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Abstract

The vector autoregression (VAR), has long proven to be an effective method for modeling the joint

dynamics of macroeconomic time series as well as forecasting. One of the major disadvantages of

the VAR that has hindered its applicability is its heavy parameterization; the parameter space grows

quadratically with the number of series included, quickly exhausting the available degrees of freedom.

Consequently, forecasting using VARs is intractable for low-frequency, high dimensional macroeconomic

data. However, empirical evidence suggests that VARs which incorporate more component series tend

to result in more accurate forecasts than their smaller counterparts. Existing methods which allow

for the estimation of large VARs either tend to require ad-hoc specifications or are computationally

intractable.

We adapt several prominent scalar regression regularization techniques to a vector time series con-

text to greatly reduce the parameter space of VARs. We formulate convex optimization procedures

that are amenable to efficient solutions for the time ordered high-dimensional problems we aim to

solve. Through this framework, we propose a structured family of models and provide implementa-

tions which allow for both the efficient estimation and accurate forecasting of high-dimensional VARs.

We demonstrate their efficacy in simulated data examples as well as an application to a large set of

macroeconomic indicators.
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1 Introduction

The practice of macroeconomic forecasting was spearheaded by Klein and Goldberger [1955], whose

eponymous simultaneous equation system jointly forecasted the behavior of 15 annual macroe-

conomic indicators, including consumer expenditure, interest rates, and corporate profits. The

parameterization and identification restrictions of these models were heavily influenced by Keyne-

sian economic theory. As computing power increased, such models became larger and began to

utilize higher frequency data. Forecasts and simulations from these models were commonly used

to inform government policymakers as to the overall state of the economy and to influence policy

decisions (Welfe [2013]).

As the Klein-Goldberger model and its extensions were primarily motivated by Keynesian eco-

nomic theory, the collapse of the Bretton Woods monetary system and severe oil price shocks led to

widespread forecasting failure in the 1970s (Diebold [1998]). At this time, the vector autoregression

(VAR), popularized by Sims [1980], emerged as an atheoretical forecasting technique underpinned

by statistical methodology and not subject to the ebbs and flows of contemporary macroeconomic

theory. However, due to its heavy parameterization, the VAR quickly exhausts available degrees of

freedom. It is ill-suited for high dimensional time series, effectively limiting applications to no more

than 6 series (cf. Bernanke et al. [2005]), forcing the practictioner to specify a priori a reduced

subset of series to include.

Almost since the VAR’s inception, efforts have been made to reduce its parameterization. Early

attempts, such as Litterman [1979] pursued a Bayesian approach underpinned by contemporary

macroeconomic theory. In applying a Bayesian VAR with a Gaussian prior (analogous to ridge

regression), priors were formulated based upon stylized facts regarding US macroeconomic data.

For example, the popular Minnesota prior incorporates the prevailing belief that macroeconomic

variables can be reasonably by a univariate random walk by shrinking model parameters toward

univariate unit root processes.

The Bayesian VAR with a Minnesota Prior was shown by Robertson and Tallman [1999] to

produce forecasts superior to the conventional VAR, univariate models, and traditional simultaneous
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equation models. However, this approach is very restrictive, in particular it assumes that all series

are contemporaneously uncorrelated, and it requires the use of several unspecified hyperparmeters.

Modern Bayesian extensions originally proposed in Kadiyala and Karlsson [1997] and compiled

by Koop [2011] allow for more general covariance specifications and estimation of hyperparameters

via Empirical Bayes or Markov chain Monte Carlo methods. These approaches are computationally

expensive and multi-step forecasts are nonlinear and must be obtained by additional simulation.

Using a conjugate Gaussian-Wishart prior, Banbura et al. [2009] extends the Minnesota prior to

a high dimensional setting with a closed-form posterior distribution. However, their approach

does not perform variable selection, and their penalty parameter selection procedure appears more

natural within a frequentist framework.

More recent attempts to reduce the parameter space of VARs have incorporated the Lasso (Tib-

shirani [1996]), a least squares variable selection technique. This includes the Lasso-VAR proposed

by Hsu et al. [2008] and further explored in Song and Bickel [2011], Davis et al. [2012], and Medeiros

and Mendes [2012]. Theoretical properties were investigated by Kock and Callot [2013] and Basu

and Michailidis [2013]. The Lasso-VAR, which we introduce in Section 3, has several advantages

over the Bayesian VAR as it is more computationally tractable in high dimensions, performs variable

selection, and can readily compute multi-step forecasts and their associated prediction intervals.

This paper seeks to bridge the considerable gap between the regularization and macroeconomic

forecasting communities. We propose numerous extensions and generalizations of the Lasso-VAR

while incorporating the unique structure of the VAR model in a computationally efficient man-

ner. Our methods: the Lasso-VAR, Lag Group Lasso-VAR, Own/Other Group Lasso-VAR, Lag

Sparse Group Lasso-VAR and Own/Other Sparse Group Lasso-VAR, extend the Lasso and its

structured counterparts to take into account characteristics such as a model’s lag length and the

delineation between a component’s own lags and those of another component. These models offer

great flexibility in capturing the true underlying dynamics of an economic system while imposing

very mild restrictions on the parameters space. Moreover, unlike previous approaches, due to our

adaptation of conventional optimization algorithms to a multivariate time series setting, our models

are well-suited for the simultaneous forecasting of high dimensional low-frequency macroeconomic
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time series. In particular, our models allow for prediction under scenarios in which the number of

component series is close to or exceeds the length of the series.

In addition, unlike previous methods, our procedures can easily be applied by practitioners

and avoids the use of subjective or complex hyperparameters. We also detail several extensions,

including a procedure to refit a VAR based on the support estimated by our approaches (relaxed es-

timation), an illustration of implementing our algorithms to shrink toward a given reference (such as

a vector random walk), and a framework for incorporating exogenous variables (regularized VARX).

We present both a simulation study and a large macroeconomic data application to illustrate the

superior forecast performance of the proposed methods over conventional VAR estimation methods.

Section 2 details the notation used throughout the paper and Section 3 introduces our structured

regularization methodology. Section 4 proposes an approach for penalty parameter selection, Section

5 details relaxed estimation methods, Section 6 summarizes both a simulation study and a large

macroeconomic data example, and Section 7 presents extensions which allow shrinkage to reference

models and incorporating exogenous variables. The Appendix details our solution methods and

algorithms.

2 Setup

Let {yt ∈ Rk : t = 1, . . . , T} denote a k dimensional vector time series. A pth order vector

autoregression VARk(p) may be expressed as

Y t = ν +

p∑
`=1

B`Y t−` + ut, (2.1)

in which Y t,ν,ut ∈ Rk for t = 1, . . . , T , each B` represents a coefficient matrix of dimension

k × k, and ut
wn∼ (0,Σu) and p denotes the maximal lag length. The innovation covariance Σu

is an unspecified finite k × k positive definite matrix. A VAR may be expressed as seemingly

unrelated regressions, hence the least squares and generalized least squares estimators will coincide

(cf. Zellner [1962]) in the absence of parameter restrictions. Consequently, we will not incorporate
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Σu in the construction of our models. Basu and Michailidis [2013] details a penalized maximum

likelihood approach which attempts to jointly estimate B1, . . . ,Bp and Σ−1
u , but doing so does not

substantially improve forecasts.

