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Abstract

This paper proposes a framework to implement regression-based tests of predictive

ability in unstable environments, including, in particular, forecast unbiasedness and

effi ciency tests, commonly referred to as tests of forecast rationality. Our framework

is general: it can be applied to model-based forecasts obtained either with recursive

or rolling window estimation schemes, as well as to forecasts that are model-free. The

proposed tests provide more evidence against forecast rationality than previously found

in the Federal Reserve’s Greenbook forecasts as well as survey-based private forecasts.

It confirms, however, that the Federal Reserve has additional information about current

and future states of the economy relative to market participants.
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1 Introduction

Forecasting is a fundamental tool in economics, as well as statistics, business and other

sciences. Judging whether forecasts are good is therefore of great importance, especially

since forecasts are used everyday to guide policymakers’ and practitioners’ decisions. A

large literature has provided important insights on how to test whether forecasts are optimal.

For example, as the seminal works of Granger and Newbold (1986) and Diebold and Lopez

(1996) show, under covariance stationarity and a mean square error loss, forecast errors are

mean zero (conditionally and unconditionally) and the h-step-ahead forecast error has zero

serial correlation after (h− 1) lags. If a forecast is such that its forecast errors satisfy such

properties, it is deemed optimal or rational.2 If a forecast does not satisfy these properties,

researchers conclude that the model underlying such forecast can be improved.

However, one of the fundamental assumptions tacitly underlying the existing literature

is that of covariance stationarity. Only very recently researchers have become concerned

about the consequences of relaxing stationarity assumptions in performing inference regard-

ing predictive ability.3 For example, Giacomini and Rossi (2010) have developed methods

to perform inference on forecast comparisons when the forecasting ability may be affected

by instabilities. Besides forecast comparisons, another important issue that forecasters face

in practice is to determine whether forecasts are rational or optimal, and that might also be

affected by instabilities. In fact, several studies evaluate the robustness of forecast rational-

ity in sub-samples (e.g. Croushore 1998, Patton and Timmermann, 2011, Croushore, 2011).

However, while in some cases the choice of the sub-samples may be guided by economic

considerations (e.g. sub-samples associated with structural breaks identified by the Great

Moderation or Great Recession), in many cases the choice of sub-samples may be ad-hoc.

Even when the choice is guided by economic considerations, it may be important to assess

1Acknowledgements: We are grateful to M. McCracken, A. Patton, C. Vega and participants of

seminars at Bank of Canada, CREI, Trinity College Dublin, U. of Barcelona, U. of Montreal, Norges Bank,

the 2011 IWH-CIREQ Macroeconometric Workshop, the 2011 JSM, the 2011 MEG, the 2013 Econometric

Society Summer Meetings and the 2014 EABCN/Bank of England and ECB workshops for comments. B.

Rossi gratefully acknowledges financial support from the European Research Agency’s Marie Curie Grant

303434 and the ERC Grant 615608. The views expressed in this paper are those of the authors. No

responsibility should be attributed to the Bank of Canada. A previous version was circulated under the

title: “Forecast Optimality Tests in the Presence of Instabilities.”

2Note that we use optimality and rationality interchangeably.
3See the discussion in Rossi (2013).
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the robustness of the empirical results to other sub-samples, as there might be multiple

breaks in the data, or the break date might be uncertain or completely unknown.

This paper proposes forecast rationality tests that are robust to the presence of instabil-

ities. We consider a framework where forecasts are produced either with recursive or rolling

estimation schemes, and the size of the estimation window is large relative to the sample size.

We propose a “Fluctuation Rationality”test, which is based on testing forecast rationality in

rolling windows over the out-of-sample forecast portion of the data. By using rolling windows

we avoid averaging out instabilities, and our tests can have greater power to reject forecast

rationality than traditional tests when rationality is present only in sub-samples of the data.

Our “Fluctuation Rationality”test can be applied to study forecast unbiasedness, effi ciency,

rationality, encompassing, as well as serial uncorrelation, among other regression-based tests

of forecasting ability.4

This paper is closely related to Giacomini and Rossi (2010) and West and McCracken

(1998). Giacomini and Rossi (2010) propose a “Fluctuation test” to compare forecasting

models in the presence of instabilities. While our “Fluctuation Rationality”test is inspired by

their work, there are several differences between their framework and ours. Their framework

compares models’ relative forecasting performance and is focused primarily on a rolling

window estimation where the size of the window is fixed (i.e. finite). We are instead interested

in measures of absolute predictive ability and tests for forecast rationality. Our framework

focuses on an estimation window size that is a fixed fraction of the total sample size, which

allows us to take into account parameter estimation error and considerably complicates the

analysis. The latter framework is similar to that of West and McCracken (1998). The

difference between our tests and West and McCracken’s (1998) is that the latter is based on

measures of average forecasting ability in the out-of-sample portion of the data, and may

lack power in certain directions when there are rationality breakdowns over time. Our tests

can be used both when the forecasting model is known (and thus the researcher needs to

correct for parameter estimation) and when it is not known (such as in the Greenbook and

survey forecasts in our empirical application).

We demonstrate the usefulness of our procedures by evaluating the rationality of the

4It should be noted that, as shown in Rossi (2012), our framework can encompass the hypothesis of

forecast optimality for more general definitions of optimality. As Patton and Timmermann (2010) suggest,

under certain regularity conditions forecast optimality tests can reduce to those considered in this paper for

arbitrary loss functions (symmetric or asymmetric) if one adheres to the definition of “generalized forecast

error" and/or changes the probability measure.
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Federal Reserve’s Greenbook forecast of inflation as well as the private sector’s forecasts

provided by the Survey of Professional Forecasters and Blue Chip Economic Indicators. We

revisit the empirical analysis in Romer and Romer (2000), Patton and Timmermann (2011),

and Croushore (2012) in a framework that is robust to the presence of instabilities. We then

reconsider Romer and Romer’s (2000) hypothesis that the Federal Reserve has an information

advantage in forecasting inflation beyond what is known to the private forecasters, again

using our framework robust to time-variation. In both cases, our empirical results are very

different than those in the literature: first, we find more empirical evidence against forecast

rationality using our tests than using the traditional tests. In fact, the Fed was consistently

under-estimating inflation in the 1970s, due to recurrent and unpredictable oil price shocks,

and over-estimating inflation in the 1980s, during Volker’s disinflation. Clearly, traditional

forecast unbiasedness tests applied over the full sample do not reject forecast unbiasedness

because under-predictions, on average, cancel out over-predictions. Similar issues affect

tests of forecast rationality in general. Our test, instead, is capable of uncovering the lack

of forecast rationality. Our findings are related to Sinclair et al. (2010), who similarly found

systematic errors in Fed’s forecasts using other techniques. Furthermore, our test uncovers

that the informational advantage of the Fed over private sectors’forecasts, while confirmed

in the data, has decreased over time.5

It is important to consider the trade-offs between our tests and the existing tests for

forecast rationality. As our Monte Carlo simulations show, the test is capable of signalling

lack of forecast rationality even if it is present in a sub-sample, and therefore has higher power

relative to the existing tests in the latter cases; however, because the test is implemented in

rolling windows over the out-of-sample period, the number of observations used to implement

the test is less than the total number of forecasts, thus its power may be lower than that of

existing tests in small samples when there are no instabilities in the data.

The paper is structured as follows. The second section discusses the motivation that

inspired the development of the techniques proposed in this paper, while the third section

presents the econometric methodology. Sections 4 and 5 respectively present the results in

the general framework and in special cases that are very relevant for researchers in practice.

Section 6 studies the size and power of our “Fluctuation Rationality”test in small samples,

while Section 7 discusses the empirical applications. The last section concludes.

5This evidence is consistent with that in Gamber and Smith (2009).
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2 Motivation

In a very influential paper, Romer and Romer (2000) analyzed the properties of forecasts of

US inflation made by the Federal Reserve Board as well as by several private institutions.

Their goal was to evaluate whether the forecasts were rational, that is, whether they were

unbiased and effi cient by using standard Mincer and Zarnowitz’s (1969) tests. Based on

their empirical analysis, they find no evidence against the rationality of the Federal Reserve

Board’s staff forecasts. Given that the forecasts are ultimately used by the central bank in

guiding monetary policy, it is important that they are unbiased and effi cient.

To motivate the methodologies developed in this paper, consider Figure 1. Figure 1

reports one-quarter-ahead forecasts of U.S. inflation made by several institutions. The

dash/dotted line reports the forecasts made by the Federal Reserve Board; the dotted line

reports the forecasts made by the Blue Chip Economic Indicator (BCEI) and the dashed

line reports forecasts made by the Survey of Professional Forecasters (SPF). These forecasts

are discussed in detail in Section 7. Note that all forecasts under-predict inflation in the

1970s and early 1980s, a time period where the economy was constantly subject to unfore-

castable oil price shocks. Also, the forecasts constantly over-predict inflation in the late

1980s and 1990s, a time period where the monetary authority was constantly fighting infla-

tion. Thus, the forecasts appear not to be unbiased, nor rational: they under-predict the

target in the first part of the sample, and over-predict it in the second part of the sample.

We will investigate whether that is the case using formal statistical tests that we propose.

If the forecasts are not unbiased, then, why did Romer and Romer (2000) conclude that

the forecasts were unbiased? They applied their test over the full sample, which comprises

periods of over-prediction as well as under-prediction. Thus, on average, the forecasts are

unbiased. However, they may not be systematically so.

The goal of this paper is to develop techniques to help researchers detect situation where

forecasts are not rational nor, in general, optimal, but the lack of rationality appears only in

sub-samples of the data, or presents itself in an unstable fashion. In fact, existing tests, that

are based on stationarity assumptions, should not be used in the presence of instabilities:

they could lead to the wrong conclusion, as in the empirical example considered here.
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3 The Econometric Framework

The main objective of this paper is to test whether the h−step ahead, out-of-sample direct
forecasts for the variable yt, which we assume to be a scalar, are optimal (h > 0). We assume

that the forecasts are based on a model that is characterized by the (k × 1) parameter vector

γ. The forecasts are obtained by dividing the sample of size (T + h) observations into an

in-sample portion of size R and an out-of-sample portion of size P , such that R+P = T +h.

The sequence of P out-of-sample forecast errors depends on the realizations of the forecasted

variable and on the in-sample parameter estimates, γ̂t,R. According to usual forecasting

practices, we assume that these parameters are estimated in either one of two ways: (i)

re-estimated at each t = R, ..., T over a window of R observations including data indexed

t − R + 1, ..., t (rolling scheme); or (ii) re-estimated at each t = R, ..., T over a window of t

observations including data indexed 1, ..., t (recursive scheme).

Let the forecast error associated with the h-step-ahead forecast made at time t be denoted

by vt+h(γ̂t,R). For example, in a simple linear regression model with h-period lagged (k × 1)

vector of regressors xt where Etyt+h = x′tγ, we have vt+h(γ̂t,R) = yt+h − x′tγ̂t,R.
We focus on testing for forecast rationality in the framework developed by West and

McCracken (1998). Consider the general regression:

vt+h(γ̂t,R) = g′t · θ + ηt+h, t = R, ..., T, (1)

where θ is an (`× 1) parameter vector, vt+h (γ̂t,R) is the estimated forecast error, and gt is

an (`× 1) vector of variables known at time t such that E (gtg
′
t) ≡ G is an (`× `) matrix

with full rank. West and McCracken (1998) focus on testing the null hypothesis:

H0 : θ = θ0 vs. HA : θ 6= θ0, where θ0 = 0. (2)

Let θ̂P denote the estimate of θ in regression (1). Consider the following Wald test:

WP = P
(
θ̂P − θ0

)′
V̂ −1θ,P

(
θ̂P − θ0

)
, (3)

where V̂θ,P is a consistent estimate of the long run variance of
√
P θ̂P . West and McCracken

(1998) show that it is important to correct the estimate of the variance by parameter es-

timation error in order to estimate the long run variance consistently (cfr. their Theorem

4.1). We report the exact formula for West and McCracken’s (1998) case, V̂θ,P , at the end

of Section 4.

The framework in eq. (1) is quite general and includes the following leading cases:
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(i) forecast unbiasedness tests, where gt = 1;

(ii) forecast effi ciency, where gt = yt+h|t.

(iii) forecast rationality (Mincer and Zarnowitz, 1969), where gt = [1 yt+h|t], θ = [α, β]′ ,

and typically a researcher is interested in testing whether α and β are jointly zero; more in

general, gt may also contain any other variable known at time t which was not included in

the forecasting model;

(iv) forecast encompassing tests, where gt is the forecast of the encompassed model;

(v) serial uncorrelation tests, where gt = vt.

We refer to all these tests under the maintained assumption that θ0 = 0 as “tests for

forecast rationality”; the zero restriction on the parameter under the null hypothesis ensures

that the forecast errors are truly unpredictable given the information set available at the

time when the forecast is made.

Our main interest is testing forecast optimality in the presence of instabilities. In fact,

in the presence of instabilities, tests that focus on the average out-of-sample performance

of a model may be misleading, as they may average out instabilities. Instead, we consider

the following rolling regression approach. Let θ̂j be the parameter estimate in regression (1)

computed at time j over rolling windows of size m.6 That is, θ̂j is recursively estimated in

regression (1) for j = R+m, ..., T .7 Also, let the Wald test in the corresponding regressions

be defined as:

Wj,m = mθ̂′j V̂
−1
θ θ̂j, for j = R +m, ..., T , (4)

where, for example, in some special cases (such as forecast unbiasedness or effi ciency), V̂θ is a

HAC estimator of the asymptotic variance of the parameter estimates in the rolling windows

obtained as in West and McCracken (1998), that is, implemented by replacing P in their

notation with m. We refer to maxj∈{R+m,...,T}Wj,m as the “Fluctuation Rationality”test and

we use it to test the null hypothesis:8

H0 : θj = θ0 vs. HA : θj 6= θ0, ∀ j = R +m, ..., T (5)

6Without loss of generality, we removed the dependence of θ̂j from m (m is the same for all θ̂′js).
7E.g., θ̂R+m is estimated in equation (1) using vR+h(γ̂R,R), ..., vR+m+h(γ̂R+m,R); θ̂R+m+1 is estimated in

equation (1) using vR+1+h(γ̂R+1,R), ..., vR+m+h+1(γ̂R+m+1,R); ... and θ̂T is estimated in equation (1) using

vT−m+1+h(γ̂T−m+1,R), ..., vT+h(γ̂T,R).
8In the construction of the test we associate the end of period date of the fixed window m with the

parameter estimate θ̂j . In fact, that need not necessarily be the case. If one prefers, one can choose to

associate the mid-period date of the fixed window m with the parameter estimate, for example.
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where θ0 = 0 and θj is the true parameter value.

4 General Results

Let the (k × 1) true parameter vector be denoted by γ∗, vt+h (γ∗) ≡ vt+h, ft+h (γ̂t,R) ≡
gtvt+h (γ̂t,R) (an (`× 1) vector), ft+h ≡ gtvt+h = ft+h (γ∗) , ft+h,γ ≡ ∂ft+h(γ

∗)
∂γ

, F ≡ E
(
∂ft+h(γ

∗)
∂γ

)
(an (`× k) matrix).

We make the following assumptions:

Assumption 1:

(i) The estimate γ̂t,R satisfies γ̂t,R − γ∗ = BtHt where B t is (k × q) matrix and H t

is (q × 1) with (a) Bt →
p
B with rank k; (b) H t = t−1

t∑
r=1

hr (γ∗) for the recursive estima-

tion method or H t = R−1
t∑

r=t−R+1
hr (γ∗) for the rolling for a (q × 1) orthogonality condition

hr (γ∗); (c) E(hr (γ∗)) = 0.

