. We parameterize the
model so that the CLDC is satisfied. This ensures the existence of a unique rational
expectations equilibrium that is also an RDE. We set β1 = 1/1.5, β2 = 2, p11 =
.95, p22 = .2, ρ = 0, γ1 = 1, γ2 = .5. For these parameter values the unique RDE
coefficients are A1 = A2 = 0, B1 = 1, B2 = .5. We draw initial conditions for θ
randomly and simulate the model for 5000 time periods. Figure 1 plots a typical
simulation. As the figure makes clear, the RDE is stable under least squares learning.

4.3 A New Keynesian Model

Farmer, Waggoner, and Zha (2007) illustrate the CLDC is necessary for determinacy,
but not sufficient, as policymakers focusing on obeying the CLDC may not bring about
an equilibrium that is immune from sunspots. Thus, whether the resulting HDE can
arise in a setting where the CLDC holds and agents update their expectations using a
reasonable learning algorithm, such as recursive least squares, is of particular interest.

This section follows Farmer, Waggoner, and Zha (2007) who consider an empir-
ically plausible specification of a benchmark New Keynesian model and its stability
properties. The example uses parameter values from Farmer, Waggoner, and Zha
(2007), which resemble estimates from those in Lubik and Schorfheide (2004), to con-
struct a sunspot HDE. This example is of particular interest because the parameter
values are empirically plausible, imply the CLDC holds and the RDE is unique, yet
a sunspot HDE exists.

15As is standard in the learning literature, in order to apply the theory of stochastic recursive
algorithms requires imposing a “projection facility” on the recursive least squares algorithm. See
Evans and Honkapohja (2001) for details.
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Figure 1: Real time learning of an RDE.
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The model is given by

πt = βEtπt+1 + κxt + uS
t

xt = Etxt+1 − σ−1 (it − Etπt+1) + uD
t

it = αtπt + γtxt,

where

αt =

{
α1 for st = 1
α2 for st = 2

and

γt =

{
γ1 for st = 1
γ2 for st = 2
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The random variable st follows a finite-state Markov chain with transition probabili-
ties pij ≡ Pr [st = j|st−1 = i] for i, j = 1, 2.

Parameters values are from Table 3 in Farmer, Waggoner, and Zha (2007) and are

β σ κ α1 γ1 α2 γ2 p11 p22

.9949 1.655 .675 .77 .17 2.19 .30 .8577 .99

In this calibrated example, FWZ compute the HDE as16

c1 = 0.999795

c2 = .738137

v1 =

(
−.977509
−.210551

)

v2 =

(
−0.010062
0.0065658

)

where the reduced-form autocorrelation coefficients are computed by plugging into
(27). It is straightforward to verify that the resulting stochastic process is uniformly
bounded.

The PLM is given by (30), where Farmer, Waggoner, and Zha (2007) provide
values for the coefficients for the HDE. Evaluating the T-map given by (31)− (33) at
the above rational expectations parameter values leads to the Jacobian of the T-map
relevant for E-stability. Because the DTB block de-couples it is sufficient to examine
only this portion of the Jacobian

[
DT 1

B DT 2
B

DT 3
B DT 4

B

]

where DT 1
B, DT 4

B are given, respectively, by
[

p11B(1, 1)′ ⊗ β1 + I ⊗ β1 (p11B(1, 1) + p12B(1, 2)) p12B(1, 1)′ ⊗ β1

0 I ⊗ β2 (p21B(2, 1) + p22B(2, 2))

]

[
I ⊗ β1 (p11B(1, 1) + p1,2B(1, 2)) 0

p21B(2, 2)′ ⊗ β2 p22B(2, 2)′ ⊗ β2 + I ⊗ β2 (p21B(2, 1) + p22B(2, 2))

]
,

and

DT 2
B =

[
0 0

p21B(1, 2)′ ⊗ β2 p22B(1, 2)′ ⊗ β2

]

DT 3
B =

[
p11B(2, 1)′ ⊗ β1 p12B(2, 1)′ ⊗ β1

0 0

]

16See Farmer, Waggoner, and Zha (2007) for details on the numerical procedure for computing
these values.
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Evaluating this Jacobian leads to repeated eigenvalues of 2.6323, 2.0755, .6635, .4197, 0.
Therefore, the general form HDE is not E-stable. However, we know from above that
the RDE and common factor HDE are E-stable.