It will also be convenient to express (2.1) in compact matrix notation. Define the k× T matrix

Y = (Y 1,Y 2, . . . ,Y T ). Let B = (B1,B2, . . . ,Bp), which is of dimension k × kp. Define a kp× 1

vector Zt as Zt = (Y
′

t−1, . . .Y
′

t−p)
′
, and let Z = (Z1, . . . ,ZT ), which has dimension kp×T . Note

that p realizations, Y −(p−1), . . . ,Y 0, are needed to initialize Z. Finally, define a k × T matrix

U = (u1, . . . ,uT ), then Equation (2.1) may also be expressed as

Y = ν1
′
+BZ + U, (2.2)

with 1 denoting a T × 1 vector of ones.

3 Lasso-VAR

Consider the notation from Section 2, in which Y is a k×T response matrix, Z is a kp×T covariate

matrix and B is a k × kp matrix of unknown coefficients.

An initial approach to reduce the dimensionality of the parameter space, extending Tibshirani

[1996], is to apply an L1 penalty to the convex least squares objective function

1

2
||Y − ν1

′
−BZ||2F + λ||B||1, (3.1)

in which ||X||2F =
∑m
i=1

∑n
j=1 |xij |2 is the square of the Frobenius norm of X, ||X||1 =

∑
jk |Xjk|

is the L1 norm, and λ ≥ 0 is a penalty parameter. An L1 penalty will induce sparsity in the

coefficient matrix B by zeroing individual entries. This results in an unstructured sparsity pattern,

an example of which (with p=5 and k=3) is depicted in Figure 1. If the Lasso-VAR selects [Bq]jk

for q = 1, . . . , p, it follows that for a given λ > 0, at the value of B̂ which minimizes the objective

function, Equation (3.1), the linear relationship between series j and series k at lag q is zero, given

the other variables selected in the model.
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Figure 1: Example sparsity pattern produced by a Lasso-VAR3(5)

Sparsity in the coefficient matrix is crucial when k is large because the conventional VAR is

overparameterized; Sims [1980] remarked that its construction represents a “profligate parameteri-

zation.” Moreover, the Lasso-VAR has an advantage over existing Bayesian methods in that it will

both shrink least squares estimates toward zero as well as perform variable selection. This allows

for feasible estimation for cases in which the number of regression parameters k2p is close to or

exceeds the sample size kT .

In regularization problems, the intercept is not typically shrunk. Instead, it is calculated follow-

ing estimation, while Y and Z are standardized so that each row has a sample mean of zero. As a

result, ν will no longer appear in the objective function. This procedure is described in section 9.1

of the Appendix.

Since the L1 norm is not differentiable, no closed-form solution exists for Equation (3.1), hence

iterative methods are required. Our approach to solve Equation (3.1) involves the use of coordinate

descent, popularized by Friedman et al. [2010]. This consists of partitioning Equation (3.1) into

scalar subproblems for each [B]ij , solving component-wise, and then updating until convergence.

This approach is computationally tractable since in the Lasso-VAR context, each subproblem has a

closed-form solution. Tseng [2001] establishes that global convergence arises from solving individual

subproblems in the coordinate descent framework. Our solution strategy is detailed Section 9.2.1

of the Appendix.

6



3.1 Structured Penalties

Instead of shrinking coefficients element-wise, forecasting may be substantially improved by taking

advantage of the inherent structure of the VAR. For example, Song and Bickel [2011], consider

two structures: assigning each row of each B` to its own group, resulting in separable objective

functions for each series, (no grouping) or partitioning the rows of each B` based on natural or

given data-specific partitions, such as by economy (segmentized grouping).

We propose generalizing this approach and partition B. As a simple lag-based grouping, we

examine the following objective function utilizing a Group Lasso penalty structure (Yuan and Lin

[2006]):

1

2
||Y −BZ||2F + λ

p∑
`=1

||B`||F . (3.2)

That is, we group the coefficient sub-matrices by their time lags, in which B` is defined as in

Equation (2.1). This structure is advantageous for applications in which all component series tend

to exhibit comparable dynamics. It also can serve as a powerful tool for lag selection. This simple

structure leads to a sparsity pattern such as that depicted in Figure 2. Unlike the Lasso-VAR,

Figure 2: Example sparsity pattern produced by a Lag Group Lasso-VAR3(5)

though the subproblems in the Group-Lasso VAR are separable, they are not solvable in closed

form. We instead extend the methodology of Qin et al. [2010] and transform each subproblem to a

trust-region frameworkwhich can be solved efficiently as a univariate optimization problem. Details

of this procedure are provided Section 9.2.2 of the Appendix.
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3.2 Alternative Group Structures

In many settings, it may not be appropriate to give equal consideration to every entry in a coefficient

matrix B`. Diagonal entries, which represent a variable’s own lags, are in many applications

more likely to be nonzero than off-diagonal entries, which represent cross dependence with other

components. We can thus partition each coefficient matrix into separate groups via the objective

1

2
||Y −BZ||2F +

√
kλ

p∑
`=1

||diag(B`)||2 +
√
k(k − 1)λ

p∑
`=1

||B−` ||2, (3.3)

where B−` = {[B`]ij : i 6= j}. Unlike Equation (3.2), groups differ in cardinality, which requires

weighting the penalty to avoid regularization favoring larger groups. An example of this sparsity

pattern is shown in Figure 3. The modifications required to implement the Own/Other-Group-

Lasso-VAR are detailed Section 9.2.3 in the Appendix.

Figure 3: Example sparsity pattern produced by an Own/Other Group Lasso-VAR3(5)

3.3 Sparse Group Lasso-VAR

For certain applications, the Group Lasso penalty might be too restrictive. If a group is active,

all coefficients in the group will be nonzero, and including a large number of groups substantially

increases computation time. Moreover, it is inefficient to include an entire group if only one coeffi-

cient is nonzero. The Sparse Group Lasso penalty of Simon et al. [2013] allows for greater flexibility
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by adding within-group sparsity to Equation (3.2) via the objective function

1

2k
||Y −BZ||2F + (1− α)λ

p∑
`=1

||B`||F + αλ||B||1, (3.4)

in which 0 ≤ α ≤ 1 is an additional tuning parameter. Larger values of α imply strong overall

sparsity, while small values of α imply strong group-wise sparsity, but minimal sparsity within-

group. Note that the case where α = 0 is equivalent to the Lag Group Lasso-VAR and α = 1

is equivalent to the Lasso-VAR. As an alternative to estimating via cross-validation (jointly over

α and λ), we relate within-group sparsity to the number of component series, and set α = 1
k+1 .