(ii) In some neighborhood N around γ∗, and with probability 1, vt (γ) and gt (γ) are mea-

surable and twice continuously differentiable, and E(gtg
′
t) ≡ G is an (`× `) of rank `.

Assumption 2:

(i) limT→∞supj m−1/2
j∑

t=j−m+1
(ft+h,γ − F )BHt = op (1) ;

(ii) limT→∞supj m−1/2F
j∑

t=j−m+1
(Bt −B)Ht = op (1) ;

(iii) limT→∞supj m−1/2
j∑

t=j−m+1
(ft+h,γ − F ) (Bt −B)Ht = op (1) ;

(iv) limT→∞supj

(m−1 j∑
t=j−m+1

gtg
′
t

)−1
−G−1

 = op (1) .

(v) There is a finite constant D such that, for all t, supγ∈N |∂2vt(γ)/∂γ∂γ′| < mt for a

measurable mt such that E(m4
t ) < D and the same holds when vt is replaced by any element

of gt.

Assumption 3. limT→∞m/T = µ ∈ (0, 1) as m → ∞; limT→∞R/T = ρ ∈ (0, 1) as

R → ∞; let j = [τT ], t = [sT ], where [.] denotes the integer function and τ ∈ (0, 1) ,

s ∈ (0, 1) , h <∞.

Assumption 1(i) allows the in-sample parameter estimates to be obtained by general

estimation procedures such as Ordinary Least Squares (OLS), maximum likelihood, and
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GMM, for example. Assumption 1(ii) imposes differentiability and full rank conditions.

Assumption 3 requires j, R andm to be large relative to the sample size (in particular, relative

to the finite horizon, h) and ensures the consistency of the out-of-sample test statistics. The

assumption on ρ accommodates rolling and recursive estimation schemes.

The Appendix shows that, under Assumptions 1, 2 and 3, we have:

m1/2θ̂j = G−1
(
T

m

)1/2
[I`, FB]

{
1√
T

j∑
t=R

(
ft+h

Ht

)
− 1√

T

j−m∑
t=R

(
ft+h

Ht

)}
+ Aj, (6)

where Aj is a remainder term such that limT→∞supjAj = op (1) and I` is an (`× `) identity

matrix. Let
j∑

t=R

Ht =
j∑
t=1

aR,t,jht, where direct calculations show that:

(i) for the recursive estimation scheme
(
Ht = t−1

t∑
r=1

hr

)
:

aR,t,j =
(
R−1 + ...+ j−1

)
· 1 (t ≤ R) +

(
t−1 + ...+ j−1

)
· 1 (R < t ≤ j) ; (7)

(ii) for the rolling estimation scheme
(
Ht = R−1

t∑
r=t−R+1

hr

)
:

if τ− ρ ≥ ρ :

aR,t,j =

(
1

R

)
{t · 1 (t ≤ R) +R · 1 (R < t ≤ j −R) (8)

+ (j − t) · 1 (j −R < t ≤ j)};

whereas if τ− ρ < ρ :

aR,t,j =

(
1

R

)
{t · 1 (t < j −R) + (j −R) · 1 (j −R ≤ t ≤ R) (9)

+ (j − t) · 1 (R < t ≤ j)}.

In addition, for all estimation schemes let bR,j,t = 1 (t > R).

Let Iq be a (q × q) identity matrix. It follows from equations (7), (8) and (9) and

bR,j,t = 1 (t > R) that

1√
T

j∑
t=R

(
ft+h

Ht

)
= 1√

T

j∑
t=1

(
bR,t,j · I` 0

0 aR,t,j · Iq

)(
ft+h

ht

)
.

We further approximate bR,t,j and aR,t,j as follows. Let bR,t,j = 1 (t/T ≥ R/T ) '
1 (s ≥ ρ) ≡ σf (s) and
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(i) for recursive: given equation (7), we follow West (1996) to show that

aR,t,j '
(∫ j

R

1

k
dk

)
· 1 (t ≤ R) +

(∫ j

t

1

k
dk

)
· 1 (R < t ≤ j)

Consider r = k/T . Accordingly,

aR,t,j '
(∫ τ

ρ

1

r
dr

)
· 1 (s ≤ ρ) +

(∫ τ

s

1

r
dr

)
· 1 (ρ < s ≤ τ)

= [ln (τ)− ln (ρ)] · 1 (s ≤ ρ) + [ln (τ)− ln (s)] · 1 (ρ < s ≤ τ) ≡ σh (s, τ) ; (10)

(ii) for rolling: when j −R ≥ R, we can re-write equation (8) as

aR,t,j =
t

R
· 1
(
t

T
≤ R

T

)
+
R

R
· 1
(
R

T
<

t

T
≤ j −R

T

)
(11)

+
j − t
R
· 1
(
j −R
T

<
t

T
≤ j

T

)
;

thus, when τ− ρ ≥ ρ,

σh(s, τ) =
s

ρ
· 1 (s ≤ ρ) + 1 · 1 (ρ < s ≤ τ − ρ) +

τ − s
ρ
· 1 (τ − ρ < s ≤ τ) . (12)

A similar argument shows that when τ− ρ < ρ, equation (9) can be approximated as

σh(s, τ) =
s

ρ
· 1 (s ≤ τ − ρ) +

τ − ρ
ρ
· 1 (τ − ρ < s ≤ ρ) (13)

+
τ − s
ρ
· 1 (ρ < s ≤ τ) .

The following table summarizes the approximations we use for the weights aR,t,j, bR,t,j:

Approximation for the weights aR,t,j, bR,t,j

Weights Estimation Scheme Approximation

bR,t,j All σf (s) ≡ 1 (s ≥ ρ)

aR,t,j Recursive σh (s, τ) ≡ [ln (τ)− ln (ρ)] · 1 (s ≤ ρ)

+ [ln (τ)− ln (s)] · 1 (ρ < s ≤ τ)

Rolling scheme:

(a) τ− ρ ≥ ρ σh (s, τ) ≡ s
ρ
· 1 (s ≤ ρ) + 1 · 1 (ρ < s ≤ τ − ρ)

+ τ−s
ρ
· 1 (τ − ρ < s ≤ τ)

(b) τ− ρ < ρ σh (s, τ) ≡ s
ρ
· 1 (s ≤ τ − ρ) + τ−ρ

ρ
· 1 (τ − ρ < s ≤ ρ)

+ τ−s
ρ
· 1 (ρ < s ≤ τ) .

10



Define ξj =
j∑
t=1

(
ft+h

ht

)
and the stochastic integral of interest as in Hansen (1992, p.

491):

∫ τ

0

(
σf (s) · I` 0

0 σh (s, τ) · Iq

)
dξT =

1√
T

j∑
t=1

(
bR,t,j · I` 0

0 aR,t,j · Iq

)(
ft+h

ht

)
.

The following assumption is based on Hansen (1992) and allows us to derive the asymp-

totic distribution of our parameter of interest, θ̂j.

Assumption 4. For some p > β > 2, (ft+h, h
′
t)
′ is zero mean, strong mixing with mix-

ing coeffi cients αm of size -pβ/ (p− β) and supt≥1|| (ft+h, h′t)
′ ||p = C < ∞. In addition,

lim
T→∞

T−1E (ξT ξ
′
T ) = S ≡

(
Sff Sfh

S ′fh Shh

)
is an (l + q)× (l + q) positive definite and finite

matrix as T →∞.

Proposition 1 (Preliminary Asymptotic Result) Under Assumptions 1-4 and T−1/2ξT →
ξ in DR(`+q) [0, 1]:

1√
T

j∑
t=1

(
bR,t,j · I` 0

0 aR,t,j · Iq

)(
ft+h

ht

)
⇒
∫ τ

0

Ω (s, τ)1/2 dξ (s) ,

where ξ (s) = S1/2B`+q (s) , B`+q (s) is an (`+ q)×1 vector of independent standard Brownian

motions, D denotes the space of cadlag functions, “⇒”denotes weak convergence with respect

to the Skorohod metric, and Ω (s, τ)1/2 ≡
(
σf (s) · I` 0

0 σh (s, τ) · Iq

)
.

We use the result in Proposition 1 to derive the asymptotic distribution of the parameter

estimate, θ̂j, in the next Proposition.

Proposition 2 (Asymptotic Distribution of θ̂j) Under Assumptions 1-4 and T−1/2ξT →
ξ in DR(`+q) [0, 1]:

m1/2 θ̂j ⇒
∫ τ

0

ω̃ (s, τ) dB`+q (s)−
∫ τ−µ

0

ω̃ (s, τ − µ) dB`+q (s) = Bω̃ (τ)− Bω̃ (τ − µ) (14)

=
d

∫ τ

0

ω (s, τ) dB`+q (s) ≡ Bω (τ) = B`
(∫ τ

0

ω (s, τ)ω (s, τ)′ ds

)
, (15)

where

ω̃ (s, τ) = µ−
1
2G−1 [I`, FB] Ω (s, τ)1/2 S1/2, (16)
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ω (s, τ) = µ−
1
2G−1 [I`, FB] {

[
Ω (s, τ)1/2 − Ω (s, τ − µ)1/2

]
· 1 (s ≤ τ − µ) (17)

+ Ω (s, τ)1/2 · 1 (τ − µ < s ≤ τ) }S1/2,

B`+q (s) is an (`+ q) × 1 vector of independent standard Brownian motions and =
d
denotes

equality in distribution.

Note that both Bω (τ) as well as Bω̃ (τ) are (`× 1) Gaussian processes with time-varying

variances. Bω (τ) is Gaussian with quadratic variation
∫ τ
0
ω (s, τ)ω (s, τ)′ ds.9 Similarly,

Bω̃ (τ) ≡ B`
(∫ τ
0
ω̃ (s, τ) ω̃ (s, τ)′ ds

)
is Gaussian with quadratic variation

∫ τ
0
ω̃ (s, τ) ω̃ (s, τ)′ ds.

The following Proposition calculates the quadratic variation of Bω (τ) and Bω̃ (τ) for the

rolling and the recursive estimation schemes.

Proposition 3 (Calculation of
∫ τ
0
ω (s, τ)ω (s, τ)′ ds )∫ τ

0

ω (s, τ)ω (s, τ)′ ds = µ−1G−1
{ (∫ τ

τ−µ σ
2
f (s) ds

)
Sff +

(∫ τ
τ−µ σf (s)σh (s, τ) ds

)
(FBSfh + SfhB

′F ′) +

∫ τ

0

[
(σh (s, τ)− σh (s, τ − µ))2 · 1 (s ≤ τ − µ)

+σ2h (s, τ) · 1 (τ − µ ≤ s ≤ τ)
]
dsFBShhB

′F ′}G−1,

where

(i)
∫ τ
τ−µ σ

2
f (s) ds = µ for both rolling and recursive cases;

(ii) recursive: let π̃ ≡ µ/ (τ − µ) ;∫ τ
τ−µ σf (s)σh (s, τ) ds = µ [1− π̃−1 ln (1 + π̃)] and∫ τ
0

[
(σh (s, τ)− σh (s, τ − µ))2 · 1 (s ≤ τ − µ) + σ2h (s, τ) · 1 (τ − µ ≤ s < τ)

]
ds = 2µ [1− π̃−1 ln (1 + π̃)] ;

(iii) rolling: let π† ≡ µ
ρ
;

(a) if µ ≥ ρ, then∫ τ
τ−µ σf (s)σh (s, τ) ds = µ

(
1− 1

2π†

)
and∫ τ

0

[
(σh (s, τ)− σh (s, τ − µ))2 · 1 (s ≤ τ − µ) + σ2h (s, τ) · 1 (τ − µ ≤ s < τ)

]
ds = µ

(
1− 1

3π†

)
;

(b) if µ < ρ, then∫ τ
τ−µ σf (s)σh (s, τ) ds = 1

2
µπ† and∫ τ

0

[
(σh (s, τ)− σh (s, τ − µ))2 · 1 (s ≤ τ − µ) + σ2h (s, τ) · 1 (τ − µ ≤ s < τ)

]
ds = µπ†

(
1− 1

3
π†
)
.

9We eliminated the vector dimension in the notation for Bω (·) , Bω̃ (·) as they are always dimension
(`× 1).
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Proposition 4 (Calculation of
∫ τ
0
ω̃ (s, τ) ω̃ (s, τ)′ ds )∫ τ

0

ω̃ (s, τ) ω̃ (s, τ)′ ds = µ−1G−1
{(∫ τ

0

σ2f (s) ds

)
Sff +

(∫ τ

0

σf (s)σh (s, τ) ds

)
×

× (FBSfh + SfhB
′F ′) +

(∫ τ

0

σ2h (s, τ) ds

)
FBShhB

′F ′
}
G−1,

where

(i)
∫ τ
0
σ2f (s) ds = (τ − ρ) for both rolling and recursive cases;

(ii) recursive:∫ τ
τ−µ σh (s, τ)σf (s) ds = (τ − ρ)

(
1− ρ

τ−ρ ln
(
τ
ρ

))
and∫ τ

0
σ2h (s, τ) ds = 2(τ − ρ)

(
1− ρ

τ−ρ ln
(
τ
ρ

))
;

(iii) rolling:

(a) if τ − ρ ≥ ρ, then∫ τ
0
σf (s)σh (s, τ) ds =

(
τ − 3

2
ρ
)
and

∫ τ
0
σ2h (s) ds =

(
τ − 4

3
ρ
)
;

(b) if τ − ρ < ρ, then∫ τ
0
σf (s)σh (s, τ) ds = 1

2ρ
(τ − ρ)2 and

∫ τ
0
σ2h (s) ds = 1

3ρ2
(τ − ρ)2 (4ρ− τ).

The next Proposition discusses the asymptotic distribution of the Wj,m test statistic

presented in equation (4).

Theorem 5 (Main Proposition ) Under Assumption 1-4,

Wj,m = mθ̂′j V
−1
θ,τ θ̂j

⇒
[
B`
(∫ τ

0

ω (s, τ)ω (s, τ)′ ds

)]′
V −1θ,τ

[
B`
(∫ τ

0

ω (s, τ)ω (s, τ)′ ds

)]
, (18)

where

Vθ,τ = Avar
(
m1/2θ̂j

)
(19)

= G−1 [I`, FB]Avar

(
1√
m

j∑
t=j−m+1

(
ft+h

Ht

))
[I`, FB]G−1

=

∫ τ

0

ω (s, τ)ω (s, τ)′ ds, (20)

j = [τT ] , m = [µT ] and B` (·) is a standard `-dimensional Brownian motion. Let θj be
the true parameter value. We reject the null hypothesis:

H0 : θj = θ0 , θ0 = 0 for all j = R +m, ..., T (21)
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if maxj∈{R+m,...,T} Wj,m > κα,`, where κα,` are the critical values at the 100α% significance

level that can be simulated for given values of µ, `, G, F, B and S.

Vθ,τ can be estimated using Proposition 3 and replacing the population values of Sff, Sfh,

Shh with a consistent estimate. For example, one could use Newey and West’s (1987) covari-

ance estimator of long run variance of
{

(ft+h, h
′
t)
′}T
t=R
.