This example highlights a central point of Farmer, Waggoner, and Zha (2007)
that determinacy conditions may be elusive in empirically plausible New Keynesian
models. These calibrated values reflect the conventional wisdom of monetary policy
that the Federal Reserve did not adhere to the ‘Taylor Principle’ during the 1970’s but
did so subsequently. Under these parameter values the CLDC is satisfied and there
exists a unique E-stable RDE. However, if agents anticipate that future monetary
policy rules may be less active against inflation then it is possible for there to exist
multiple equilibria that are stable under learning. These results imply that monetary
policy needs to not only act aggressively to pin down inflation expectations they also
need to take actions that will minimize the anticipation of future dovish policy. That
is, credibility is even more crucial in these models.

5 Further Discussion

There are a number of ways in which the E-stability results of this paper are distinct
from the results in constant parameter models. First, HDE sunspot equilibria may
be E-stable provided agents’ perceived law of motion is consistent with the common
factor representation of HDE. This E-stability condition does not require any of the
eigenvalues in the feedback matrices βt have real part less than -1, a condition that
is typically required in constant parameter models and is the case for the RDE in
the indeterminate case. This result suggests that sunspot equilibria are more likely
to be stable in regime-switching models. Second, the condition for E-stability is
identical across both classes of rational expectations solutions. Finally, E-stability as
an equilibrium selection device does not select one class of equilibrium for another. In
fact, if agents were endowed with a perceived law of motion that nests the unique RDE
and common factor HDE as special cases, depending on initial beliefs, the learning
process may settle down at either class of rational expectations equilibrium.

A central result of this paper is that E-stable HDE exist even when the CLDC is
satisfied. This suggests that HDE are not only theoretically plausible equilibria, but
that they may also be realistic outcomes which modelers and policy makers should
take seriously. However, this observation does come with a caveat that, for some,
may call in to question whether the common factor representation of an HDE is
natural; and, if it is not, then HDE are not stable under learning – at least not the
ones analyzed in this paper. To illustrate this point, first recall the general form
representation of an HDE:

yt = B(st−1, st)yt−1 + C(st−1, st)ξt.
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As this representation makes clear, the characteristic feature of an HDE is the explicit
dependence of yt on st−1, and, through the self-fulfilling nature of the model, this ex-
plicit dependence is present precisely because agents believe it will be present. Now
recall the common factor representation: yt = ηt, where ηt is an exogenous process
depending explicitly on st and st−1. Coordination on this equilibrium requires only
that agents believe that ηt governs the economy: in particular, yt depends explicitly
on st−1 not because agents believe this dependence exists, but rather because this
dependence has been exogenously imposed on the associated coordinating sunspot.
In this sense, stable HDE and their explicit dependence on lagged Markov states are
not the outcome of naturally evolving beliefs that these lagged states are important;
rather, stable HDE require a coordinating sunspot with fortuitous stochastic proper-
ties.17 If agents attempt to explicitly capture the lagged state dependence, using, for
example, a general form representation, then the HDE will not be stable.

From an applied standpoint, the empirical investigation of indeterminacy in the
U.S. time-series, which includes an extensive literature, is an important issue. While
there is some debate within the literature whether the 1970’s era inflation was driven
by sunspot fluctuations, there is clear evidence for a switch in the Federal Reserve’s
response to inflation fluctuations. So U.S. time-series provide a natural place to look
for evidence of RDE and HDE. Further, if the parameters of the model satisfy the
CLDC, then a sharp distinction between RDE and HDE arises: either the economy
was never driven by sunspot fluctuations or always was. Also, the stochastic prop-
erties of these equilibria are very different, since there is additional serial correlation
in HDE that is not present in the unique RDE. Future research can shed light on
the debate of HDE versus RDE by providing evidence of which equilibrium is more
consistent with the data.

So, this begs the question, what is one to take away from these results? First,
and from a technical standpoint, comparison of RDE and HDE highlights that in
nonlinear models there often exist many classes of equilibrium. In nonlinear models,
assumptions about the set of variables agents use to condition their expectations is
important and uniqueness of equilibrium within one class does not necessarily imply
uniqueness in another. Second, in the context of monetary analysis, where the
application of the results has clear relevance, if policy makers feel that the results on
the stability of common factor representations make HDE a serious concern, then a
new, and rather stringent, set of requirements for monetary policy rules is suggested:
a rule should be chosen to yield a unique RDE that is E-stable, yet rule out E-stable