An example sparsity pattern is depicted in Figure 4. Since the inclusion of within-group sparsity

Figure 4: Example sparsity pattern produced by a Lag Sparse Group Lasso-VAR3(5)

.

does not allow for separability, coordinate descent is no longer appropriate, therefore, following

Simon et al. [2013] our solution to Equation 3.4 makes use of proximal gradient descent. This

procedure can be thought of as an extension of gradient descent in which the objective function

can be decomposed into a smooth and non-smooth part. The details of this approach and our

implementation are provided in Section 9.2.4 of the Appendix.

Following similar methodology to the Group Lasso-VAR, the Sparse Group Lasso-VAR can also

be extended to alternative groupings. Consequently, we also offer the “Own/Other” Sparse Group

Lasso-VAR as an estimation procedure.
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4 Penalty Parameters

4.1 Selection of Penalty Grid

Following Friedman et al. [2010], we choose the grid of potential penalty parameters to decrement

in log-linear increments, starting with the smallest value in which all components of B will be

zero. This value differs for each procedure and can be inferred by their respective algorithms. The

starting values are summarized in Table 9 located in Section 9.3 of the Appendix. The number of

gridpoints as well as the depth of the grid are left to user input.

4.2 Data-Driven Selection of λ

Due to time-dependence, our problem is not well suited to traditional n-fold cross-validation. In-

stead, expanding on Song and Bickel [2011] and Banbura et al. [2009], we propose choosing the

optimal penalty parameter by minimizing one-step ahead mean-square forecast error (MSFE). We

start by dividing the data into three periods: one for initialization, one for training, and one for

forecast evaluation. Define time indices T1 =
⌊
T
3

⌋
, T2 =

⌊
2T
3

⌋
.

The period T1 +1 through T2 is used for training and T2 +1 through T for evaluation of forecast

accuracy in a rolling manner. The procedure is illustrated in Figure 5.

.

Figure 5: Illustration of Rolling Cross-Validation

Define ŷλt+1 as the one-step ahead forecast based on all observations from 1, . . . , t. We consider

minimization of

MSFE(λ) =
1

(T2 − T1 − 1)

T2−1∑
t=T1

||ŷλt+1 − yt+1||2F .

If desired, additional forecast horizons or criterion functions can be substituted. MSFE is the most
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natural criterion given our use of the least squares objective function. Rather than parallelizing the

cross-validation procedure, our method uses the result from the previous period as an initialization

or “warm start,” which substantially decreases computation time. The penalty selection procedure

is expressed in Algorithm 2 in the Appendix.

5 Relaxed (Group) Lasso-VAR

Since the Lasso and its structured counterparts are known to shrink non-zero regression coefficients,

in practice, they are often used for model selection followed by refitting the reduced model using

least squares (Meinshausen [2007]). An estimation procedure which can take into account linear

restrictions (such as fixing some parameters at zero) is referred to in the time series literature as a

“Restricted VAR,” and was explored in the context of constrained likelihood Lasso-VAR estimation

by Davis et al. [2012]. As we use this method to re-estimate nonzero coefficients, to avoid confusion,

we will refer to this two-step estimation procedure as a “Relaxed (Group) Lasso-VAR.”

As an illustration, consider the following example which uses the results of a Lasso-VAR2(2)

with r nonzero coefficients to introduce linear constraints of the form

vec(B̂) = Rβ̂, (5.1)

in which R is a k2p × r matrix with rank r and β̂ = vec({B̂ : [B̂]jk 6= 0}). Within the relaxed

framework, λ is held constant and the support recovered is taken as given. For example, consider

the following support recovered from the aforementioned Lasso-VAR2(2).

B̂ =

[B̂1]11 [B̂1]12 0 0

[B̂1]21 [B̂1]22 [B̂2]21 0

 .
In this case, Lasso-VAR indicates that the model contains 5 non-zero coefficients:

[B̂1]11, [B̂1]12, [B̂1]21, [B̂1]22, [B̂2]21
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. Then, we can express Equation (5.1) as

vec(B̂) =



1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 0

0 0 0 0 1

0 0 0 0 0

0 0 0 0 0



×



[B̂1]11

[B̂1]12

[B̂1]21

[B̂1]22

[B̂2]21


.

As previously stated, in the unrestricted VAR framework, the ordinary and generalized least squares

estimators coincide. However, once restrictions are introduced, the generalized least squares (GLS)

estimator is asymptotically more efficient than ordinary least squares.

Following Brüggemann [2004], we can express the GLS estimator of the Relaxed VAR as

B̂
GLS

= [R
′
(ZZ

′
⊗ Σ−1

u )R]−1R
′
(Z ⊗ Σ−1

u )vec(Y ), (5.2)

in which ⊗ denotes the Kronecker product. However, since Σu is unknown in general, Equation

(5.2) cannot be used in practice. A feasible GLS estimate may be defined by first estimating the

Relaxed Least Squares (RLS) estimator

B̂
Relaxed

= R[R′(ZZ′ ⊗ Ik)R]−1R′(Z ⊗ Ik)vec(Y ).

We then use the RLS to estimate Σu. If estimating Σu is not tractable, which can occur when the

series length T is small relative to the number of component series k, B̂
Relaxed

can be used to return

“unshrunk” parameter estimates under the assumption that Σu is the identity matrix. Otherwise
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Σu can be estimated by

Σ̄u =
1

T − kp− 1
(Y − B̂

Relaxed
Z)(Y − B̂

Relaxed
Z)
′

Then, assuming Σ̄u is non-singular, we can compute a feasible GLS as

B̂
FGLS

= R[R
′
(ZZ

′
⊗ Σ̄−1

u )R]−1R
′
(Z ⊗ Σ̄−1

u )vec(Y ).

Our applications have found ZZ
′

to be poorly conditioned when T is small. Moreover, as the

dimension increases, conducting operations directly with the k2p× k2p matrix (ZZ′ ⊗ Ik) exhausts

memory. To ameliorate these issues of dimensionality, the refitting procedure can be conducted

row-by-row if the covariance matrix is diagonal. Additionally, the conditioning of ZZ
′

can be

improved by implementing a modification of the procedure developed by Neumaier and Schneider

[2001], which adds a small regularization parameter to Z and computes ZZ
′

via a QR factorization.

This approach is summarized in Algorithm 5 in Section 9.5 of the Appendix.

6 Empirical Results

6.1 Simulation Scenarios

We evaluate our algorithms on several simulated high-dimensional VARs, conforming to different

sparsity patterns; one constructed to be advantageous to each proposed structure. All simulations

operate on a VAR20(4) of length T = 100 and each is repeated 100 times. The choice of 4 was

selected for p because it represents one year of dependence for quarterly data, which is a common

frequency of macroeconomic data. Two-thirds of the observations are used for initialization and

penalty parameter selection while one-third are used for forecast evaluation.
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6.1.1 Scenario 1: Sparse and Diagonally Dominant

The first coefficient matrix consists of a diagonally dominant sparsity structure, in which all diagonal

elements and off-diagonal elements are identical in magnitude in matrices B1 and B4, and B2 and

B3 are set identically to zero. The residual covariance matrix Σu is set to (0.01)I20. The sparsity

pattern is depicted in Figure 6. The darker shade represents coefficients that are larger in magnitude.

and the simulation results are summarized in Table 1. Under this setting, one would expect top

Figure 6: Sparsity Pattern Scenario 1: Sparse and Diagonally Dominant

B1 B2 B3 B4

performance from the “own/other” Group-Lasso VAR.