The asymptotic distribution of the test statistic Wj,m is non-standard and depends on

nuisance parameters. We obtain its critical values, κα,`, via Monte Carlo simulations by the

following steps:

1. Simulate B`

(∫ τ
0
ω̃ (s, τ) ω̃ (s, τ)′ ds

)
by using the approximation

√
T

j∑
t=1

ω̃
(
t
T
, j
T

)
ϑ`,

where ϑ` is an (`× 1) vector of independent standard Normal random variables;

2. Simulate B`

(∫ τ−µ
0

ω̃ (s, τ) ω̃ (s, τ)′ ds
)
similarly by

√
T
j−m∑
t=1

ω̃
(
t
T
, j−m

T

)
ϑ`;10

3. Then, we obtain

B`

(∫ τ

0

ω (s, τ)ω (s, τ)′ ds

)
= B`

(∫ τ

0

ω̃ (s, τ) ω̃ (s, τ)′ ds

)
−B`

(∫ τ−µ

0

ω̃ (s, τ) ω̃ (s, τ)′ ds

)
;

4. Finally, conditional on the estimated value of Vθ,τ obtained by equation (19) and Propo-

sition 4, we simulate the Wj,m test statistic by using equation (18);

5. The critical values at significance level α can be obtained by the (1− α) th quantile of

the simulated distribution of Wj,m.

Note that when S is full rank, S1/2 can be calculated as the Cholesky factor of S; when

S is rank deficient, one can use a singular value decomposition in Rao (Section 8a.4)

to approximate ω̃ (t/T, j/T ).

The case of a linear regression model in equation (3) is the same as that considered in

West and McCracken (1998). Note the similarity between the results in Proposition (3) and

West and McCracken’s (1998) variance. The latter define the variance in exactly the same

way, except that in their case m = P, π = limT→∞ (P/R) and τ = 1. Consequently, by

letting µ = π (1 + π)−1 , ρ = (1 + π)−1 and (1− ρ) = π (1 + π)−1 in Propositions 3 and 4 we

recover their results:11

10It is important that the random variable ϑ` used to simulate the two Brownian motions is the same.
11Recall that West and McCracken’s (1998) test statistic is obtained by rescaling by P 1/2 rather than T 1/2

as shown in equation (3).

14



(i) recursive scheme:

Vθ,P = G−1
{
Sff +

(
1− π−1 ln (1 + π)

) [
FBS ′fh +B′F ′Sfh

]
+ 2

(
1− π−1 ln ((1 + π))

)
FBShhB

′F ′
}
G−1;

(ii) rolling scheme:

Vθ,P =

G
−1 {Sff +

(
1− 1

2π

) [
FBS ′fh +B′F ′Sfh

]
−
(
1− 1

3π

)
BFShhF

′B′
}
G−1; π ≥ 1

G−1
{
Sff + π

2

[
FBS ′fh +B′F ′Sfh

]
+
(
π − π2

3

)
BFShhF

′B′
}
G−1; π < 1.

The difference between West and McCracken (1998) and our approach is that we aim at

testing forecast optimality at each point in the out-of-sample period, based on rolling window

averages, while they focus on optimality on average over the whole out-of-sample portion of

the data. In the case of West and McCracken (1998), the tests take into account parameter

estimation error by simple adjustment factors in the variance, which result in tests with

asymptotic distributions that are nuisance parameter free. In our case, instead, we need

to adjust the asymptotic distribution to take into account the parameter estimation error,

which induces a time-varying variance; under very general conditions, this implies that the

critical values depend on the data generating process and need to be simulated specifically

for the individual application at hand.

5 Forecast Unbiasedness and Effi ciency Tests, and Sur-

vey Forecasts

The general results presented in the previous section simplify considerably in two cases

important for practitioners. A first important special case is when parameter estimation error

is irrelevant (F = 0). This may be often of interest in practice when the model that generated

the forecasts is not available and, thus, the correction for parameter estimation error is not

applicable. Relevant examples are survey forecasts and judgemental forecasts produced by

central banks; for instance, the Greenbook forecasts by the Federal Reserve Board or private

sector forecasts such as those produced by the Blue Chip Economic Indicators.12

12In addition, if a researcher were to consider a null hypothesis on the forecast errors evaluated at the

estimated models’parameter, the asymptotic distribution of the test statistic would similarly be nuisance

parameter free. For a discussion and implementation, see Rossi (2012, 2013).
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Proposition 6 (Special Case I: Irrelevant Parameter Estimation Error) Under the

condition F = 0, parameter estimation error becomes irrelevant and
∫ τ
0
ω (s, τ)ω (s, τ)′ ds be-

comes G−1SffG−1 and
∫ τ
0
ω̃ (s, τ) ω̃ (s, τ)′ ds = (τ−ρ)

µ
G−1SffG

−1 for all estimation schemes.

A second special case involves testing for forecast unbiasedness and effi ciency using t-tests

under general conditions, as well as several other tests under more specific assumptions. As

discussed in West and McCracken (1998) Corollary 5, in such cases a special condition holds,

which considerably simplifies the asymptotic distributions of our test statistic. As in West

and McCracken (1998), the results in the special case below also hold for encompassing and

serial correlation tests when the errors are conditionally homoskedastic.

Proposition 7 (Special Case II: Forecast Unbiasedness and Effi ciency Tests) Under

the condition:

Sff = −1

2
(FBShf + SfhB

′F ′) = FBShhB
′F ′, (22)∫ τ

0
ω̃ (s, τ) ω̃ (s, τ)′ ds in Proposition 3 becomes:

(i) recursive case: τ−ρ
µ
G−1SffG

−1;

(ii) rolling case:

(a) 1
µ
2ρ
3
G−1SffG

−1, if τ − ρ ≥ ρ; and

(b) (τ−ρ)
µ

(
1− (τ−ρ)2

3ρ2

)
G−1SffG

−1, if τ − ρ < ρ.

Furthermore,
∫ τ
0
ω (s, τ)ω (s, τ)′ ds in Proposition 3 becomes λG−1SffG−1, where:

(i’) recursive case: λ = 1;

(ii’) rolling case: let π† ≡ µ
ρ
; then,

(a) λ = 2
3π† , if µ ≥ ρ; and

(b) λ =
(

1− 1
3

(
π†
)2)

, if µ < ρ.

Note that, when either Proposition 6 or 7 holds, Vθ,τ =
∫ τ
0
ω (s, τ)ω (s, τ)′ ds does not

depend on τ ; thus, the variance is not time-varying. The next proposition shows that, in

these special cases, the distribution of the test statistic simplifies and its critical values can

be tabulated.

Theorem 8 (Main Proposition in Special Cases) (a) Under Assumption 1-4 and Con-

dition (22), we have:

Wj,m ⇒Wτ,µ, (23)
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where Wτ,µ is: (i) Recursive estimation:

Wτ,µ = [B` (τ − ρ)− B` (τ − ρ− µ)]′ [B` (τ − ρ)− B` (τ − ρ− µ)] , (24)

(ii) Rolling estimation:

Wj,m ⇒ 1 (µ+ ρ ≤ τ < 2ρ)

{
B`

(
τ − ρ
µ

(
1− (τ − ρ)2

3ρ2

))
− B`

(
τ − µ− ρ

µ

(
1− (τ − µ− ρ)2

3ρ2

))}

+ 1 (2ρ < τ ≤ 2ρ+ µ)

{
B`
(

2

3

ρ

µ

)
− B`

(
τ − µ− ρ

µ

(
1− (τ − µ− ρ)2

3ρ2

))}
, (25)

where Vθ =
(
2
3π†

)
· 1 (µ ≥ ρ) +

(
1− 1

3

(
π†
)2) · 1 (µ < ρ) = λ, λ defined in Proposition 7.

(b) Furthermore, under Assumptions 1-4 and condition F = 0, eq. (23) holds with

Wτ,µ = [B` (τ − ρ)− B` (τ − ρ− µ)]′ [B` (τ − ρ)− B` (τ − ρ− µ)] . (26)

We reject the null hypothesis:

H0 : θj = θ0, θ0 = 0 for all j = R +m, ..., T (27)

if max
j∈{R+m,...,T} Wj,m > κα,`, where κα,` are the critical values at the 100α% significance

level and are reported in Table 1a for eq. (24) and (26) for various values of µ = [m/T ] and

number of restrictions, `; and in Table 1b for eq. (25) for various combinations of µ, ρ, `.13

INSERT TABLES 1a, 1b AND 1c HERE

Under the special cases considered in Propositions 6 or 7, which are the ones more

commonly used in the literature, the critical values do not depend on the data generating

process and can be tabulated. More specifically, Theorem 8 shows that this is the case

when either: (i) F = 0; or (ii) when testing forecast unbiasedness and rationality via t-tests

(that is, when concerned about mean prediction errors and effi ciency); or (iii) when testing

encompassing and serial correlation with conditionally homoskedastic errors. In these cases,

our method results in an adjustment procedure similar to that of West and McCracken

(1998), where the test statistics could be calculated similarly, by substituting P in their

13The critical values can be obtained by Monte Carlo simulation. The critical values at significance level

100α% are such that Pr
{
supτ∈{ρ+µ,...,1}Wτ,µ > κα,`

}
= α.
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notation with m of our notation, provided inference is conducted using the critical values

provided in this paper.

Note that for j̃ ≡ j−R, τ̃ ≡ τ−ρ, supτ [B` (τ − ρ)− B` (τ − ρ− µ)]′ [B` (τ − ρ)− B` (τ − ρ− µ)]

= supτ̃ [B` (τ̃)− B` (τ̃ − µ)]′ [B` (τ̃)− B` (τ̃ − µ)]. Thus, the critical values that we provide

in Table 1a do not depend on ρ. Note also that in the case of model-free forecasts, the only

sample available to researchers is P : they do not have an available R; therefore we define

µ̃ such that m = [µ̃P ] (that is, we define m as a fraction of the number of observations P ,

as opposed to being a fraction of the total sample size T ) and provide critical values for the

test statistic supτ̃ [B` (τ̃)− B` (τ̃ − µ̃)]′ [B` (τ̃)− B` (τ̃ − µ̃)], for τ̃ = 1, ..., P. Clearly there is

a relationship between µ and µ̃, and we could have provided only one table of critical values

for µ. However, that would not easily map into critical values for µ̃ that would be commonly

used in empirical applications. Thus, we provide a separate table of critical values (Table 1c)

for supτ̃ [B` (τ̃)− B` (τ̃ − µ̃)]′ [B` (τ̃)− B` (τ̃ − µ̃)], as discussed in the following Corollary.

Corollary 9 (Main Proposition for Survey and Model-Free Forecasts) Under Assump-

tions 1-4 and condition F = 0, the alternative test statistic

Wj̃,m = mθ̂′
j̃
V̂ −1θ θ̂j̃, for j̃ = m, ..., P ,

implemented over the sequence of P forecasts is such that:

sup
j̃∈{m,...,P}

Wj̃,m =⇒ sup
τ̃∈{µ̃,...,1}

Wτ̃ ,µ̃, (28)

where τ̃ ≡ τ − ρ, µ̃ ≡ [m/P ] and

Wτ̃ ,µ̃ = [B` (τ̃)− B` (τ̃ − µ̃)]′ [B` (τ̃)− B` (τ̃ − µ̃)] . (29)

We reject the null hypothesis:

H0 : θj = θ0, θ0 = 0 for all j̃ = m, ..., P (30)

if maxj̃∈{m,...,P} Wj̃,m > κα,`, where κα,` are the critical values at the 100α% significance level

and are reported in Table 1c for various values of µ̃ = [m/P ].
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6 Monte Carlo Analysis

We study the small sample performance of the methods that we propose in a series of

Monte Carlo experiments inspired by West and McCracken (1998). Let the Data Generating

Process (DGP) be: yt = γyt−1 + εt, where γ = 0.5, εt ∼ iid(0, 1), and y0 is drawn from its

unconditional distribution, a normal with zero mean and variance (1− γ2)−1. In each sample,
t = 1, ..., T + 1, we split the data into T + 1 = P + R, and we utilize either a rolling or a

recursive scheme to generate P one-step ahead out-of-sample forecasts, yfR+1, ..., y
f
T+1. The

forecasting model for the recursive estimation scheme implies Ety
f
t+1 = γyt, while for the

rolling estimation scheme it implies Ety
f
t+1 = γ0 + γ1yt. The forecast errors are denoted by

εft+1 ≡ yt+1 − yft+1, for t = R, ..., T.14

First, we consider the size properties of our test and compare it to the “Traditional tests”

typically used in the literature. Consider the following regression model:

Etε
f
t+1 = θ0 + θ1Zt. (31)

The “Traditional tests”include testing:

(i) Zero mean prediction error (or forecast unbiasedness). We test whether the mean of the

sequence of forecast errors is zero. The test is implemented by a two-sided t-test for θ0 = 0 in

regression (31), where there are no regressors other than the constant. Let θ̂0 = P−1
T∑
t=R

εft+1

and σ̂2θ0 = P−1
T∑
t=R

(
εft+1

)2
.We consider a t-test with West and McCracken’s (1998) variance

correction: tcα = P 1/2θ̂0σ̂
−1λ

−1/2
WM , where λWM = 1 for the recursive scheme and, for the rolling

scheme, λWM = 1− π2/3 when π ≤ 1 and λWM = 2/ (3π) when π > 1.

(ii) Forecast effi ciency. The test is implemented by a two-sided t-test for θ1 = 0 in the

regression (31), where Zt = yft+1, and a constant is included in the regression. Let θ̂1 be

the OLS estimate of the slope coeffi cient in the regression (31), and σ̂2θ1 be its estimated

standard error. We consider a t-test that utilizes West and McCracken’s (1998) correction:

tcθ1 = β̂σ̂−1θ1 λ
−1/2
WM , for the same values of λWM as in (i).

In addition, we consider our proposed “Fluctuation Rationality”test, equation (4), im-

plemented in rolling regressions over the out-of-sample period with a rolling window size

m = 50.

14The advantage of using the same DGP as West and McCracken (1998) is that we can directly compare

our results to theirs. In addition, in order for Condition (22) to hold, one would need to include a constant

in the estimation equation. For a reference, see West and McCracken (1998), proof of Theorem 7.1.
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The estimate of the asymptotic variance is obtained by using a simple homoskedastic

covariance estimate of S, as in West and McCracken (1998). The number of Monte Carlo

replications is 1,000.

Table 2 reports results for the recursive and the rolling estimation schemes, respectively.

Panel A reports results for testing forecast unbiasedness and panel B for forecast effi ciency.

The tables shows that the empirical rejection frequencies of our proposed tests (reported in

the column labeled “Fluctuation Test”) as well as those of the traditional tests (reported in

the column labeled “Traditional Test”) are close to the nominal value except in very small

sample sizes. The size distortions in small samples are mild for the recursive scheme for

both tests and for the rolling scheme for the mean prediction error test, and a little bit

larger (10%) for the rolling case in the effi ciency test. In general, for the small samples, i.e.

R <= 100, the recursive estimation scheme results in a better sized tests than the rolling

estimation scheme.