17A similar point arises in common factor representations of sunspot equilbria in constant param-
eters models. These equilibria require that the associated common factor sunspot, which typically
follows a VAR(1) process, satisfies a knife-edge “resonance frequency” property, that explicitly pins
down the sunspot’s serial correlation. However, the knife-edge nature of these equilibria is an ar-
tifact of the linearization; in non-linear models, more general sunspots are allowed: see Evans and
Honkapohja, (2003).
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HDE. Strict adherence to a constant-parameter rule that reacts strongly to inflation is
one prescription; however, this “tying of one’s hands” may not be reasonable. Events
often arise that result in central banks deviating from a constant parameter rule –
that is, the systematic response to inflation and output changes, even if temporarily.
For example, a monetary authority may wish to act less aggressively in response
to inflation during a recession or financial crisis. If private agents place positive
probability on recurring changes in such systematic components of policy, then a
monetary authority should be fully aware of the dangers of “indeterminacy spillovers,”
and modify how it acts in ‘normal’ times. In other words, a central bank may want to
retain the discretion to change its systematic actions, but also eliminate the possibility
of sunspot fluctuations. Thus, a monetary authority that wishes to occasionally
change its systematic actions, should implement a rule that implies a unique RDE
that is E-stable and at the same time, rules out HDE. The design of such rules should
be a priority of future research.

6 Conclusion

This paper studies the existence and stability of two classes of rational expectations
equilibria in a regime-switching rational expectations model under adaptive learning,
extending the literature on learning to a non-linear framework. Building on the work
of Davig and Leeper (2007) and Farmer, Waggoner, and Zha (2006, 2007), the two
classes are:

• Regime Dependent Equilibria: An RDE is a uniformly bounded process that
satisfies the regime-switching expectational difference equation and imposes the
restriction that agents do not condition their expectations on lagged regimes (i.e.
only the current regime enters the state vector).

• History Dependent Equilibria: An HDE is a process that satisfies the regime-
switching expectational difference equation, where agents condition expecta-
tions on current and lagged values of the regime (i.e. current and past regimes
enter the state vector).

The Conditionally Linear Determinacy Condition (CLDC), a generalization of the
Long Run Taylor Principle of Davig and Leeper (2007), ensures the existence of a
unique RDE that is also E-stable. When the CLDC is satisfied, there may still ex-
ist sunspot equilibria as demonstrated by Farmer, Waggoner, and Zha (2007). These
equilibria can be represented by two different stochastic difference equations. Depend-
ing on which representation agents adopt for their reduced-form model, the HDE may
be E-stable. Thus, whether sunspots are troubling or not in regime switching mod-
els depends on the perceived law of motion adopted by agents. The adoption of a
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perceived law of motion is a behavioral assumption and there has been little research
that studies how agents might coordinate on a PLM.

Ultimately, which rational expectations equilibrium – a unique RDE or a com-
mon factor HDE – is the appropriate solution methodology is an empirical question.
Both classes of equilibria are rational expectations solutions, uniformly bounded, and
expectationally stable. The indeterminacy of HDE introduces additional serial cor-
relation that is not present in RDE, and so it is a reasonable question to wonder
whether extension of the various approaches to testing for indeterminacy such as Lu-
bik and Schorfheide (2003) and Clarida, Gali, and Gertler (among many others) to
Markov switching parameter models might shed light on many of these issues. Such
an approach, of course, is beyond the scope of the present paper.

7 Appendix

Proof of Proposition 1

First let ŷt be a uniformly bounded solution the stacked system, and construct yit

as indicated. Because rt is independent of st+n for all n, it follows that yit is as well.
That yt = yit ⇔ st = i provides a solution to the original model is then trivial.

To go the other way, let yit identify an RDE. Denote by ft the time t density
functions; for example, ft (y, s|st−1 = i, Ωt−1) is the joint density of yt and st con-
ditional on st−1 = i and on all other time t − 1 information, not including current
and past st−1, as captured by Ωt−1. Also, let f i

t (y|Ωt−1) be the density for yit con-
ditional on Ωt−1, and f (s|st−1 = i) be the conditional density of st given st−1 = i
(course, f (s = j|st−1 = i) = Pij). With this notation, we may compute expectations
as follows:

E(yt+1|st = i, Ωt) =

∫ ∫
yft+1 (y, s|st = i, Ωt) dsdy

=

∫ ∫
yft+1 (y|s, st = i, Ωt)f(s|st = i) dsdy

=

∫ ∫
yf s

t+1 (y|Ωt)f(s|st = i) dsdy

=
∑

j

PijEtyjt+1,

where the third equality precisely follows from the facts that yt = yit ⇔ st = i and
that yit is independent of st+n for all n. Now we may simply use this formula for the
expectations of yt to verify that the stacked system is satisfied.