Table 1: Out of sample MSFE of one-step ahead forecasts averaged over 100 simulations: Scenario
1

Model Average MSFE Standard Error
Lasso 0.2400 0.0254
Lag Group Lasso 0.2321 0.0152
Lag Sparse Group Lasso 0.2326 0.0170
Own/Other Group Lasso 0.2268 0.0149
Own/Other Sparse Group Lasso 0.2271 0.0166
VAR with lag selected by AIC 0.2868 0.0198
Sample Mean 0.2688 0.0682
Random Walk 0.3336 0.0216
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6.1.2 Scenario 2: Lag Sparsity

We next consider a scenario in which Lag B1 and B4 are dense with coefficients of the same

magnitude and all other coefficients are set to zero. Under such a design, we should expect superior

performance from the lag structured approaches. For this simulation, Σu is again set to (0.01)I20.

The sparsity pattern is depicted in Figure 8, and the results are summarized in Table 2.

Figure 7: Sparsity Pattern Scenario 2: Lag Sparsity

B1 B2 B3 B4

Table 2: Out of sample MSFE of one-step ahead forecasts after 100 simulations: Scenario 1
Model Average MSFE Standard Error
Lasso 0.3566 0.0354
Lag Group Lasso 0.3394 0.0317
Lag Sparse Group Lasso 0.3389 0.0355
Own/Other Group Lasso 0.3366 0.0315
Own/Other Sparse Group Lasso 0.3942 0.0536
VAR with lag selected by AIC 0.4303 0.0403
Sample Mean 3.04 1.440
Random Walk 7.35 4.537

6.1.3 Scenario 3: Unstructured Sparsity

We next consider a scenario in which the sparsity is completely random. Under such a design, we

should expect superior performance from the unstructured Lasso-VAR. ΣU is again set to (0.01)I20.

The sparsity pattern is depicted in Figure 8. and the results are summarized in Table 3. Clearly in
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Figure 8: Sparsity Pattern Scenario 3: Unstructured Sparsity

B1 B2 B3 B4

Table 3: Out of sample MSFE of one-step ahead forecasts after 100 simulations: Scenario 1
Model Average MSFE Standard Error
Lasso .3431 .02590
Lag Group Lasso .4220 .04306
Lag Sparse Group Lasso .4509 .09460
Own/Other Group Lasso .4767 .0941
Own/Other Sparse Group Lasso .5633 .1297
VAR with lag selected by AIC .7802 .0809
Sample Mean 5.059 3.969
Random Walk 7.296 5.591

the absence of any sort of structure, all of the structured approaches are substantially outperformed

by the Lasso-VAR. However, it

6.1.4 Scenario 4: Structured Blockwise Sparsity, Unstructured Within-Block

Our third scenario can be thought of as a hybrid of the previous two cases. As in Scenario 2, only

matrices B1 and B4 contain nonzero coefficients and, similar to Scenario 3, sparsity within each

block is unstructured. ΣU is again set to (0.01)I20. The sparsity pattern is visualized in Figure

9. In such a scenario, we should expect procedures that allow for within-group sparsity, such as

the Sparse Group Lasso-VAR and Lasso-VAR to achieve the best performance. The results are

summarized in Table 4.
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Figure 9: Sparsity Pattern Scenario 3: Structured Blockwise, Unstructured within Block

B1 B2 B3 B4

Table 4: Out of sample MSFE of one-step ahead forecasts after 100 simulations: Scenario 3
Model Average MSFE Standard Error
Lasso .3531 .0213
Lag Group Lasso .3355 .0201
Lag Sparse Group Lasso .33941 .0205
Own/Other Group Lasso .3334 .0200
Own/Other Sparse Group Lasso .4007 .0243
VAR with lag selected by AIC .4230 .0268
Sample Mean 3.1523 .2026
Random Walk 8.1067 .5952

6.1.5 Relaxed VAR Simulations

In order to examine the impact of the relaxed estimators, we ran simulations using the same sparsity

pattern as Scenario 4 with several choices for Σu. We then compared the Lasso-VAR estimator

with no refitting, refitting using RLS, refitting using RFGLS, and refitting using the true Σu in a

Relaxed GLS framework. The different covariance matrix specifications are specified in Figure 10,

and the results are summarized in Table 5.

17



Σa Σb

Σc Σd

Figure 10: Sparsity Patterns used for Relaxed VAR simulation. ΣA denotes a dense covariance
matrix. ΣB represents a diagonal matrix with equal weights, ΣC a diagonal matrix with unequal
weights, and ΣD a sparse matrix.

Table 5: Out of sample MSFE of one-step ahead forecasts after 100 simulations: Relaxed VAR
Sigma choice c

Σu A Σu B
Model Average MSFE Standard Error Average MSFE Standard Error
Lasso Unrelaxed 329.87 53.03 185.42 22.27
Lasso Relaxed Least Squares 322.78 38.16 198.59 17.71
Lasso Relaxed FGLS 313.03 37.50 188.59 18.22
Lasso Relaxed GLS (True Σu) 310.36 37.66 187.10 18.24

Σu C Σu D
Lasso Unrelaxed 171.33 19.94 591.59 76.06
Lasso Relaxed Least Squares 181.00 16.39 629.60 64.66
Lasso Relaxed FGLS 172.33 16.62 596.00 65.85
Lasso Relaxed GLS (True Σu) 170.53 16.40 590.68 62.07
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6.1.6 Discussion

All of our procedures are fairly robust to sparsity patterns not conforming to their true group

structure. In each scenario, every method substantially outperforms the benchmarks. Scenario 3

was the only case in which the structured approaches performed poorly relative to the Lasso-VAR.

We expect that such a sparsity pattern will rarely occur in practice.

In addition, we find that our Relaxed FGLS refitting procedure performs almost as well as the

Relaxed GLS approach using the true covariance matrix. However, in most scenarios, refitting

does not offer a substantial improvement in forecast accuracy, though it does substantially decrease

standard error.