INSERT TABLE 2 HERE

In order to evaluate the power of our test in the presence of time variation, we consider

experiments based on three DGPs. All DGPs are based on the model: yt = γyt−1 + εt + bt,

where γ = 0.5, εt ∼ iid(0, 1), y0 is drawn from the unconditional distribution of yt. In DGP

A (labeled as “A. Non-stationary”), bt = b · 1(1 < t ≤ 345)− b · 1(345 < t < T ). In DGP B

(labeled as “B. Non-stationary”), bt = 0 · b · 1(1 < t ≤ 345) + 2 · b · 1(345 < t < T ). DGP

C (labeled as “C. Stationary”) considers bt = b, for all t. Furthermore, b = {0, 0.1, ..., 1} for
the power exercises in the case of mean prediction error and b = {0, 0.5, ..., 5} for the power
exercises in the case of effi ciency. Predictions are based on an AR(1) model. DGP A is used

to assess the power of the“Fluctuation Rationality" test. DGP B is a non-stationary DGP

where traditional tests can also have some power. DGP C is a stationary model that we use

to study the power loss from using our test that is robust to the presence of instabilities.

The power loss occurs since our test uses fewer observations than the traditional tests, i.e.

m < P . In all cases parameters are estimated with a recursive scheme, and T = 400, R = 300

and m = 50.

The power comparisons are reported in Table 3. The table shows that, in DGP A, the

traditional tests do not have power to reject the null hypothesis, and in fact their rejection

frequencies approach zero under the alternative hypothesis, whereas our proposed tests do

have substantial power (see Panel A). In DGP B, the traditional test has some power,

although our test has a higher power to detect lack of rationality (see Panel B). Finally,
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Panel C illustrates the loss of power in our test relative to the traditional test when there

are no instabilities in the data. Clearly, there is a trade-off between the proposed tests and

the traditional ones: if one is certain that the forecast environment is stable, the traditional

tests would have more power to detect lack of rationality in small samples; however, when

the forecast environment is unstable, the traditional tests may have no power at all, even

asymptotically, in certain situations, while our proposed test would have power.

INSERT TABLE 3 HERE

7 Are the Federal Reserve and Private Sector’s Fore-

casts Rational?

The quality of private sector’s forecasts relative to the internal forecasts of the Federal

Reserve has been frequently considered in the literature. As anticipated in Section 2, in

important contribution, Romer and Romer (2000) showed that the Federal Reserve has

more information relative to the private sector when forecasting inflation. Hence, it would

be optimal for a third party with access to both forecasts to put all the weight on the forecasts

provided by the Federal Reserve and zero weight on the ones provided by the commercial

forecasters.

We revisit the existing empirical evidence from two points of view. First, we consider

the rationality of private sector’s as well as the Federal Reserve’s Greenbook forecasts, as

in Romer and Romer (2000), Faust and Wright (2010), Patton and Timmermann (2011)

and Croushore (2012), among others. These papers have found that forecast rationality

tests for the various, competing inflation forecasts are sensitive to the sub-sample period

used for forecast evaluation. The novelty of our approach is to study whether forecast

rationality holds by using our “Fluctuation Rationality”test robust to instabilities. One of

the advantages of our approach is that it does not require researchers to know or impose a

sub-sample date a-priori. Second, we evaluate whether Romer and Romer’s (2000) finding

that Federal Reserve forecasts are superior to private sectors’ forecasts continues to hold

when we allow for instabilities.

We consider the Federal Reserve’s inflation forecasts provided in the Greenbook and

compare them with two commercial forecasts: the Blue Chip Economic Indicators (BCEI)

and the Survey of Professional Forecasters (SPF). In what follows, we describe the data from

each of the sources.
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Greenbook forecasts are made by the staff of the Federal Reserve Board of Governors

prior to each Federal Open Market Committee (FOMC) meeting. The Greenbook provides

quarterly forecasts (from contemporaneous up to nine quarters) for a variety of economic

indicators and for several forecast horizons under a maintained assumption about monetary

policy; the forecast horizons can vary depending on when the forecasts were made. We

consider only forecasts up to five quarters to ensure a sample large enough for inference.

We focus on inflation forecasts provided by the Greenbook, which are measured by (annual-

ized) quarter-over-quarter GNP deflator growth rates from 1965 to 1991 and by (annualized)

quarter-over-quarter GDP deflator growth rates afterwards. Greenbook forecasts are avail-

able only with a five-year lag. Thus, our current sample includes data up to 2005:IV. The

data are provided by the Federal Reserve Bank of Philadelphia, which matches the timing

of the Greenbook forecasts with that of the SPF. The database includes forecasts from four

of the annual FOMC meetings whose the date is closest to the middle of the quarter.15 In

order to make the two data sets comparable, we omit the first 3 years of observations and

start the series in 1968:IV.

The Survey of Professional Forecasters (SPF) provides forecasts for inflation as well as

a variety of economic fundamentals at the quarterly frequency. These include nowcasts

(forecasts of the current quarter) as well as forecasts up to four-quarter-ahead. We use

the forecasts of (annualized) quarterly GNP/GDP deflator growth rates whose timing is

consistent with that of the Greenbook forecasts. The survey is conducted roughly at the end

of every second month in the quarter, and it includes 34 professionals’forecasts. The series

start in 1968:IV. We use the median forecast and terminate our series at 2005:IV to obtain

a data set spanning the same period of time as that of the Greenbook.

The Blue Chip Economic Indicators (BCEI) provides monthly forecasts of quarterly

economic series starting from 1980. It is a survey-based forecast database where about 50

U.S. business economists participate each month. Though this is a monthly series, in order to

match the Greenbook and SPF forecasts we take only four forecasts per year corresponding

to the mid-quarter, i.e. February, May, August, and November, from 1980 to 2005.16

To evaluate the Greenbook, SPF and Blue Chip forecasts, we use realized values of

15Greenbook forecasts can be obtained from the Philadelphia Fed web-site at

http://www.philadelphiafed.org/research-and-data/real-time-center/greenbook-data/, while the SPF

forecasts are provided by the same source at http://www.philadelphiafed.org/research-and-data/real-time-

center/survey-of-professional-forecasters/.
16Although the BCEI forecasts are available from August 1976, the forecasts for the initial four years are

for annual changes in key economic variables as opposed to quarterly, thus we omit the earlier period.

22



(annualized) quarter-over-quarter growth rates of the GNP/GDP deflator constructed from

the quarterly vintages in the real-time data set discussed by Croushore and Stark (2001).

Our forecast evaluation approach is consistent with that in Romer and Romer (2000), who

use the second revision as the benchmark for forecast evaluation, i.e. the specific quarter data

available at the last month of the consecutive quarter. Given the real-time nature of the data

set, the way we construct the (annualized) quarter-over-quarter GNP/GDP deflator based

inflation rate is as follows. For example, the deflator for 1968:IV uses the 1969:I vintage

and applies the following transformation: 400ln(PGDP68 : IV/PGDP68 : III). We do so

for all the vintages up to 2007:IV, then take the diagonal elements of the resulting matrix.

This way we obtain a real-time, annualized measure of the quarter-over-quarter inflation

rate of the previous quarter, which we use to evaluate the nowcast or the corresponding

h-quarter-ahead forecast over time.17

Figure 2 compares the Greenbook forecasts with those of the SPF and BCEI. Each panel

in Figure 2 corresponds to a forecast horizon, where the horizon h ranges from 0 to 5. h = 0

corresponds to the nowcast of inflation. The figure also plots the realized values for inflation

at each horizons (reported by the solid line, labeled “actual”). In the figure, not all forecasts

have the same starting point. In addition, there are several missing values at several horizons

across the different sources, and even for the same source depending on when the forecast

has been made. However, overall, the forecasts appear to be correlated with each other:

the correlation coeffi cients between the Greenbook and the private sector’s forecasts range

from 0.94 to 0.96 across various horizons. Table 4 reports the mean squared forecast errors

(MSFE) for the forecast plotted in Figure 2. It appears that the SPF forecasts are inferior

to those of the Greenbook at all horizons whereas the BCEI forecasts appear to be superior.

However, as we show further, there is substantial evidence of instabilities, and the difference

is most likely associated by the different sample period that BCEI covers.

INSERT FIGURE 2 AND TABLE 4 HERE

To evaluate the forecast performance, we consider the following regression:

πt+h = α + δπ̂t+h,t + εt+h, (32)

where πt+h is the realized inflation rate, π̂t+h,t = Etπt+h is the inflation expectation for t+ h

based on the information available at the time t, h is the forecast horizon and εt+h is a

17In the real-time data set provided by the Philadelphia Fed, the observation for 1995:IV is missing in the

vintage of 1996:I. We use the value available in the vintage of 1996:II as a substitute value.
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forecast error. We consider h = 0, 1, ..., 6 for the Greenbook forecast, h = 0, 1, ..., 5 for the

BCEI, and h = 0, 1, ..., 4 for the SPF. For the Greenbook, the choice of h is constrained by

the need to have a sample size large enough for inference. The choice of h for the BCEI and

SPF is dictated by data availability. In order to test forecast optimality in the framework

discussed in Section 3, where the test involves zero restrictions on the parameters, we rewrite

equation (32) as follows:

πt+h − π̂t+h,t = α + βπ̂t+h,t + εt+h, (33)

where β = δ−1. Table 5 presents results for both traditional forecast rationality tests as well

as the “Fluctuation Rationality”test that we propose. The former relies on the maintained

assumption that the parameters of the regression are time invariant and it is implemented

using a simple Wald-type test in equation (33), where the parameters are estimated by

OLS; we use a HAC variance estimate (Newey and West, 1987) with a bandwidth equal to

P 1/4. Our proposed test instead assesses whether the parameters equal the values implied

by optimal forecasts at any given point in time, and it is robust to instabilities. The test is

implemented as in eq. (4), where θ̂j are the OLS estimates of α and β from equation (33)

in rolling regressions with a window size m = 60.

The column labeled “Fluctuation”in Table 5 reports the test statistic max
j̃∈{m,...,P}

Wj̃,m

in Proposition 9 and the column labeled “Traditional”reports the test statistic WP in eq.

(3); both are reported for several horizons h, listed in the first column. Asterisks denote

significance at the 5% significance level. Table 5 suggests that traditional forecast rationality

tests fail to reject the null hypothesis of forecast rationality at the 5% significance level for

the Greenbook and SPF forecasts, whereas they reject forecast rationality for the BCEI

forecasts. However, as we show later, this difference in the results highly depends on the

evaluation period, as the sample for the BCEI forecasts starts much later. It is in fact during

a period of time when the Greenbook and SPF forecasts fail the rationality test as well. In

contrast, the Fluctuation Rationality test rejects the null hypothesis of rationality for all

forecasts.

INSERT TABLE 5 HERE

Figures 3-5 plots Wj̃,m together with the critical values for the max
j̃∈{m,...,P}

Wj̃,m test

statistic at the 5% significance level. The timing on the horizontal axis provides useful

information about the timing of the forecast rationality breakdown. Figure 3 focuses on

the Greenbook’s forecasts. The figure shows three substantial breakdowns: the first two are
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associated with the beginning and the end of 1990s. It appears that the forecasts deteriorate

over the 1990s and rationality tends to recover by the 2000s. However, for almost all forecast

horizons with the exception of five quarters ahead, forecast rationality breaks down again

in 2005. Overall, it appears that the empirical evidence in favor of forecast rationality

supported by the traditional forecast rationality tests, reported in Table 6, is driven mainly

by the good performance of the Greenbook forecasts at the beginning of our sample.

INSERT FIGURES 3, 4 AND 5 HERE

Figure 4 plots the Fluctuation Rationality test for the BCEI forecasts and Figure 5

reports the same test for the SPF forecasts. Figure 5 suggests that the empirical evidence

on forecast rationality for SPF forecasts is qualitatively similar to that of the Greenbook.

However, the recovery of forecast rationality during the first half of 2000s is less pronounced

for SPF than for the Greenbook. By comparing Figure 5 with Figure 4, we note that they

behave similarly in the overlapping part of the evaluation period. This suggests that the

traditional forecast rationality test results for the BCEI reported in Table 6 are different from

the other forecasts solely due to the different sample period. The BCEI forecasts are overall

qualitatively similar to the SPF forecasts, with a notable exception: the non-existence of the

breakdown of forecast rationality in the BCEI forecasts in 2005. In general, the empirical

evidence in Figures 3-5 does not support forecast rationality for any of the forecasts at any

horizons.

Our second objective is to assess whether the Federal Reserve has an information advan-

tage over private sector’s forecasts. To do so, we consider the following regression:

πt+h − π̂it+h,t = δ + βgπ̂
G
t+h,t + βiπ̂

i
t+h,t + νt+h, (34)

where π̂gt+h,t is the Greenbook forecast and π̂
i
t+h,t, i = SPF,BCEI denote the SPF and

BCEI forecasts, respectively. The Federal Reserve forecasts are useful beyond that of the

private sector in predicting inflation if and only if βg 6= 0. We test this hypothesis both

with the traditional tests as well as with our robust Fluctuation-type test. The latter test is

implemented as in eq. (4), where θ̂j are the OLS estimates of δ and βg from equation (34)

in rolling regressions with a window size m = 60.

The results are reported in Table 6. The table reports the traditional test statistics (col-

umn labeled “Traditional”) and the Fluctuation-type test statistic (column labeled “Fluc-

tuation”); asterisks denote significance at the 5% level. According to the table, both the

traditional tests and the Fluctuation-type test suggest statistically significant evidence that
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the Federal Reserve has additional information relative to the private sector’s forecasts. Fig-

ure 6 sheds additional light on this conclusion. The figure plots the Fluctuation-type test

statistics over time and shows that the information advantage of the Federal Reserve has

deteriorated after 2003. In fact, the rejections of the hypothesis of no information advantage

of the Federal Reserve based on the Fluctuation test appear mostly at the beginning of the

sample. The result holds also for both commercial forecasts, that is the BCEI and the SPF.

INSERT TABLE 6 AND FIGURE 6 HERE

Figure 7 plots the coeffi cients on Federal Reserve’s Greenbook forecasts, βg in equation

(34), estimated in the rolling regressions. The figure suggests that the coeffi cient averages

around unity. However, the coeffi cient seems to have been decreasing over time over all

horizons. For example, the bottom two panels depict the explanatory power of the Greenbook

forecasts over that of the SPF’s forecasts, and show that it clearly decreased over time. The

picture also shows a mild revival of the information advantage around 1995-2001. The top

two panels in the figure depict the explanatory power of the Greenbook over that of the BCEI

forecasts; they reinforce the evidence in favor of the presence of additional explanatory power

of the Greenbook forecasts around 1995, which starts diminishing around 2001.

INSERT FIGURE 7 HERE

8 Conclusion

This paper proposes new forecast rationality tests that can be used in unstable environments.

The tests we propose can be applied to test forecast unbiasedness, effi ciency, encompassing,

serial uncorrelation and, in general, regression-based tests of forecasting ability. Our test

statistics have non-standard limiting distributions and depend on nuisance parameters; in

special cases that are very relevant in practice, the critical values can be tabulated, thus

making the test easily implementable. Our paper also analyzes the size properties of the test

that we propose in small samples, as well as the power of our tests relative to traditional

tests in the presence of instabilities. We show that traditional tests may fail to reject forecast

optimality in the presence of instabilities whereas our test performs well in that regard.

The methods we propose are robust to data mining because the critical values are based

on the supremum of the statistics across all samples. The test is not robust to data mining

due to the choice of the out-of-sample window size; to resolve the latter issue, the reader
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is referred to Inoue and Rossi (2012) and references therein. Furthermore, we should note

that our test is designed to signal lack of rationality in sub-samples of the data: it might

still be that our test signals lack of optimality in sub-samples but forecasts are, on average,

rational, as in the empirical analysis. It also possible that a researcher may want to allow

for a learning period or for some violations of optimality at specific points in time; the test

can be adapted to these situations by examining a plot of the test statistic Wj,m over time.