Proof of Proposition 5

29



Notice that stability obtains provided that the eigenvalues of
(
⊕m

j=1βj

)
(P ⊗ In) =

Λ−1
u ⊕ λ−1

s have real part less than one. The result follows from the fact that the
eigenvalues of Λu are inside the unit circle.

Proof of Proposition 7

To examine the stability of the common factor representation, note that DTB has
unit eigenvalues and DTA has (repeated) eigenvalues of zero and the eigenvalues of(
⊕m

j=1βj

)
(P ⊗ In), which is the uniqueness condition for RDE. Hence, if there exists

a unique RDE, and there exists an HDE, then the common factor RDE are E-stable.

Proof of Proposition 8

The eigenvalues of (β1 ⊕ β2)P are given by

D± =
1

2
(β1P11 + β2P22 ± ∆)

where
∆2 = (β1P11 + β2P22)

2 + 4β1β2(1 − P11 − P22).

Then it is straight-forward to verify that

lim
βi→−∞

D± ∈ {0, βiPii}.

Proof of Proposition 9

Using the notation from the body of the paper, we may write the recursive algo-
rithm as

θt = θt−1 + t−1S−1
t−1Xt

(
yt − θ′t−1Xt

)

St = St−1 + t−1 (XtX
′

t − St−1) −
1

t2
t

t + 1
(XtX

′

t − St−1) ,

where Xt = (1, ŝt, rt, ŝtrt) and St−1 = Rt. If Xt could be written as a linear difference
equation in i.i.d. noise conditional on values of θ and S, we could immediately apply
the main results of the learning literature; however, Xt is not conditionally linear,
so we must work harder: we must verify conditions M in Chapter 7.3 of Evans and
Honkapohja (2001).

First, notice that the evolution of Xt is independent of θ and S, simplifying our
task. Let Qn(x, ·) be the distribution of Xt+n given that Xt = x. We must demon-
stration the following:

1. For all n,m there exists K so that
∫

(1 + ‖y‖m) Qn(x, dy) ≤ K (1 + ‖x‖m)
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2. For all p there exist K and δ so that for all g ∈ Li(p), for all n and for all x1,x2,
we have∣∣∣∣
∫

g(y)Qn(x1, dy) −

∫
g(y)Qn(x2, dy)

∣∣∣∣ ≤ Kρn‖x1 − x2‖(1 + ‖x1‖
p + ‖x2‖

p)

Here Li(p) is a space of functions from R
2 to itself, defined in Evans and

Honkapohja (2001): it turns out, as will be seen shortly, the simplicity of our
set-up allows us to ignore the special properties of Li(p), so we may simply take
any g : R

2 → R
2.

3. For all q ≥ 1 there exist n, α < 1 and β so that for all x we have
∫

‖y‖Qn(x, dy) ≤ α‖x‖q + β.

The simplicity of our state dynamics allows these items to be easily demonstrated.
Indeed, Xt is uniformly bounded a.s. by some number M, so

∫
(1 + ‖y‖m) Qn(x, dy) ≤

1+Mm, thus demonstrating item 1. Item 2, which would be quite difficult to demon-
strate if γt 6= 0 follows here because there only two states: the left-hand-side is




(1, 0)P n

(
g1(x1)
g1(x2)

)

(0, 1)P n

(
g2(x1)
g2(x2)

)
,





which goes to zero exponentially because P is a stochastic matrix (here gi is the i− th
coordinate of g, and it is because there are only a finite number of states that we
do not have to worry about the special properties of g). Finally, item 3 follows in a
fashion similar to item one because Xt is uniformly bounded.

Because the Markovian state dynamics satisfy the correct conditions, we may
proceed as usual: stack the estimators S and θ into a matrix φ and write the recursive
system as

φt = φt−1 +
1

t
H(φt−1, Xt) +

1

t2
q(t, φt−1, Xt)). (45)

The linearity of the T-map makes it straight-forward to verify that this recursion
satisfies the necessary properties. Now set

h(φ) = lim
t

E (H(φ,Xt)) .

The possible convergence points of (45) are the locally asymptotically stable fixed
points of the differential equation φ̇ = h(φ). Computing h(φ) yields the decoupled
system

dθ

dt
= S−1E(XtX

′

t)(T (θ) − θ)

dS

dt
= E(XtX

′

t) − S.
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We conclude that locally asymptotic stability obtains provided the eigenvalues of DT
have negative real part. The proof is completed by noting that the eigenvalues of DT
are the eigenvalues of (β1 ⊕ β2)P .
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