6.2 Macroeconomic Data Application

Our methods were additionally evaluated on a large macroeconomic dataset originally compiled by

Stock and Watson [2005] and augmented by Koop [2011]. It consists of 131 quarterly macroeco-

nomic indicators, containing information about various aspects of the economy, including income,

industrial production, employment, stock prices, interest rates, exchange rates, etc. Per Koop

[2011], the series can be partitioned into several groups, we incorporate the following two:

• Small : 3 variable (Federal Funds Rate, CPI, GDP growth rate): Core group, typically used

in simple DSGE models (k=3),

• Medum Small plus 17 additional variables, containing aggregated economic information (e.g.

consumption, labor, housing, exchange rates) (k=20),

As Banbura et al. [2009] found that the greatest improvements in forecast performance occured

with the Medium VAR, that will be our focus. The time series included are listed in Table 10

in the Appendix. Before estimation, each series is transformed to stationarity according to the

transformation codes provided by Stock and Watson [2005], and standardized by subtracting the

sample mean and dividing by the sample standard deviation. Quarter 3 of 1975 to Quarter 1 of

1992 is used for penalty parameter selection while Quarter 2 of 1992 to Quarter 1 of 2009 is used
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for forecast evaluation. Our results are summarized in Table 6 located in Section 9.4. Note that

the AIC, mean, and random walk benchmarks change slightly, as setting p = 13 requires additional

values for initialization.

Table 6: Out of sample MSFE of one-step ahead forecasts on 20 macroeconomic indicators
p = 4 p = 13

Model/Penalty MSFE S.E. Over Evaluation Period MSFE S.E. Over Evaluation Period
Lasso 12.148 2.007 12.680 2.123
Lag Group Lasso 12.611 2.148 12.848 2.217
Lag Sparse Group Lasso 12.437 2.105 12.835 2.207
Own/Other Group Lasso 12.128 2.008 11.840 2.039
Own/Other Sparse Group Lasso 11.704 1.863 11.598 1.946
VAR with lag selected by AIC 14.125 2.346 14.583 2.551
Sample Mean 15.126 2.320 15.350 2.444
Random Walk 30.638 5.541 30.843 5.818

7 Extensions

7.1 Shrinking to a constant matrix C

The proposed algorithms can easily be modified to shrink toward a known constant matrix. Shrink-

ing toward a constant matrix results in an optimization problem of the form.

1

2
‖Y −BZ‖2F + λΩ(B −C),

where Ω is one of the proposed penalty functions and C is a constant matrix that we are shrinking

toward. Let B̂
λ
(Y , C) denote a solution to this problem. Now, by a change of variables B̃ = B−C,

we get the equivalent problem

‖Y − (B̃ + C)Z‖2F + λΩ(B̃).

20



or

‖Y −CZ − B̃Z‖2F + λΩ(B̃).

Thus, the solution to this transformed problem is given by B̂
λ
(Y −CZ, 0) and transforming back

to the original variable (i.e., from B̃ to B), we see that

B̂
λ
(Y ,C) = C + B̂

λ
(Y −CZ, 0).

Therefore, if we know how to solve the problem with C = 0k×kp, then we can use this to solve the

problem for general C.

As an example, with C = (Ik,0k×k, . . . ,0k×k), we could implement a variant of the Minnesota

Prior, in which we shrink toward a random walk. This approach could be of use in economic

applications as it is widely believed that many macroeconomic time series follow a random walk

(Litterman [1979]).

7.1.1 Application

In order to test this procedure, we follow the methodology of Banbura et al. [2009], who utilize the

Stock and Watson dataset, but eschew stationarity transformations and work directly with the non-

stationary series. We again apply our estimation procedures on the aforementioned “medium” set

of series, but choose not to perform any stationarity transformations and shrink toward a random

walk. Our results are summarized in Table 7.

7.2 Incorporating Exogenous Variables

In many applications, forecasts can be improved by incorporating exogenous variables, which are

determined outside of the VAR. Examples of these types of variables could be leading indicators,

weather related variables, or global macroeconomic indicators not related to the macroeconomic

system examined, such as global oil prices. The so-called V ARXk(p, s) model, which incorporates
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Table 7: Out of sample MSFE of one-step ahead forecasts on 20 nonstationary macroeconomic
indicators

p = 4 p = 13
Model/Penalty MSFE S.E. Over Evaluation Period MSFE S.E. Over Evaluation Period
Lasso 2.322 1.515 2.038 1.207
Lag Group Lasso 2.278 1.537 2.428 1.657
Lag Sparse Group Lasso 2.156 1.417 2.421 1.643
Own/Other Group Lasso 2.074 1.302 2.445 1.649
Own/Other Sparse Group Lasso 1.914 1.171 2.421 1.638
VAR with lag selected by AIC 3.709 1.881 4.111 2.299
Sample Mean 31.306 3.709 29.127 1.657
Random Walk 2.513 1.766 2.626 1.850

an m-dimensional series of exogenous variables xt, can be expressed as

Y t = ν +

p∑
i=1

BiY t−i +

s∑
j=0

θjxt−j + ut, (7.1)

In which θj represents a k ×m coefficient matrix of endogenous variables at lag j. Alternatively,

using the compact matrix representation of Section 2, we can define

Γt =

[
1, y

′

t, . . . , y
′

t−p, x
′

t+1, . . . , x
′

t−s

]′
Γ =

[
Γ0, . . . ,ΓT−1

]
Θ =

[
ν,B1, . . .Bp,θ0, . . . ,θs

]

then, with Y ,ν and U defined as in Section 2, we have that

Y = ν1
′
+ ΘΓ + U.

Since each exogenous variable requires ks additional coefficients, it is natural to restrict its param-

eterization. We could extend the Lasso-VAR, to the Lasso-VARX, resulting in

‖Y −ΘΓ‖2F + λ‖Θ‖1.
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However, as noted by Chiuso and Pillonetto [2010], the Group Lasso VARX approach appears more

natural, as we would like to be able to differentiate between endogenous and exogenous variables.

For example, we could consider the Lag Group Lasso VARX

‖Y −ΘΓ‖2F +
√
k2λ

p∑
`=1

‖B`‖F +
√
kλ

sm∑
j=1

‖θs‖F .

That is, an exogenous variable at lag s is either nonzero for all series or none at all. The Lag Sparse

Group Lasso VARX and Own/Other follow similarly.

7.2.1 Application

As an application, suppose that a practioner only desire forecasts from the small group of macroe-

conomic indicators described in Section 6, but wants to use the Medium set of indicators as covari-

ates. Rather than estimating the entire 400p variable system, a VARX version of our structured

approaches could be fit with the 17 additional macroeconomic indicators treated as exogenous co-

variates, resulting in a more manageable (9 + 17)p variable system. The results of these methods

are summarized in Table 8.

Table 8: Out of sample MSFE of one-step ahead forecasts on 3 macroeconomic indicators with 17
exogenous covariates, p=13

Model/Penalty MSFE S.E.
Lasso 1.326 0.175
Lag Group Lasso 1.202 0.168
Own/Other Group Lasso 1.294 0.188
Lag Sparse Group Lasso 1.281 0.164
O/O Sparse Group Lasso 1.290 0.189
Sample Mean 1.490 0.236
Unrestricted VARX 2.079 0.288
Random Walk 3.388 0.671
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8 Conclusion

The structured regularization framework is quite flexible in that it can accommodate a variety of

potential dynamic structures. In addition, models can be refit based on a selected support, shrunk

toward a known constant matrix and exogenous variables can easily be incorporated.