The empirical analysis compares various private sector forecasts to those of the Federal

Reserve Greenbook. We reject the forecast rationality of all these forecasts at some point in

time. However, even after allowing for time-variation, we find significant evidence in favor

of the Fed’s additional information advantage over the private sector when predicting future

inflation.
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Appendix
Proof of equation (6). Note that

θ̂j =

(
m−1

j∑
t=j−m+1

gtg
′
t

)−1(
m−1

j∑
t=j−m+1

gtvt+h (γ̂t,R)

)
(35)

=

(
m−1

j∑
t=j−m+1

gtg
′
t

)−1(
m−1

j∑
t=j−m+1

ft+h (γ̂t,R)

)
.

From amean value expansion of vt+h (γ̂t,R) around γ∗ we have: vt+h (γ̂t,R) = vt+h+
∂vt+h
∂γ

(γ̂t,R − γ∗)+
w̃t+h, where w̃t+h is the remainder. Thus, ft+h (γ̂t,R) = ft+h+ft+h,γ ·(γ̂t,R − γ∗)+wt+h, where

wt+h ≡ gtw̃t+h.18 Furthermore, by Assumption 1,

m−1/2
j∑

t=j−m+1
ft+h (γ̂t,R) = m−1/2

j∑
t=j−m+1

ft+h +m−1/2
j∑

t=j−m+1
ft+h,γ ·BtHt (36)

+m−1/2
j∑

t=j−m+1
wt+h,

As in the proof of equation (4.1) in West (1996), note that

m−1/2
j∑

t=j−m+1
ft+h,γ ·BtHt = m−1/2FB

j∑
t=j−m+1

Ht + Ãj, where (37)

Ãj ≡ m−1/2
j∑

t=j−m+1
(ft+h,γ − F )BHt +m−1/2F

j∑
t=j−m+1

(Bt −B)Ht

+m−1/2
j∑

t=j−m+1
(ft+h,γ − F ) (Bt −B)Ht.

Assumption 2 implies that the last three terms in Ãj are op (1).

Therefore, by equations (35), (36) and (37), we have:

m1/2θ̂j =

(
m−1

j∑
t=j−m+1

gtg
′
t

)−1(
m−1/2

j∑
t=j−m+1

ft+h (γ̂t,R)

)

=

(
m−1

j∑
t=j−m+1

gtg
′
t

)−1(
m−1/2

j∑
t=j−m+1

ft+h +m−1/2FB

j∑
t=j−m+1

Ht + Ãj +m−1/2
j∑

t=j−m+1
wt+h

)

= G−1 [I`, FB]

{
m−1/2

j∑
t=j−m+1

(
ft+h

Ht

)}
+ Aj,

18 δft+h(γ)
δγ = δgt

δγ vt+h(γ) + gt
δvt+h(γ)

δγ . The forecast error has mean zero given information at time t and

thus it is asumptotically irrelevant (as in West and McCracken, 1998).
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where the last line follows from Assumption 1(ii), Assumption 2 and

Aj ≡
(
m−1

j∑
t=j−m+1

gtg
′
t

)−1 [
Ãj +m−1/2

j∑
t=j−m+1

wt+h

]
.

Thus,

m1/2θ̂j = G−1 [I`, FB]

(
T

m

)1/2{
1

T 1/2

j∑
t=R

(
ft+h

Ht

)
− 1

T 1/2

j−m∑
t=R

(
ft+h

Ht

)}
+ Aj.

By Assumption 2(v) and arguments similar toWest (1996, proof of equation 4.1),m−1/2
j∑

t=j−m+1
wt+h =

op (1) . Therefore, Assumptions 1 and 2 ensure that limT→∞supj Aj = op (1).

Proof of Proposition 1. By Hansen (1992), under Assumptions 1-4 and T−1/2ξT → ξ

in DR(`+q) [0, 1] then

1√
T

j∑
t=1

(
bR,t,j · I` 0

0 aR,t,j · Iq

)(
ft+h

ht

)
−C∗T (τ)⇒

∫ τ

0

(
σf (s) · I` 0

0 σh (s, τ) · Iq

)
dξ (s) ,

where ξ (s) = S1/2Bl+q (s), zt =
∑∞

k=1Et

([
ft+h+k ht+k

]′)
and

C∗T (τ) =

{
T−1/2

[(
bR,t,j · I` 0

0 aj,t,m · Iq

)
−
(
bR,t−1,j · I` 0

0 aR,t−1,j · Iq

)]
zt

−T−1/2
(
bR,t,j · I` 0

0 aR,t,j · Iq

)
zt+1

}
.

The proof follows from the fact that supτC∗T (τ) = op (1) , using the same reasoning as

in Cavaliere (2005, Proof of Theorem 4), and the fact that the variances σf (s) , σh (s, τ) are

square integrable and bounded.

Proof of Proposition 2. It follows directly from Proposition 1 and Assumption 2 that
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T−1/2
j∑

t=R

(
ft+h

Ht

)
⇒
∫ τ
0

Ω (s, τ)1/2 S1/2dBl+q (s) . Thus,

m1/2 θ̂j = G−1
(
T

m

)1/2
[I`, FB]

(
1√
T

j∑
t=R

(
ft+h

Ht

)
− 1√

T

j−m∑
t=R

(
ft+h

Ht

))
+ Aj

⇒ µ−1/2G−1 [I`, FB]

(∫ τ

0

Ω (s, τ)1/2 S1/2dBl+q −
∫ τ−µ

0

Ω (s, τ − µ)1/2 S1/2dBl+q
)

(38)

= µ−1/2G−1 [I`, FB]

(∫ τ−µ

0

[
Ω (s, τ)1/2 − Ω (s, τ − µ)1/2

]
S1/2dBl+q +

∫ τ

τ−µ
Ω (s, τ)1/2 S1/2dBl+q

)

= µ−1/2G−1 [I`, FB]

∫ τ

0

 [
Ω (s, τ)1/2 − Ω (s, τ − µ)1/2

]
· 1 (s ≤ τ − µ)

+Ω (s, τ)1/2 · 1 (τ − µ < s ≤ τ)

S1/2dBl+q

=
∫ τ
0
ω (s, τ) dBl (s, τ) = Bl

(∫ τ
0
ω (s, τ)ω (s, τ)′ ds

)
,

where ω (s, τ) , ω̃ (s, τ) are defined in Proposition 2. The second line follows from Assump-

tions 2 and 3 as well as Proposition 1; the last equality follows from Lemma 2 in Cavaliere

(2005).

Proof of Proposition 3. Note that:

ω (s, τ) = µ−
1
2G−1 [I`, FB]

 (Ω (s, τ)1/2 − Ω (s, τ − µ)
)
· 1 (s ≤ τ − µ)

+Ω (s, τ)1/2 · 1 (τ − µ < s ≤ τ)

S1/2 = µ−
1
2G−1 [I`, FB]×

×


σf (s) · 1 (τ − µ ≤ s < τ) · I` 0

0
(σh (s, τ)− σh (s, τ − µ)) · 1 (s ≤ τ − µ)

+σh (s, τ) · 1 (τ − µ ≤ s ≤ τ) · Iq

S1/2
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∫ τ

0

ω (s, τ)ω (s, τ)′ ds

= µ−1G−1
∫ τ

0

σ2f (s) · 1 (τ − µ ≤ s < τ)SffdsG
−1

+ µ−1G−1
∫ τ

0

σh (s, τ)σf (s) · 1 (τ − µ ≤ s ≤ τ)
(
FBS ′fh + SfhB

′F ′
)
dsG−1

+ µ−1G−1
∫ τ

0

[(σh (s, τ)− σh (s, τ − µ))2 · 1 (s ≤ τ − µ)

+ σ2h (s, τ) · 1 (τ − µ ≤ s ≤ τ)]dsFBShhB
′F ′G−1

= µ−1G−1[

(∫ τ

τ−µ
σ2f (s) ds

)
Sff +

(∫ τ

τ−µ
σh (s, τ)σf (s) ds

)(
FBS ′fh + SfhB

′F ′
)

+

(∫ τ

0

[
[σh (s, τ)− σh (s, τ − µ)]2 · 1 (s ≤ τ − µ) + σ2h (s, τ) · 1 (τ − µ ≤ s ≤ τ)

]
ds

)
×

× FBShhB′F ′]G−1.

Note that (i)
∫ τ
τ−µ σ

2
f (s) ds =

∫ τ
τ−µ (1 (s ≥ ρ))2 ds =

∫ τ
τ−µ ds = µ;

(ii) Recursive case:19

∫ τ

τ−µ
σf (s)σh (s, τ) ds =

∫ τ

τ−µ
1 (s ≥ ρ) · ([ln (τ)− ln (ρ)] · 1 (s < ρ) + [ln (τ)− ln (s)] · 1 (s ≥ ρ))ds

=

∫ τ

τ−µ
[ln (τ)− ln (s)] ds =

∫ τ

τ−µ
ln (τ) ds−

∫ τ

τ−µ
ln (s) ds

= ln (τ) (τ − τ + µ)− (ln(τ)τ − τ) + (ln(τ − µ)(τ − µ)− (τ − µ))

= − ln (τ) (τ − µ) + τ + ln(τ − µ)(τ − µ)− τ + µ

= µ− (τ − µ) ln

(
τ

τ − µ

)
= µ

[
1− π̃−1 ln (1 + π̃)

]
where π̃ ≡ µ/ (τ − µ). Furthermore,

∫ τ−µ

0

(σh (s, τ)− σh (s, τ − µ))2 ds =

∫ τ−µ

0

[ln (τ)− ln (τ − µ)]2 ds = (τ − µ)

[
ln

(
τ

τ − µ

)]2
.

19Note
∫
ln(x)dx = ln(x)x− x+ c;

∫
ln(x)2dx = xln(x)2 − 2xln(x) + 2x+ c
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∫ τ

τ−µ
σ2h (s, τ) ds =

∫ τ

τ−µ
([ln (τ)− ln (ρ)] · 1 (s < ρ) + [ln (τ)− ln (s)] · 1 (s ≥ ρ))2ds

=

∫ τ

τ−µ
[ln (τ)− ln (s)]2 ds =

∫ τ

τ−µ

(
ln (τ)2 − 2 ln (τ) ln(s) + ln (s)2

)
ds

= ln (τ)2 µ− 2 ln (τ) [ln (τ) τ − τ − ln (τ − µ) (τ − µ) + τ − µ] +

+ ln (τ)2 τ − 2τ ln (τ) + 2τ − ln (τ − µ)2 (τ − µ) + 2 (τ − µ) ln (τ − µ)− 2 (τ − µ)

= ln (τ)2 µ− ln (τ)2 τ + 2 ln (τ) ln (τ − µ) (τ − µ)

+ 2 ln (τ)µ− 2τ ln (τ)− ln (τ − µ)2 (τ − µ) + 2 (τ − µ) ln (τ − µ) + 2µ

= 2µ+ ln (τ)2 (µ− τ)− ln (τ − µ)2 (τ − µ) + 2 ln (τ) ln (τ − µ) (τ − µ)

+ 2 (τ − µ) ln (τ − µ) + 2 ln (τ) (µ− τ)

= 2µ+ ln (τ)2 (µ− τ)− ln (τ − µ)2 (τ − µ) +

+ 2 ln (τ) ln (τ − µ) (τ − µ) + 2 (τ − µ) ln

(
τ − µ
τ

)
= 2µ− 2 (τ − µ) ln

(
τ

τ − µ

)
− (τ − µ) [ln (τ)− ln (τ − µ)]2

= 2µ− 2 (τ − µ) ln

(
τ

τ − µ

)
− (τ − µ)

[
ln

(
τ

τ − µ

)]2

∫ τ

0

[
(σh (s, τ)− σh (s, τ − µ))2 · 1 (s ≤ τ − µ) + σ2h (s, τ) · 1 (τ − µ ≤ s < τ)

]
ds

=

∫ τ−µ

0

(σh (s, τ)− σh (s, τ − µ))2 ds+

∫ τ

τ−µ
σ2h (s, τ) ds

= (τ − µ)

[
ln

(
τ

τ − µ

)]2
+ 2µ− 2 (τ − µ) ln

(
τ

τ − µ

)
− (τ − µ)

[
ln

(
τ

τ − µ

)]2
= 2µ− 2 (τ − µ) ln

(
τ

τ − µ

)
= 2µ

[
1− π̃−1 ln (1 + π̃)

]
(iii) Rolling case:

In the rolling estimation scheme there are two possible cases. Case (a) occurs when

τ − ρ ≥ ρ, while (b) when τ − ρ < ρ. We consider the calculation of the respective integrals

in these two cases. We show that the covariance is the same in both cases, no matter whether

µ ≥ ρ or µ < ρ.

Case (a): τ − ρ ≥ ρ. This allows for two sub-cases (i) µ ≥ ρ ⇔ τ − ρ ≥ τ − µ ≥ ρ and
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(ii) µ < ρ⇔ τ − µ > τ − ρ ≥ ρ (recall that τ ≥ ρ+ µ). In case (i),∫ τ

τ−µ
σh (s, τ)σf (s) ds =

∫ τ

τ−µ
1 (s ≥ ρ) · 1

ρ
[s · 1(s < ρ) + ρ · 1(ρ ≤ s ≤ τ − ρ) + (τ − s) · 1(s > τ − ρ)]ds =

=

∫ τ

τ−µ

1

ρ
[ρ · 1(ρ ≤ s ≤ τ − ρ) + (τ − s) · 1(s > τ − ρ)]ds =

= (µ− ρ) +
1

2
ρ = µ− 1

2
ρ;

whereas in case (ii),

∫ τ

τ−µ
σh (s, τ)σf (s) ds =

∫ τ

τ−µ
1 (s ≥ ρ) · 1

ρ
[s · 1(s < ρ) + ρ · 1(ρ ≤ s ≤ τ − ρ) + (τ − s) · 1(s > τ − ρ)]ds =

=

∫ τ

τ−µ

1

ρ
[(τ − s) · 1(s > τ − ρ)]ds =

∫ τ

τ−µ

1

ρ
(τ − s)ds =

1

2

µ2

ρ
.

Furthermore,∫ τ−µ

0

(σh (s, τ)− σh (s, τ − µ))2 ds =(
1

ρ

)2 ∫ τ−µ

0

(
[s · 1(s < ρ) + ρ · 1(ρ ≤ s ≤ τ − ρ) + (τ − s) · 1(τ > s > τ − ρ)]−

[s · 1(s < ρ) + ρ · 1(ρ ≤ s ≤ τ − µ− ρ) + (τ − µ− s) · 1(τ − µ > s > τ − µ− ρ)]

)2
ds =

(
1

ρ

)2 ∫ τ−µ

0

(
ρ · 1(τ − µ− ρ ≤ s ≤ τ − ρ) + (τ − s) · 1(τ > s > τ − ρ)

−(τ − µ− s) · 1(τ − µ > s > τ − µ− ρ)

)2
ds

The expression above simplifies:

(i) µ ≥ ρ⇔ τ − ρ > τ − µ ≥ ρ

∫ τ−µ

0

(σh (s, τ)− σh (s, τ − µ))2 ds =

(
1

ρ

)2 ∫ τ−µ

τ−µ−ρ
(ρ− (τ − µ− s))2 ds =

1

3
ρ.