Each of the proposed methods consistently outperform the VAR with lag selected by AIC. More-

over, upon examining actual data, structured approaches tend to outperform their unstructured

counterparts. Forecast performance for all methods appears to be robust across multiple sparsity

structures. Future forecasting applications may involve higher dimensional simulation scenarios

and larger macroeconomic datasets.

Our work has considerable room for extensions. In addition to the conditioning issues with the

Relaxed VAR framework, our procedures require a coherent maximal lag selection mechanism. In

data applications, most of our procedures tend to provide worse forecasts as the maximal lag order

is increased. The currently accepted procedure of choosing a lag order based on the frequency of

the data is problematic in that it can lead to overfitting. One could potentially incorporate an

additional penalty parameter that grows as the lag order increases, as in Song and Bickel [2011],

but this would require a two-dimensional gridsearch hindering computational performance. As an

additional potential issue, though our procedures perform well when shrinking toward a random

walk, the nonstationarity of the data can create problems as the grid of penalty parameters is not

likely to be constant over time.

An R package containing our algorithms and validation procedures, BigVAR, is forthcoming.
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9 Appendix

9.1 Intercept Term

We can express (3.1) as:

f(B,ν) =
1

2
||Y − ν1

′
−BZ||2F + λ||B||1,

=
1

2

∑
kt

(Ykt − νk −BZkt)2 + λ
∑
kr

|Bkr|.

In regularization problems, the intercept ν̂ is typically not shrunk and can be derived separately

from B̂ = argmin f . We can find ν̂ by calculating the gradient of the unpenalized portion of
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Equation (3.1) and solving with respect to the first order conditions:

0 = ∇νf(B,ν) = (Y − ν̂1
′
− (B̂Z))1,

=⇒ ν̂j(λ) = Y k· − B̂Zk·,

in which Y k· = 1
T

∑
t Ykt, and Zk· = 1

T

∑
t Zkt. This provides some insight into the scaling, as we

can rewrite the objective as

1

2
||Y − (Ȳ −BZ̄)1

′
−BZ||2F + λ||B||1 (9.1)

=
1

2
||(Y − Ȳ 1

′
)−B(Z − Z̄1

′
)||2F + λ||B||1. (9.2)

Where Ȳ is a k × T matrix of row means and Z̄ is a kp× T matrix of row means. Note that since

the Laplacian with respect to ν is -T, ν̂ is a maximum.

9.2 Solution Strategies

In the following sections, assume that Y and Z are centered as in Equation (9.2).

9.2.1 Lasso-VAR

Utilizing the coordinate descent framework, we can find B̂ via scalar updates. To generalize to a

multivariate context, we can express the one-variable update for Bjr as

min
Bjr

1

2
(Yjt −

∑
6̀=r

Bj`Z`t −BjrZjt)
2 + λ|Bjr|. (9.3)

Let Rt = Yjt −
∑
` 6=rBj`Z`t denote the partial residual. Then, we can rewrite Equation (9.3) as

gjr(B) = min
Bjr

1

2
(Rt −BjrZjt)

2 + λ|Bjr|

= min
Bjr

1

2
(
∑
t

R2
t −B

2
jrZ

2
jt − 2RtZjtBjr) + λ|Bjr|.
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Now, differentiating with respect to Bjr gives the subgradient as

∂gjr(B) 3 Bjr

∑
t

Z2
jt −

∑
t

RtZjt + λψ(Bjr).

Where we define ψ(Bjr) as

ψ ∈

 {sgn(Bjr)} Bjr 6= 0

[−1, 1] Bjr = 0.

For B̂jr to be a global minimum, 0 ∈ ∂g(B̂jr). After some algebra, the optimal update can be

expressed as

B̂jr ←
ST (

∑
t RtZjt, λ)∑
tZ

2
jt

.

Where ST represents the soft-threshold operator

ST (x, φ) = sgn(x)(|x| − φ)+,

sgn denotes the signum function and (|x| − φ)+ = max(|x| − φ, 0). The procedure is detailed in

Algorithm 1.

9.2.2 Group Lasso-VAR

Rather than vectorizing into a univariate least squares problem, we can again exploit the matrix

structure for considerable compuational gains. We want to solve the subproblem

1

2
||R−q −BqZq||2F + λ||Bq||F . (9.4)
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Where Rq = Y −B−qZ−q again represents the partial residual. Taking the gradient of ||R−q −

BqZq||2F with respect to Bq results in:

∇Bq

1

2
||R−q −BqZq||2F = ∇Bq

Tr
(

(R−q −BqZq)(R−q −BqZq)
′
)
,

=BqZqZ
′

q −R−qZ
′

q,

=(BqZq −R−q)Z
′

q.

The subgradient with respect to Bq then is

BqZqZ
′

q −R−qZ
′

q + λω(Bq)

Where ω is defined as:

ω(Bq) =


Bq

||Bq||F Bq 6= 0

{U : ||U ||F ≤ 1} Bq = 0

Consider the case where B̂q = 0. Then

B̂qZqZ
′

q −R−qZ
′

q

λ
∈ {U s.t. ||U ||F ≤ 1},

⇐⇒ ||B̂qZqZ
′

q −R−qZ
′

q||F ≤ λ,

⇐⇒ ||R−qZ
′

q||F ≤ λ,

⇐⇒ B̂q = 0.
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We can conclude that B̂q = 0 ⇐⇒ ||R′−qZ
′

q||2 ≤ λ.

Assuming B̂q 6= 0, we have that

BqZqZ
′

q −R−qZ
′

q + λ(
B̂q

||B̂q||F
) = 0, (9.5)

BqZqZ
′

q + λ(
B̂q

||B̂q||F
) = R−qZ

′

q, (9.6)

Bq

(
ZqZ

′

q +
λ

||Bq||F
Ik

)
= R−qZ

′
q. (9.7)

Now, since ZqZ
′

q � 0 and λ > 0,ZqZ
′

q + λ
||Bq||F Ik � 0, it is possible to create a trust region

subproblem which coincides with Equation (9.4). However, we need to transform R−qZq into a

scalar. Define

pq = vec(R−qZq),

Xq = ZqZ
′

q ⊗ Ik,

bq = vec(Bq).

Hence, we can rewrite Equation (9.7) as

b
′

q

(
Xq +

λ

||bq||2
Ik2

)
= pq.

Resulting in the trust-region subproblem

min
1

2
b
′

qXqX
′

qbq + p
′

qbq,

s.t.||bq||2 ≤ ∆,

in which ∆ > 0 is the trust-region radius. By the Karush-Kuhn-Tucker conditions, we must have

that: λ(∆ − ||b∗q ||2) = 0, which implies that ||b∗q ||2 = ∆. Then, applying Theorem 4.1 of Nocedal

31



and Wright [1999], we can conclude that

b∗q = −
(
Xq +

λ

∆
I

)−1

pq. (9.8)

These transformations allow for the use of the methodology described in Qin et al. [2010]. Equation

(9.8) can also be expressed as b∗q = ∆yq(∆), where

yq(∆) = − (∆Xq + λI)
−1
pq,

Note that ||yq(∆)||2 = 1. Hence, the optimal ∆ can be chosen to satisfy ||yq(∆)||2 = 1. We can

efficiently compute ||yq(∆)||22 via an eigen-decomposition of Xq

||yq(∆)||22 =
∑
i

(w
′

ip
′

qXq)
2

(vi∆ + λ)2
,

in which wi and vi represent the respective eigenvectors and eigenvalues of Xq. Finally, we can

determine the optimal ∆ by applying Newton’s method to find the root of

φ(∆) = 1− 1

||yj(∆)||2
. (9.9)

The full procedure is outlined in Algorithm 3. Our algorithm organizes iterations around an “active-

set” as described in Friedman et al. [2010]. This approach starts by cycling through every Bq once,

and then only iterating on the subset of B which are nonzero (the “active-set”) until convergence.