In addition,∫ τ

τ−µ
σ2h (s, τ) ds =

(
1

ρ

)2 ∫ τ

τ−µ
[s · 1(s < ρ) + ρ · 1(ρ ≤ s ≤ τ − ρ) + (τ − s) · 1(s > τ − ρ)]2ds =(

1

ρ

)2(∫ τ−ρ

τ−µ
ρ2ds+

∫ τ

τ−ρ
(τ − s)2ds

)
= (µ− ρ) +

1

3
ρ = µ− 2

3
ρ.

Thus, ∫ τ−µ

0

(σh (s, τ)− σh (s, τ − µ))2 ds+

∫ τ

τ−µ
σ2h (s) ds = µ− 1

3
ρ = µ

(
1− 1

3π†

)
.
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(ii) µ > ρ⇔ τ − µ > τ − ρ ≥ ρ∫ τ−µ

0

(σh (s, τ)− σh (s, τ − µ))2 ds =(
1

ρ

)2 ∫ τ−µ

0

(
(ρ− (τ − µ− s)) · 1(τ − µ− ρ ≤ s ≤ τ − ρ) + (τ − s) · 1(τ > s > τ − ρ)

−(τ − µ− s) · 1(τ − µ > s > τ − ρ)

)2
ds(

1

ρ

)2 ∫ τ−µ

0

[(ρ− (τ − µ− s)) · 1(τ − µ− ρ ≤ s ≤ τ − ρ) + µ · 1(τ − µ > s > τ − ρ)]2 ds(
1

ρ

)2 ∫ τ−ρ

τ−µ−ρ
[ρ− (τ − µ− s)]2 ds+

(
µ

ρ

)2 ∫ τ−µ

τ−ρ
ds = −1

3

µ2

ρ2
(2µ− 3ρ) =

µ2

ρ
− 2

3

µ3

ρ2∫ τ

τ−µ
σ2h (s, τ) ds =

(
1

ρ

)2 ∫ τ

τ−µ
[s · 1(s < ρ) + ρ · 1(ρ ≤ s ≤ τ − ρ) + (τ − s) · 1(s > τ − ρ)]2ds =

=

(
1

ρ

)2 ∫ τ

τ−µ
(τ − s)2ds =

1

3

µ3

ρ2∫ τ−µ

0

(σh (s, τ)− σh (s, τ − µ))2 ds+

∫ τ

τ−µ
σ2h (s) ds =

µ2

ρ
− 2

3

µ3

ρ2
+

1

3

µ3

ρ2
=
µ2

ρ
− 1

3

µ3

ρ2

Case (b): τ − ρ < ρ. Note that, since τ ≥ ρ+ µ, in this case the only possible subcase is

µ < ρ. Thus,∫ τ

τ−µ
σf (s)σh (s, τ) ds =

1

ρ

∫ τ

τ−µ
1 (s ≥ ρ) ·

[
s · 1(s < τ − ρ) + (τ − ρ) · 1(τ − ρ ≤ s ≤ ρ)

+(τ − s) · 1(s > ρ)

]
ds =

=
1

ρ

∫ τ

τ−µ
(τ − s) · 1(s > ρ)ds =

1

ρ

∫ τ

τ−µ
(τ − s)ds =

1

2

µ2

ρ

Furthermore,∫ τ−µ

0

[σh (s, τ)− σh (s, τ − µ)]2 ds

=

(
1

ρ

)2 ∫ τ−µ

0


s · 1(s < τ − ρ) + (τ − ρ) · 1(τ − ρ ≤ s ≤ ρ) + (τ − s) · 1(s > ρ)−(

s · 1(s < τ − µ− ρ) + (τ − µ− ρ) · 1(τ − µ− ρ ≤ s ≤ ρ)

+(τ − µ− s) · 1(s > ρ)

) 
2

ds

=

(
1

ρ

)2 ∫ τ−µ

0

(
(s− (τ − µ− ρ)) · 1(τ − µ− ρ < s < τ − ρ)+

((τ − ρ)− (τ − µ− ρ)) · 1(τ − ρ ≤ s ≤ ρ) + (τ − s− (τ − µ− s)) · 1(s > ρ)

)2
ds

=

(
1

ρ

)2(∫ τ−ρ

τ−µ−ρ
(s− (τ − µ− ρ))2 ds+

∫ ρ

τ−ρ
µ2ds+

∫ τ−µ

ρ

µ2ds

)
=− 1

ρ2

(
µ2 (µ− τ + ρ)− 1

3
µ3 + µ2 (τ − 2ρ)

)
=

(
µ

ρ

)2(
1

3
µ− (µ− ρ)

)
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∫ τ

τ−µ
σ2h (s, τ) ds =

1

ρ2

∫ τ

τ−µ
(τ − s)2ds =

1

3

µ3

ρ2

∫ τ−µ

0

(σh (s, τ)− σh (s, τ − µ))2 ds+

∫ τ

τ−µ
σ2h (s) ds =

(
1

ρ

)2(
1

3
µ3 − µ2(µ− ρ)

)
+

1

3

µ3

ρ2

= −1

3

µ2

ρ2
(µ− 3ρ) = µπ†.

Proof of Proposition 4. From Proposition 2 (in particular, eq. 38),

m1/2θ̂j ⇒ µ−
1
2G−1 [I`, FB]

(∫ τ

0

Ω (s, τ)1/2 S1/2dB (s)−
∫ τ−µ

0

Ω (s, τ − µ)1/2 S1/2dB (s)

)
.

By similar arguments we can re-write as

m1/2θ̂j ⇒ B
(∫ τ

0

ω̃ (s, τ) ω̃ (s, τ)′ ds

)
− B

(∫ τ−µ

0

ω̃ (s, τ) ω̃ (s, τ)′ ds

)
where ω̃ (s, τ) = µ−

1
2G−1 [I`, FB] Ω (s, τ)1/2 S1/2.

Furthermore,

∫ τ

0

ω̃ (s, τ) ω̃ (s, τ)′ ds = µ−1G−1 [I`, FB]

∫ τ

0

Ω (s, τ)1/2 SΩ′ (s, τ)1/2 ds [I`, FB]′G−1 = (39)

µ−1G−1 [I`, FB]

[ ∫ τ
0
σ2f (s) dsSff

∫ τ
0
σf (s)σh (s, τ) dsSfh∫ τ

0
σf (s)σh (s, τ) dsS ′fh

∫ τ
0
σ2h (s, τ) dsShh

][
I`

B′F ′

]
G−1.

In both recursive and rolling cases,
∫ τ
0
σ2f (s) ds = (τ − ρ);

(i) Recursive case:

∫ τ

0

σf (s)σh (s, τ) ds =

∫ τ

0

1 (s ≥ ρ) · ([ln (τ)− ln (ρ)] · 1 (s < ρ) + [ln (τ)− ln (s)] · 1 (s ≥ ρ))ds

=

∫ τ

ρ

[ln (τ)− ln (s)] ds =

∫ τ

ρ

ln (τ) ds−
∫ τ

ρ

ln (s) ds =

= ln (τ) (τ − ρ)− (ln(τ)τ − τ) + (ln(ρ)ρ− ρ) =

= (τ − ρ)− ρ ln

(
τ

ρ

)
= (τ − ρ)

(
1− ρ

τ − ρ ln

(
τ

ρ

))
(40)
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∫ τ

0

σ2h (s, τ) ds =

∫ τ

0

([ln (τ)− ln (ρ)] · 1 (s < ρ) + [ln (τ)− ln (s)] · 1 (s ≥ ρ))2ds (41)

=

∫ ρ

0

[ln (τ)− ln (ρ)]2 ds+

∫ τ

ρ

[ln (τ)− ln (s)]2 ds

= ρ
(
ln2 (τ)− 2 ln (τ) ln (ρ) + ln2 (ρ)

)
+ (τ − ρ) ln2 (τ)

− 2 ln τ

∫ τ

ρ

ln (s) ds+

∫ τ

ρ

ln2 (s) ds

= ρ
(
ln2 (τ)− 2 ln (τ) ln (ρ) + ln2 (ρ)

)
+ (τ − ρ) ln2 (τ)−

− 2 ln (τ) (τ ln (τ)− τ − ρ ln (ρ) + ρ)+

+ (τ ln2 (τ)− 2τ ln (τ) + 2τ)− (ρ ln2 (ρ)− 2ρ ln (ρ) + 2ρ)

= ρ ln2 (τ)− 2ρ ln (τ) ln (ρ) + ρ ln2 (ρ) + (τ − ρ) ln2 (τ)−

− 2τ ln2 (τ) + 2τ ln (τ) + 2ρ ln (τ) ln (ρ)− 2ρ ln (τ) +

+ τ ln2 (τ)− 2τ ln (τ) + 2τ − ρ ln2 (ρ) + 2ρ ln (ρ)− 2ρ

= 2τ − 2ρ− 2ρ ln (τ) + 2ρ ln (ρ) = 2(τ − ρ)

(
1− ρ

τ − ρ ln

(
τ

ρ

))
Thus,

∫ τ

0

Ω (s, τ)1/2 SΩ′ (s, τ)1/2 ds =

[ ∫ τ
0
σ2f (s) dsSff

∫ τ
0
σf (s)σh (s, τ) dsSfh∫ τ

0
σf (s)σh (s, τ) dsS ′fh

∫ τ
0
σ2h (s, τ) dsShh

]

= (τ − ρ)

 Sff

(
1− ρ

τ−ρ ln
(
τ
ρ

))
Sfh(

1− ρ
τ−ρ ln

(
τ
ρ

))
S ′fh 2

(
1− ρ

τ−ρ ln
(
τ
ρ

))
Shh


and∫ τ

0

ω̃ (s, τ) ω̃ (s, τ)′ ds

= µ−1G−1 [I`, FB]

[ ∫ τ
0
σ2f (s) dsSff

∫ τ
0
σf (s)σh (s, τ) dsSfh∫ τ

0
σf (s)σh (s, τ) dsS ′fh

∫ τ
0
σ2h (s, τ) dsShh

][
I`

B′F ′

]
G−1

= G−1
(τ − ρ)

µ
[I`, FB]

 Sff

(
1− ρ

τ−ρ ln
(
τ
ρ

))
Sfh(

1− ρ
τ−ρ ln

(
τ
ρ

))
S ′fh 2

(
1− ρ

τ−ρ ln
(
τ
ρ

))
Shh

[ I`

B′F ′

]
G−1

(τ − ρ)

µ
G−1

{
Sff +

(
1− ρ

ln τ
ρ

τ − ρ

)(
SfhB

′F ′ + FBS ′fh
)

+ 2FBShhB
′F ′
(

1− ρ
ln τ

ρ

τ − ρ

)}
G−1;
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(ii) Rolling Case:

Case (a): τ − ρ ≥ ρ∫ τ

0

σh (s, τ)σf (s) ds

=

∫ τ

0

1 (s ≥ ρ)

(
1

ρ
[s · 1 (s < ρ) + ρ · 1 (ρ < s < τ − ρ) + (τ − s) · 1 (s > τ − ρ)]

)
ds

=

∫ τ

ρ

1

ρ
[ρ · 1 (ρ < s < τ − ρ) + (τ − s) · 1 (s > τ − ρ)] ds

=
1

ρ

(∫ τ−ρ

ρ

ρds+

∫ τ

τ−ρ
(τ − s) ds

)
=

1

ρ

(
ρ(τ − 2ρ) + τρ− 1

2
τ 2 +

1

2
(τ − ρ)2

)
= τ − 3

2
ρ (42)

∫ τ

0

σ2h (s, τ) ds

=

∫ τ

0

(
1

ρ
{s · 1 (s < ρ) + ρ · 1 (ρ < s < τ − ρ) + (τ − s) · 1 (s > τ − ρ)

)2
ds

=

(
1

ρ

)2(∫ τ

0

s2 · 1 (s < ρ) ds+

∫ τ

0

ρ2 · 1 (ρ < s < τ − ρ) ds+

∫ τ

0

(τ − s)2 · 1 (s > τ − ρ) ds

)
=

(
1

ρ

)2(∫ ρ

0

s2ds+ ρ2
∫ τ−ρ

ρ

ds+

(
1

ρ

)2 ∫ τ

τ−ρ
(τ − s)2 ds

)

=

(
1

ρ

)2
1

3
ρ3 + (τ − 2ρ) +

(
1

ρ

)2(
τ 2ρ+

τ 3 − (τ − ρ)3

3
− 2τ

τ 2 − (τ − ρ)2

2

)
= τ − 4

3
ρ (43)

Thus,
∫ τ
0

Ω (s, τ)1/2 SΩ′ (s, τ)1/2 ds =

[
(τ − ρ)Sff

(
τ − 3

2
ρ
)
Sfh(

τ − 3
2
ρ
)
S ′fh

(
τ − 4

3
ρ
)
Shh

]
, and

∫ τ

0

ω̃ (s, τ) ω̃ (s, τ)′ ds = µ−1G−1 [I`, FB]

[
(τ − ρ)Sff

(
τ − 3

2
ρ
)
Sfh(

τ − 3
2
ρ
)
S ′fh

(
τ − 4

3
ρ
)
Shh

][
I`

B′F ′

]
G−1 = µ−1G−1×

×
{
Sff (τ − ρ) +

(
τ − 3

2
ρ

)(
FBS ′fh + SfhB

′F ′
)

+

(
τ − 4

3
ρ

)
FBShhB

′F ′
}
G−1;

Case (b): τ − ρ < ρ
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∫ τ

0

σf (s)σh (s, τ) ds

=

∫ τ

0

{1 (s ≥ ρ)}
{
s

ρ
· 1 (s < τ − ρ) +

(τ − ρ)

ρ
· 1 (τ − ρ < s < ρ) +

(τ − s)
ρ

· 1 (s > ρ)

}
ds =

=

∫ τ

0

1

ρ
(τ − s) · 1 (s > ρ) ds =

1

ρ

∫ τ

ρ

(τ − s) ds =
1

2ρ
(τ − ρ)2

∫ τ

0

σ2h (s) ds =

∫ τ

0

(
1

ρ
{s · 1 (s < τ − ρ) + (τ − ρ) · 1 (τ − ρ < s < ρ) + (τ − s) · 1 (s > ρ)}

)2
ds

=

(
1

ρ

)2(∫ τ−ρ

0

s2ds+

∫ ρ

τ−ρ
(τ − ρ)2 ds+

∫ τ

ρ

(τ − s)2 ds
)

=

(
1

ρ

)2(
1

3
(τ − ρ)3 + (τ − ρ)2 (2ρ− τ) + τ 2 (τ − ρ) +

τ 3 − ρ3
3

− τ 3 + τρ2
)

=
1

3ρ2
(ρ− τ)2 (4ρ− τ)

Thus,
∫ τ
0

Ω (s, τ)1/2 SΩ′ (s, τ)1/2 ds =

[
(τ − ρ)Sff

1
2ρ

(τ − ρ)2 Sfh
1
2ρ

(τ − ρ)2 S ′fh
1
3ρ2

(ρ− τ)2 (4ρ− τ)Shh

]
,

and∫ τ

0

ω̃ (s, τ) ω̃ (s, τ)′ ds

= µ−1G−1 [I`, FB]

[
(τ − ρ)Sff

1
2ρ

(τ − ρ)2 Sfh
1
2ρ

(τ − ρ)2 S ′fh
(ρ−τ)2
3ρ2

(4ρ− τ)Shh

][
I`

B′F ′

]
G−1

=
(τ − ρ)

µ
G−1

{
Sff +

(τ − ρ)

2ρ

(
FBS ′fh + SfhB

′F ′
)
− (τ − ρ) (τ − 4ρ)

3ρ2
FBShhF

′B′
}
G−1.

Proof of Theorem 5. The proof follows directly from Propositions 2 and 3.

Proof of Proposition 6. The result follows directly from Proposition 3 by imposing

F = 0.

Proof of Proposition 7. From Proposition 2,

m1/2θ̂j ⇒
∫ τ

0

ω̃ (s, τ)1/2 dB` (s)−
∫ τ−µ

0

ω̃ (s, τ − µ)1/2 dB` (s)

= µ−
1
2G−1 [I`, FB] {

∫ τ

0

Ω (s, τ)1/2 S1/2dB (s)−
∫ τ−µ

0

Ω (s, τ − µ)1/2 S1/2dB (s)}.
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Note that∫ τ

0

ω̃ (s, τ) ω̃ (s, τ)′ ds = µ−1G−1
∫ τ

0

[I`, FB] Ω (s, τ)1/2 SΩ (s, τ)1/2 [I`, FB]′ dsG−1

= µ−1G−1
∫ τ

0

[σf (s)2 Sff + [FBShf + SfhB
′F ′]σf (s)σh (s, τ) + FBShhB

′F ′σ2h (s, τ)2]dsG−1

= µ−1G−1SffG
−1
∫ τ

0

[σf (s)2 + 2σf (s)σh (s, τ) + σ2h (s, τ)]ds, (44)

and similarly,
∫ τ−µ
0

ω̃ (s, τ − µ)1/2 ω̃ (s, τ − µ)′ ds = µ−1G−1SffG
−1 ∫ τ−µ

0
[σf (s)2−2σf (s)σh (s, τ − µ)+

σ2h (s, τ − µ)2]ds.

By imposing condition (22) in Proposition 3, we have:

∫ τ

0

ω (s, τ)ω (s, τ)′ ds = µ−1G−1SffG
−1[

(∫ τ

τ−µ
σf (s)2 ds

)
− 2

(∫ τ

τ−µ
σh (s, τ)σf (s) ds

)
(45)

+

(∫ τ

0

[
[σh (s, τ)− σh (s, τ − µ)]2 · 1 (s ≤ τ − µ) + σh (s, τ)2 · 1 (τ − µ ≤ s < τ)

]
ds

)
].

Thus: (i) Recursive case. From the proof of Proposition 4 (equations 41 and 40) note that∫ τ
0
σ2h (s, τ) ds = 2

∫ τ
0
σh (s, τ)σf (s) ds. Therefore, eq. (44) simplifies to

∫ τ
0
ω̃ (s, τ) ω̃ (s, τ)′ ds =

µ−1G−1SffG
−1 ∫ τ

0
σf (s)2 ds = (τ−ρ)

µ
G−1SffG

−1. Furthermore, from eq. (45), we have:∫ τ
0
ω (s, τ)ω (s, τ)′ ds = µ−1G−1 [µSff − 2µ (1− π̃−1 ln (1 + π̃))Sff + 2µ (1− π̃−1 ln (1 + π̃))Sff ]G

−1 =

G−1SffG
−1.

(ii) Rolling case. Case (a): ρ ≤ τ − ρ. In this case, the distribution of m1/2θ̂j cannot be

obtained using direct calculations based on eq. (44) because the latter simplifies to∫ τ

0

ω̃ (s, τ) ω̃ (s, τ)′ ds = µ−1
∫ τ

0

[σf (s)2 − 2σf (s)σh (s, τ) + σ2h (s, τ)2]dsG−1SffG
−1 (46)

=
2

3

ρ

µ
G−1SffG

−1,

and is independent of τ .

Case (b): ρ > τ − ρ. In this case, given the values
∫ τ
0
σh (s, τ)σv (s) ds = 1

2ρ
(τ − ρ)2 and∫ τ

0
σ2h (s, τ) ds = 1

3ρ2
(ρ− τ)2 (4ρ− τ) by proof of Proposition 4 (equations 42 and 43).

Therefore, eq. (44) simplifies to
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∫ τ

0

ω̃ (s) ω̃ (s)′ ds =
1

µ

∫ τ

0

[σ2f (s)− 2σf (s)σh (s, τ) + σ2h (s, τ)]dsG−1SffG
−1

=
1

µ

[
(τ − ρ)− 2

1

2ρ
(τ − ρ)2 +

1

3ρ2
(ρ− τ)2 (4ρ− τ)

]
G−1SffG

−1

=

(
τ − ρ
µ

)(
1− (τ − ρ)2

3ρ2

)
G−1SffG

−1. (47)

Proof of Theorem 8. (a) From Propositions 2 and 7 we have

Wt,m = θ̂jV
−1
θ,j θ̂j

⇒
[
B`
(∫ τ

0

ω̃ (s, τ) ω̃ (s, τ)′ ds

)
− B`

(∫ τ−µ

0

ω̃ (s, τ) ω̃ (s, τ)′ ds

)]′
V −1θ ×

×
[
B`
(∫ τ

0

ω̃ (s, τ) ω̃ (s, τ)′ ds

)
− B`

(∫ τ−µ

0

ω̃ (s, τ) ω̃ (s, τ)′ ds

)]
Under condition (22):

(i) Recursive case.

Vθ,j = m−1G−1SffG
−1 and B`

(∫ τ
0
ω̃ (s, τ) ω̃ (s, τ)′ ds

)
= (G−1SffG

−1)
−1/2

µ−1/2B` (τ − ρ) .

Thus,

Wt,m ⇒ µ−1 [B` (τ − ρ)− B` (τ − µ− ρ)]′ [B` (τ − ρ)− B` (τ − µ− ρ)] .

(ii) Rolling case. From Proposition 7, in particular eq. (47), we have that, for τ − ρ < ρ,

B`
(∫ τ

0

ω̃ (s, τ) ω̃ (s, τ)′ ds

)
= B`

((
τ − ρ
µ

)(
1− (τ − ρ)2

3ρ2

)
G−1SffG

−1
)

=
(
G−1SffG

−1)1/2 B`((τ − ρ
µ

)(
1− (τ − ρ)2

3ρ2

))
.

From eq. (46) we have that B`
(∫ τ
0
ω̃ (s, τ) ω̃ (s, τ)′ ds

)
= (G−1SffG

−1)
1/2 B`

(
2
3
ρ
µ

)
. Thus,

B`
(∫ τ

0

ω̃ (s, τ) ω̃ (s, τ)′ ds

)

=
(
G−1SffG

−1)1/2  1 (µ+ ρ ≤ τ < 2ρ) · B`
((

τ−ρ
µ

)(
1− (τ−ρ)2

3ρ2

))
+1 (2ρ ≤ τ ≤ 1) · B`

(
2
3
ρ
µ

)  ,
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B`
(∫ τ−µ

0

ω̃ (s, τ − µ) ω̃ (s, τ − µ)′ ds

)

=
(
G−1SffG

−1)1/2  1 (ρ ≤ τ − µ < 2ρ) · B`
((

τ−µ−ρ
µ

)(
1− (τ−µ−ρ)2

3ρ2

))
+1 (2ρ ≤ τ − µ ≤ 1− µ) · B`

(
2
3
ρ
µ

)  ,

B`
(∫ τ

0

ω̃ (s, τ) ω̃ (s, τ)′ ds

)
− B`

(∫ τ−µ

0

ω̃ (s, τ − µ) ω̃ (s, τ − µ)′ ds

)

=
(
G−1SffG

−1)1/2 1 (µ+ ρ ≤ τ < 2ρ) ·

 B`
((

τ−ρ
µ

)(
1− (τ−ρ)2

3ρ2

))
−B`

((
τ−µ−ρ

µ

)(
1− (τ−µ−ρ)2

3ρ2

)) +

+1 (2ρ < τ ≤ 2ρ+ µ) ·
{
B`
(
2
3
ρ
µ

)
− B`

((
τ−µ−ρ

µ

)(
1− (τ−µ−ρ)2

3ρ2

))}
+1 (τ > 2ρ+ µ) · 0


≡ B`

(∫ τ

0

ω (s, τ)ω (s, τ)′ ds

)
.

FromProposition 7, Vθ = (G−1SffG
−1)
{(

2
3π†

)
· 1 (µ ≥ ρ) +

(
1− 1

3

(
π†
)2) · 1 (µ < ρ)

}
. Thus,

Wt,m ⇒ B`
(∫ τ

0

ω̃ (s, τ) ω̃ (s, τ)′ ds

)
· V −1θ · B`

(∫ τ

0

ω (s, τ)ω (s, τ)′ ds

)
=

=

[
1 (µ+ ρ ≤ τ < 2ρ)

{
B`
((

τ − ρ
µ

)(
1− (τ − ρ)2

3ρ2

))
− B`

((
τ − µ− ρ

µ

)(
1− (τ − µ− ρ)2

3ρ2

))}
+

+1 (2ρ < τ ≤ 2ρ+ µ) ·
{
B`
(

2

3

ρ

µ

)
− B`

((
τ − µ− ρ

µ

)(
1− (τ − µ− ρ)2

3ρ2

))}]′
×

×
{(

2

3π†

)
· 1 (µ ≥ ρ) +

(
1− 1

3

(
π†
)2) · 1 (µ < ρ)

}−1
×

×
[
1 (µ+ ρ ≤ τ < 2ρ)

{
B`
((

τ − ρ
µ

)(
1− (τ − ρ)2

3ρ2

))
− B`

((
τ − µ− ρ

µ

)(
1− (τ − µ− ρ)2

3ρ2

))}
+

+1 (2ρ < τ ≤ 2ρ+ µ)

{
B`
(

2

3

ρ

µ

)
− B`

((
τ − µ− ρ

µ

)(
1− (τ − µ− ρ)2

3ρ2

))}]′
.

(b) Follows directly from Propositions 6 and 7.
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Tables
Table 1a. Critical Values for the Fluctuation Optimality Test

Recursive Case

Panel A. 10% Significance Level

µ

` 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

1 10.2669 8.7578 7.5765 6.8180 5.9651 5.3264 4.7263 4.0770 3.0670

2 21.0526 17.6387 15.4595 13.6645 12.3778 11.0838 9.8099 8.1885 6.3733

3 31.6098 26.5056 23.1435 20.4020 18.2414 16.4521 14.3639 12.1936 9.4068

4 42.2477 35.3095 31.0490 28.1807 24.8024 21.8613 19.4414 16.4647 12.9179

5 51.4326 43.3741 37.9558 34.0329 30.1304 26.8493 23.6270 20.4345 15.8604

6 62.1959 52.8653 46.8010 41.3255 37.0648 33.2631 29.7693 25.7976 20.1981

7 72.5923 61.1458 53.6086 48.3716 42.1891 37.6945 33.5416 28.3144 22.4318

8 83.0521 69.8155 60.1221 53.3352 48.3534 42.9999 37.7007 33.7535 26.4047

9 93.3700 79.1396 70.1581 62.3072 56.0609 50.2067 44.5958 38.5961 29.5163

10 102.8387 87.9789 77.0303 69.0955 62.9926 55.9850 47.9871 40.8464 33.0343

Panel B. 1% Significance Level

µ

` 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

1 11.6856 10.2590 9.0347 8.3078 7.5188 6.7878 6.1378 5.3392 4.2895

2 24.1870 20.5629 18.4802 16.6605 14.9386 135726 12.3433 11.0913 8.8522

3 35.7436 31.3579 27.4429 24.6209 22.2881 20.4842 18.4831 16.2724 13.1799

4 48.4109 41.1313 37.1256 34.1003 31.0601 27.5384 24.5786 22.1307 17.6315

5 58.7816 51.0609 44.9732 40.7340 37.7266 34.3607 30.4638 26.8477 22.0854

6 71.1544 61.8007 56.3129 51.4453 46.1987 42.5460 38.7247 33.8356 27.8409

7 82.3462 71.4629 64.6099 57.2321 52.4756 47.1016 43.2170 38.0804 30.8315

8 95.5454 83.3650 74.4333 66.5070 60.7184 54.4951 49.0898 43.4037 35.4405

9 106.9382 93.7497 83.4796 75.8295 69.7516 62.8953 58.3720 51.6320 41.2317

10 118.7537 102.0123 93.9141 84.5024 78.1770 69.8137 61.9619 54.9538 44.4878
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Panel C. 5% Significance Level

µ

` 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

1 14.8490 13.5353 12.7226 12.3497 11.6315 10.5737 9.2474 8.1820 7.2755

2 30.6697 57.2850 25.0862 23.2379 21.7915 20.1452 18.7319 16.8365 13.9806

3 46.1154 40.2553 37.4200 34.8092 31.8805 30.3981 28.4565 26.4705 22.5937

4 61.3731 55.2706 50.4924 47.5501 44.1246 40.8818 39.4697 34.5798 28.6159

5 75.2285 68.3475 64.1851 57.1331 54.4350 51.9411 47.2560 43.7015 36.6641

6 88.7717 80.6740 75.2264 70.9772 67.7189 63.1786 60.5449 53.2299 44.7424

7 104.0166 95.1507 86.7878 80.1468 76.4849 70.8361 64.1169 60.3049 52.7625

8 125.2995 110.3452 102.4552 95.8943 85.2440 79.5294 72.7809 65.8315 58.2705

9 138.8842 127.1147 116.4493 106.1689 101.8481 95.8864 87.8756 82.9540 717847

10 156.9100 133.9111 125.3871 117.0503 110.6774 100.6489 88.4913 81.9793 69.7523

Note. The table reports κα,`, the critical values at 10%, 5%, and 1% significance levels respectively, for

max
j∈{R+m,...,T} Wj,m for the recursive scheme under Condition in equation (22) and for the case when

parameter estimation error is irrelevant as in equation (24). The table reports critical values for various

µ = [m/T ] and number of restrictions, `.
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Table 1b. Critical Values for the Fluctuation Optimality Test

Rolling Case

Panel A. 10% Significance Level

` ρ = 0.5;µ = 0.25 ρ = 0.5;µ = 0.3 ρ = 0.3;µ = 0.25 ρ = 0.3;µ = 0.3

1 6.4740 5.5899 7.7008 7.2863

2 9.1746 8.5913 10.7956 10.6739

3 11.5663 10.8638 12.9363 12.3039

4 13.2258 12.6272 14.4234 13.9984

5 14.9127 14.6108 17.0396 16.5904

6 16.4976 15.6346 19.0793 18.3600

7 18.7578 17.7502 20.5095 19.8632

8 19.9329 19.2351 22.7822 22.0157

9 21.7496 21.2777 23.9299 23.9710

10 23.1398 22.2947 25.2720 24.8407

Panel B. 5% Significance Level

` ρ = 0.5;µ = 0.25 ρ = 0.5;µ = 0.3 ρ = 0.3;µ = 0.25 ρ = 0.3;µ = 0.3

1 7.7122 6.9621 8.8102 8.5989

2 10.5702 10.0698 12.4778 12.1265

3 13.2956 12.3069 14.5513 13.9501

4 14.8771 14.2805 16.6307 15.6392

5 16.8451 16.6441 19.0969 18.6127

6 18.5144 17.5945 20.9080 20.1921

7 21.0426 19.7563 22.6405 21.9120

8 22.9293 21.4715 25.1263 24.2192

9 24.2818 23.4890 26.4981 26.1489

10 25.7621 24.6734 26.8059 26.7959
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Panel C. 1% Significance Level