If a full pass through all B does not change the active set, the algorithm has converged, otherwise

the process is repeated. This approach considerably reduces computation time, especially for large

values of λ, in which most parameters are zero.
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9.2.3 Extension of Group-Lasso VAR to Own/Other Lags

Since in this scenario the groups are not proper submatrices, Equation 3.3 must be transformed

into a least squares problem. In order to do so, we define the following

r−qq = vec(R−qq), (9.10)

bqq = vec(Bqq), (9.11)

Mqq = Z
′

qq ⊗ Ik. (9.12)

Then, the one block subproblem for own lags (group qq) can be expressed as

min
aq

1

2
||Mqqbqq + r||22 +

√
ρqqλ||bqq||2, (9.13)

= min
aq

1

2
r
′
r + b

′

qqM
′

qqMqqbqq + r
′
Mqqbqq +

√
ρqqλ||bqq||2, (9.14)

= min
bqq

1

2
b
′

qqM
′

qqMqqbqq + r
′
Mqqbqq +

√
ρqqλ||bqq||2. (9.15)

At b̂qq, we must have that 0 ∈ ∂f(b̂). The subgradient can be expressed as

∂

∂bqq
= M

′

qqMqqbqq +M
′

qqr +
√
ρqqλω(b),

where ω is defined as

ω(s) ∈

 {
s
||s||2 } s 6= 0

{u s.t. ||u||2 ≤ 1} s = 0.

Thus, we can apply a slightly adapted version of Algorithm 3.

9.2.4 Sparse Group-Lasso VAR

As with the Group Lasso, we will consider the one-block subproblem:

min
Bq

1

2k
||R−q −BqZq||2F + (1− α)λ||Bq||F + αλ||Bq||1. (9.16)
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Since the inclusion of within-group sparsity does not allow for separability, coordinate descent is

no longer appropriate, therefore, following Simon et al. [2013] our solution to Equation 3.4 will use

gradient descent methods. We express Equation 9.16 as the sum of a generic differentiable function

with a Lipschitz gradient and a non-differentiable function.

We start by linearizing the quadratic approximation of the unpenalized loss function that only

makes use of first-order information around its current estimate B0 (for notational ease, let `(B)

represent the unpenalized loss function, B ≡ Bq and P (B) represent the penalty term)

M(B,B0) = `(B0) + vec(B −B0)
′
vec(∇`(B0)) +

1

2h
||B −B0||2F + P (B),

=
1

2k
||R−q −B0Zq||2F + 〈B −B0, (B0Zq −R−qZ

′

q)Z
′

q〉+
1

2h
||B −B0||2F + P (B).

Where h represents the step size. Our objective function is then

B̂ = argminM(B,B0),

= argmin
B

1

2h
||B −

(
B0 − h(B0Zq −R−q)Z

′

q

)
||2F + P (B).

Then, generalizing the arguments outlined by Simon et al. [2013], we can infer that

B̂ =

(
1− h(1− α)λ

||ST (B0 − h(B0Zq −R−q)Z ′q, hαλ)||F

)
+

ST (B0 − h(B0Zq −R−q)Z
′

−q, hαλ).

The calculation of the step size h can be problematic. Ideally, the step size should be as large as

possible, as it leads to faster convergence, but if it is too large, the algorithm may diverge. The

conventional method for determing step size, described in Simon et al. [2013] and Beck and Teboulle

[2009], is to decrease h until

`(B̂, h) ≤ `(B) + vec(∇q)
′
vec(∆l,h) +

1

2h
||∆l,h||2F . (9.17)

However, as noted in section 5.3 of Becker et al. [2011], Equation (9.17) has severe cancellation

34



errors when `(B̂, h) ≈ `(B, h). They posit an alternative test, iterating until

`(B̂, h) ≤ 1

2hk
||∆l,h||2F . (9.18)

They recommend a hybrid approach: choosing Equation (9.17) when `(B, t) − `(B̂, t) ≥ γ`(B̂, t),

for some small γ > 0 and choosing Equation (9.18) otherwise.

Unfortunately, we have found even this hybrid approach to be unstable. This could be due to the

use of a Nesterov-style accelerated update which, per Bach et al. [2011], can result in the algorithm

not decreasing at each step causing the above specifications to diverge. We instead analytically

derive the Lipschitz constant, H, which must satisfy

||∇X`(X)−∇Y `(Y )|| ≤ H||X − Y ||.

Consider two submatrices Aq and Bq. We have that

∇Aq
`(Aq) = AqZqZ

′

q −R−qZ
′

q,

∇Bq
`(Bq) = BqZqZ

′

q −R−qZ
′

q,

=⇒ ∇Aq
`(Aq)−∇Bq

`(Bq) = (Aq −Bq)ZqZ
′

q,

=⇒ ||(Aq −Bq)ZqZ
′

q||2 ≤ ||Aq −Bq||2||ZqZ
′

q||2.

The last inequality follows from the sub-multiplicity of the matrix 2-norm. Therefore, we can

conclude that the Lipschitz constant is ||ZqZ
′

q||2 =
√
σmax(ZqZ

′

q), i.e. the largest eigenvalue

of ZqZ
′

q ≡ X, which has dimension k × k. Since X is symmetric and positive definite, it is

diagonalizable and the maximum eigenvalue can be efficiently computed using the power method,

described in Golub and Van Loan [2012].

As only the maximum eigenvalue is required, the power method is much more computationally

efficient than computing the entire eigensystem. Moreover, we retain the corresponding eigenvector

produced by this procedure to use as a “warm start” which substantially decreases the amount of
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time required to compute the maximal eigenvalue at each time point in the cross-validation and

evaluation stages.

The inner loop of of the Sparse Group-Lasso VAR procedure is detailed in Algorithm (4). An

outline of the algorithm is below:

1. Iterate through all groups. Within each group:

(a) Check if the group’s coefficients are identically zero via the condition: ||(BqZq−R−q)Z
′

q||F ≤

(1− α)λ.

(b) If not, go to the inner loop (Algorithm 4).

(c) Repeat until convergence.

In a manner similar to Algorithm 3, an “active-set” approach is used to minimize computation

time.