` ρ = 0.5;µ = 0.25 ρ = 0.5;µ = 0.3 ρ = 0.3;µ = 0.25 ρ = 0.3;µ = 0.3

1 11.0943 10.3372 11.7440 11.0335

2 13.7842 14.1051 15.6558 15.7895

3 17.2460 16.4848 18.3441 18.0914

4 18.3709 18.0079 21.0888 21.4351

5 21.6826 20.6014 22.3863 22.5591

6 22.7820 22.9287 25.9931 25.1753

7 24.9451 23.4760 26.5961 25.3780

8 27.9311 26.4139 28.7270 28.1257

9 30.1262 28.8866 32.1298 30.3945

10 31.0603 30.4121 31.7719 32.4430

Note. The table reports κα,`, the critical values at 10%, 5%, and 1% significance levels respectively, for

max
j∈{R+m,...,T} Wj,m for the rolling scheme under Condition in equation (22). The table reports critical

values for various µ = [m/T ] , ρ= [R/T ] and number of restrictions, `.
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Table 1c. Critical Values for the Fluctuation Rationality Test

Survey and Model-Free Forecasts

Panel A. 10% Significance Level

µ̃

` 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

1 10.5066 9.0503 8.0245 7.1035 6.3957 5.6112 5.1113 4.6141 3.9748

2 21.2392 18.0544 15.8290 13.9122 13.0720 11.1526 10.4549 9.0570 7.8723

3 31.4497 26.8866 23.7832 21.4577 19.6097 17.4180 15.3225 13.5010 11.4381

4 43.5150 36.9028 32.8187 28.4075 25.1774 23.3645 20.5785 17.6700 15.5384

5 52.4148 45.7998 39.6896 35.7848 32.0200 28.4850 26.2204 23.1738 19.1090

6 62.6771 54.3749 47.4711 42.4503 38.4920 34.9394 30.4063 27.9807 23.8787

7 74.8406 62.3659 56.2449 49.0721 44.4213 39.6189 36.4280 33.0852 26.9654

8 84.5728 72.8813 63.2267 56.8973 51.5069 45.7856 41.3975 36.7853 31.2008

9 94.9541 81.4986 72.0148 64.7598 57.1844 51.4226 46.4180 41.2775 33.9880

10 104.5994 90.8578 80.1290 69.7875 63.1391 58.7175 51.6605 45.5650 38.6993

Panel B. 5% Significance Level

µ̃

` 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

1 12.0846 10.5969 9.6550 8.7536 7.7583 6.961 6.4958 6.1299 5.3700

2 23.9304 21.0152 18.8106 16.9024 16.4506 14.5181 13.2906 11.9523 10.6583

3 35.8110 31.4406 28.0387 25.7908 24.5830 21.9864 19.7824 17.7214 15.1007

4 49.4366 43.1530 39.3683 34.2290 31.3434 29.3066 26.0227 22.9933 20.9018

5 59.4929 54.2582 46.9204 43.5296 40.2826 36.1054 33.2983 30.5946 25.6162

6 71.5833 63.6046 56.9141 51.3008 47.6269 43.5316 38.8591 36.5334 31.9232

7 85.5798 73.1198 67.0436 60.3735 54.9621 51.0055 46.4178 42.5572 37.3060

8 96.5994 82.8340 75.8613 69.3683 64.7512 57.4847 54.7416 48.6285 40.4862

9 107.9342 95.6691 85.9190 79.9041 70.2681 64.2407 60.5165 53.4894 46.1068

10 120.5426 107.9044 95.7044 84.9419 78.7060 71.8195 65.8906 59.5306 51.3579
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Panel C. 1% Significance Level

µ̃

` 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

1 15.2034 14.1709 12.8862 12.5024 11.3655 10.2615 9.4840 9.4669 8.8229

2 30.8516 28.2962 25.9860 24.0338 23.3590 21.7058 20.1484 18.3749 16.6201

3 45.5649 41.8301 38.5925 35.8044 34.0350 32.5569 30.2612 27.1766 23.8648

4 62.9754 54.9380 55.6239 48.0043 45.2153 44.5599 41.1181 35.1465 31.2726

5 78.8954 69.0344 63.8089 59.8863 56.6435 53.3724 50.3065 48.5804 41.4091

6 91.9499 84.6385 76.9111 73.6821 67.9723 63.2696 59.3231 55.8028 49.0648

7 112.8762 96.4070 91.6098 86.1555 77.8255 75.7540 69.5349 63.2412 59.2658

8 125.4023 109.8004 105.4471 96.4564 98.2139 84.6103 84.8680 77.9564 67.3690

9 140.4446 126.4322 119.2996 109.7265 101.7085 92.3127 91.4050 79.0176 70.5083

10 153.1288 145.7988 132.9398 121.6310 113.1604 107.4479 98.5991 92.6189 84.2430

Note. The table reports κα,`, the critical values at 10%, 5%, and 1% significance levels respectively, for

max
j̃∈{m,...,P}

Wj̃,m for the case when parameter estimation error is irrelevant as in Corollary 9. The table

reports critical values for various µ̃= [m/P ] and number of restrictions, `.
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Table 2a: Size. Recursive Case

Traditional Test Fluctuation Test
R/P 100 200 100 200

Panel A. Mean Prediction Error
25 0.0486 0.0496 0.0500 0.0648
50 0.0454 0.0494 0.0522 0.0630
100 0.0572 0.0482 0.0582 0.0678
200 0.0468 0.0520 0.0580 0.0712
300 0.0534 0.0454 0.0526 0.0624
400 0.0508 0.0538 0.0546 0.0632

Panel B. Effi ciency Test
25 0.0498 0.0544 0.0686 0.0832
50 0.0542 0.0478 0.0644 0.0874
100 0.0546 0.0518 0.0726 0.0842
200 0.0512 0.0502 0.0670 0.0812
300 0.0570 0.0546 0.0658 0.0820
400 0.0566 0.0484 0.0694 0.0800

Table 2b: Size. Rolling Case

Panel A. Mean Prediction Error
25 0.1130 0.1550 0.0940 0.1440
50 0.0690 0.0780 0.0540 0.0610
100 0.0670 0.0620 0.0580 0.0610
200 0.0630 0.0550 0.0560 0.0710
300 0.0540 0.0530 0.0740 0.0560
400 0.0510 0.0450 0.0400 0.0460

Panel B. Effi ciency Test
25 0.9240 0.9990 0.6680 0.9020
50 0.2260 0.7210 0.1610 0.3400
100 0.0630 0.1290 0.0850 0.1290
200 0.0450 0.0600 0.0840 0.1250
300 0.0600 0.0360 0.0770 0.1100
400 0.0470 0.0510 0.0710 0.0980

Note. Tables 2a and 2b report empirical rejection frequencies of the test statistics max
j∈{R+m,...,T} Wj,m

(column labeled “Fluctuation Test”) and the traditional test statistics (column labeled “Traditional Test”)

under the recursive and rolling estimation schemes respectively (see DGP in Section 3). The first column

provides the R values; the columns under the header give the P values. Nominal size is 0.05 and m = 50.
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Table 3: Power Analysis

Panel A. DGP 1 - Mean Forecast Error

A. Non-Stationary B. Non-Stationary C. Stationary

b I. Traditional II. Fluctuation I. Traditional II. Fluctuation I. Traditional II. Fluctuation

0 0.0482 0.0448 0.0482 0.0448 0.0482 0.0448

0.1 0.0486 0.0504 0.0924 0.0856 0.0822 0.0680

0.2 0.0460 0.0676 0.2040 0.2058 0.1570 0.1080

0.3 0.0432 0.0848 0.3882 0.4286 0.2704 0.1732

0.4 0.0350 0.1014 0.6000 0.6684 0.4138 0.2526

0.5 0.0312 0.1358 0.7722 0.8650 0.5494 0.3318

0.6 0.0222 0.1456 0.9022 0.9672 0.6900 0.4094

0.7 0.0214 0.1740 0.9554 0.9928 0.7640 0.4596

0.8 0.0138 0.1870 0.9878 0.9992 0.8454 0.4998

0.9 0.0086 0.1826 0.9964 0.9998 0.8828 0.5208

1.0 0.0044 0.1886 0.9990 1.0000 0.9078 0.5104

Panel B. DGP 2 - Effi ciency

A. Non-Stationary B. Non-Stationary C. Stationary

b I. Traditional II. Fluctuation I. Traditional II. Fluctuation I. Traditional II. Fluctuation

0 0.0540 0.0490 0.0540 0.0490 0.0540 0.0490

0.50 0.0680 0.0998 0.0854 0.0710 0.2020 0.1598

1.00 0.0362 0.2152 0.4048 0.2992 0.7878 0.6100

1.50 0.0110 0.4110 0.7372 0.7108 0.9908 0.9190

2.00 0.0016 0.6438 0.8390 0.9148 1.0000 0.9912

2.50 0 0.8278 0.8442 0.9832 1.0000 0.9992

3.00 0 0.9260 0.7842 0.9950 1.0000 0.9996

3.50 0 0.9782 0.6770 0.9964 1.0000 1.0000

4.00 0 0.9922 0.4972 0.9972 1.0000 1.0000

4.50 0 0.9980 0.3240 0.9986 1.0000 1.0000

5.00 0 1.0000 0.1812 0.9982 1.0000 1.0000

Note. The table reports empirical rejection frequencies of the test statistics maxj∈{R+m,...,T}Wj,m

(column labeled “Fluctuation”) and the traditional test statistics (column labeled “Traditional”) under the

recursive estimation scheme. Non-Stationary cases A and B refer to DGP A and DGP B, Stationary case

C refers to DGP C in Section 3, respectively. Nominal size is 0.05. R = 300, P = 100, m = 50.
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Table 4. MSFE Comparisons

Horizon Greenbook BCEI SPF

Sample Start Date: 1968:IV 1980:I 1968:IV

0 1.06 0.97 1.32

1 1.76 1.29 2.28

2 2.33 1.56 3.02

3 2.47 1.92 3.67

4 2.71 2.31 4.30

5 2.70 2.61 - -

Note. MSFE is calculated as (πt+h − π̂t+h,t)2 for various forecast horizons h.
Table 5. Inflation Forecast Rationality Tests

Horizon N. Obs. Fluctuation Traditional

Greenbook

0 149 39.64* 0.15
1 149 46.89* 0.65
2 143 49.41* 0.33
3 134 41.59* 0.02
4 109 37.89* 0.01
5 74 91.96* 3.33

BCEI

0 100 43.74* 11.95*
1 100 51.97* 15.69*
2 100 74.22* 22.38*
3 98 135.79* 44.67*
4 74 167.51* 64.54*

SPF

0 149 45.11* 0.13
1 149 66.36* 0.16
2 148 77.84* 0.07
3 145 158.77* 0.46

Note. The table reports the Traditional and Fluctuation Wald test statistics, WP and maxj̃∈{m,...,P}

Wj̃,m, respectively. The traditional tests (column labeled “Traditional”) are based on the indicated

number of observations. The Fluctuation test (column labeled “Fluctuation”) results are based on

m = 60. The significance of the test statistics at the 5% significance level is indicated by asterisks.
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Table 6. Fed’s Information Advantage

Over Private Sector’s Forecasts

Horizon N. Obs. Fluctuation Traditional

BCEI

0 100 49.81* 14.11*

1 100 93.02* 34.87*

2 100 60.00* 20.93*

3 98 28.10* 11.05*

SPF

0 149 39.71* 36.96*

1 149 47.68* 18.78*

2 142 38.46* 19.29*

3 134 51.07* 34.22*

Note. The table reports the Traditional and Fluctuation Wald test statistics (WP and maxj̃∈{m,...,P}

Wj̃,m, respectively) for their respective null hypotheses. The traditional tests are based on the indicated

number of observations. The Fluctuation test results are based on m = 60. The significance of the test

statistics at the 5% significance level is indicated by asterisks.
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Figures
Figure 1: One-quarter-ahead U.S. Inflation Forecasts and Realized Values
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Figure 2: Inflation Forecasts
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Note. The figure plots Greenbook, SPF, and BCEI forecasts of inflation for various forecast horizons h in

conjunction with the realized values of inflation for the corresponding horizon. If a forecast for a specific

horizon by the corresponding agency does not exist, it is depicted as a missing value.
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Figure 3: Fluctuation Optimality Test for Greenbook Forecasts

1983 1985 1987 1989 1991 1993 1995 1997 1999 2001 2003 2005
0

5

10

15

20

25

30

35

40

Fl
uc

tu
at

io
n 

R
at

io
na

lit
y 

Te
st

 S
ta

tis
tic

 
 jo

in
t

T ime

Forecast for Greenbook at quarter h=0

1983 1985 1987 1989 1991 1993 1995 1997 1999 2001 2003 2005
0

5

10

15

20

25

30

35

40

45

50

Fl
uc

tu
at

io
n 

R
at

io
na

lit
y 

Te
st

 S
ta

tis
tic

 
 jo

in
t

T ime

Forecast for Greenbook at quarter h=1

1985 1987 1989 1991 1993 1995 1997 1999 2001 2003 2005
0

5

10

15

20

25

30

35

40

45

50

Fl
uc

tu
at

io
n 

R
at

io
na

lit
y 

Te
st

 S
ta

tis
tic

 
 jo

in
t

T ime

Forecast for Greenbook at quarter h=2

1987 1989 1991 1993 1995 1997 1999 2001 2003 2005
0

5

10

15

20

25

30

35

40

45

Fl
uc

tu
at

io
n 

R
at

io
na

lit
y 

Te
st

 S
ta

tis
tic

 
 jo

in
t

T ime

Forecast for Greenbook at quarter h=3

1993 1995 1997 1999 2001 2003 2005
0

5

10

15

20

25

30

35

40

Fl
uc

tu
at

io
n 

R
at

io
na

lit
y 

Te
st

 S
ta

tis
tic

 
 jo

in
t

T ime

Forecast for Greenbook at quarter h=4

2001 2003
0

10

20

30

40

50

60

70

80

90

100

Fl
uc

tu
at

io
n 

R
at

io
na

lit
y 

Te
st

 S
ta

tis
tic

 
 jo

in
t

T ime

Forecast for Greenbook at quarter h=5

Note. The figure reports the time path of the test statistics Wj,m for the null hypothesis of forecast

rationality under a recursive estimation scheme. m = 60 and the dotted line (“...”) corresponds to the

critical value at 5% significance level. If the test statistic is above the dotted line, we reject the null

hypothesis of rationality at any point in time. The dates in the horizontal axis suggest a particular

break-date.
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Figure 4: Fluctuation Optimality Test for BCEI Forecasts
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Note. The figure reports the time path of the test statistics Wj,m for the null hypothesis of forecast

rationality under a recursive estimation scheme. m = 60 and the dotted line (“...”) corresponds to the

critical value at 5% significance level. If the test statistic is above the dotted line, we reject the null

hypothesis of rationality at any point in time. The dates in the horizontal axis suggest a particular

break-date.
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Figure 5: Fluctuation Optimality Test for SPF Forecasts
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Note. The figure reports the time path of the test statistics Wj,m for the null hypothesis of forecast

rationality under a recursive estimation scheme. m = 60 and the dotted line (“...”) corresponds to the

critical value at 5% significance level. If the test statistic is above the dotted line, we reject the null

hypothesis of rationality at any point in time. The dates in the horizontal axis suggest a particular

break-date.
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Figure 6: Fed’s Informational Advantage
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Note. The figure reports the test statistics Wj,mfor the null hypothesis βg = 0 over time. m = 60.
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Figure 7: Fed’s Informational Coeffi cients
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Note. The figure shows the rolling estimate of βg as in equation (9) based on m = 60.

59