9.3 Penalty Grid Selection

Table 9: Starting values of the penalty grid for each procedure.
Structure Starting Value of ΛGrid

Lasso max(ZY
′
)

Block Group Lasso maxq(ZqY
′
)

Block Sparse Group Lasso maxq(ZqY
′
α)

Own/Other Group Lasso maxq
(Zq⊗Ik)vec(Y

′
)√

ρq

Sparse Own/Other Group Lasso maxq
(Zq⊗Ik)vec(Y

′
)√

ρq
α

9.4 Description of Macroeconomics Time Series

This table is a slight modification from that of Koop [2011].
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Table 10: Description of the 19 macroeconomic indicators used in our analysis
Abbreviation Series Description
GDP251 Real GDP, quantity index
CES002 Employees on nonfarm payrolls-total private
CPIAUCSL Consumer-Price Index: All Items
PSCCOMR Real Spot Market Price Index: All Commodities
IPS10 Industrial Production Index- Total Index
GDP252 Real Personal Consumption Expenditures: Quantity Index
LHUR Unemployment Rate: All Workers 16 Years and Over
HSFR Housing Starts: Non Farm(1947-1958) Total Farm and Non-Farm (1959-)
UTL11 Capacity Utilization: Manufacturing
PWFSA Producer Price Index: Finished Goods
GDP273 Personal Consumption Expenditures: Price Index
CES275R Real Average Hourly Earnings of Production or Non-Supervisory Workers
FYFF Federal Funds Rate
FM2 Money Stock: M2
FM1 Money Stock: M1
FMRRA Depository Institution Reserves: Total (Adjusted for Reserve Requirement Changes)
FSPIN S&P’s Common Stock Price Index: Industrials
FYGT10 Interest Rate: US Treasury Constant Maturity-10 Year
EXRUS United States Effective Exchange Rate

9.5 Algorithms
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Algorithm 1 LASSO-VAR(p)

Require: Y ,Z,BINI,M,R, ε
Ỹ ← Y − Ȳ 1

′

Z̃← Z − Z̄1
′

Λgrid ← exp(sequence(start = log(max(Z̃Ỹ
′
)), end = log(max(Z̃Ỹ

′
)

R , length = M))

BOLD ← BINI

5:

for m in 1 : M do
λ← Λ(m)
while threshold > ε do

for i in k, j in kpmax do
10: Rt ← Yjt −

∑
` 6=jBj`Z`t

BNEW
ij ← ST(

∑
t RtZjt,λ)∑
tZ

2

jt

end for

threshold=max( |vec(BOLD
)−vec(BNEW

)|
1+|vec(BOLD

)|
)

BOLD ← BNEW

15: end while
ν̂ ← Ȳ −BNEWZ̄
BArray{m} ← (ν̂,BNEW)

end for
return BArray

Algorithm 2 LASSO-VAR(p) Cross-Validation

Require: Y ,Z,BINI
array,Λgrid,Relaxed

Y ← Ȳ 1
′

Z ← Z̄1
′

BLAST
array ← BINI

array

5: for j in 1 : length(T2 − T1) do

Y
(j)
TRAIN ← Y 1:(T1+j−pmax+1)

Z
(j)
TRAIN ← Z,1:(T1+j−pmax+1)

BNEW ← Lasso-VAR(Y
(j)
TRAIN,Z

(j)
TRAIN,B

LAST
array , λgrid, γ)

if Relaxed is TRUE then
10: BNEW

array ← Relaxed(Y
(j)
TRAIN,Z

(j)
TRAIN,BNEW

array )
end if
for i in λGrid do

SSFE(i,j) ← ||Y j −BiZ,1:(j−pmax)||22
MSSFE(i) ← 1

T2−T1

∑
j SSFE{i, j}

15: end for
end for
BLAST

array ← BNEW
array

return λmin MSSFE
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Algorithm 3 Group LASSO-VAR(p)

Require: BΛ,INI,G,Y ,Z,AINI

Define:

Mg = ZgZ
′

g

Xg = Mg ⊗ Ik

for λ ∈ Λ do
Bλ,A ← Bλ,INI,Aλ ← Aλ,INI

repeat
5: Bλ,A ←ThresholdUpdate(A,Bλ,A, λ)

Bλ,AFULL
,Aλ ←BlockUpdate(AFULL,Bλ,A, λ)

until Bλ,A = Bλ,AFULL

ν̂ ← Ȳ −Bλ,AZ̄
end for

10: return ν̂, BΛ, AΛ

procedure BlockUpdate(G,BINI, λ)
B ← BINI

for g ∈ G do
R← B−gZ−g − Y

15: p← RZ
′

q

if ||p||F ≤ λ then
B∗ ← 0p
Ag ← ∅

end if
20: if ||p||2 > λ then

∆← the root of φ(∆) defined in (9.9)
Bg ← −(Xg + λ

∆Ik2)−1p
Ag ← g

end if
25: end for

return Bλ, A
end procedure
procedure ThresholdUpdate(Aλ,Bλ,INI, λ)

if A = ∅ then return 0k×kp
30: end if

if A 6= ∅ then
Bλ,OLD ← Bλ,INI

repeat
Bλ,NEW,Aλ ← BlockUpdate(Aλ,Bλ,OLD, λ)

35: Bλ,OLD ← Bλ,NEW

until Desired threshold is reached
end if

return Bλ,NEW,A
end procedure
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Algorithm 4 Sparse LASSO-VAR(p) inner loop

Require: B0,Zq,R−q
repeat

l←1

Gq ←
(B0Zq−R−q)Z

′
q

k
`(U(B))← ||B0||

5: θ1 ← B0

h← 1/λmax(ZqZ
′

q)

U(B)←
(
1− h(1−α)λ

||ST (B0−t(B0Zq−R−q)Z
′
q,hαλ)||F

)
+

ST (B0 − h(A0Zq −R−q)Z
′
−q, hαλ)

θl+1 ← U(B)
10: Bl+1 ← θl+1 + l

l+3
(θl+1 − θl)

l=l+1
until Convergence of ||Bl+1 −Bl||F

Algorithm 5 Relaxed Feasible Generalized Least Squares

Require: Y ,Z, R1, . . . , Rk,R

K ← [Z
′
,Y ]

for i in 1:k do
R1i ← [Ri enrow(Ri)+i

0 0
]

K1← KR1i
5: q ← ncol(K1)

δ ← (q2 + q + 1)
√
εmachine

S ←
√
δ
√

Diag||K2·j ||22
R2← QR.R([K1

S ])
R211 ← R21:ncol(Ri),1:ncol(Ri)

10: R212 ← R21:ncol(Ri),ncol(Ri):ncol(Ri)+1

B̂
Relaxed

i ← Ri(R2−1
11 R212)

end for
if FGLS is true then

Σ̄u = 1
T−kp−1 (Y − B̂

Relaxed
Z)(Y − B̂

Relaxed
Z)
′

15: B̂
FGLS

= [R
′
(ZZ

′
⊗ Σ̄−1

u )R]−1R
′
(Z ⊗ Σ̄−1

u )vec(Y )
end if
return RB̂

Relaxed
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