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Abstract

In this paper, we propose a conditional moment type test for forecast rationality that

allows for an asymmetric loss function, has power against generic (non)linear alternatives

and does not assume any particular functional form for the forecaster’s loss function.

The construction of the test is based on the simple idea that asymmetric preferences

imply an unconditional bias of the forecast error but not a conditional bias. The null

hypothesis of forecast rationality under asymmetric loss (i.e. no conditional bias) is tested

by constructing a Bierens type test. We compare our nonlinear forecast rationality test

to the linear J-test of Elliott, Komunjer and Timmermann (2005, 2008; EKT hereafter)

through an empirical application using data from the Survey of Professional Forecasters

issued by the Federal Reserve Bank of Philadelphia. In a Monte Carlo exercise we show

that: i) the J-test is loss function sensitive, meaning that it is not robust to different

choices of loss function and could lead to incorrect inferences if the forecaster’s underlying

loss function does not belong to the class of loss defined in EKT; and ii) our test has higher

power than the J-test in the presence of nonlinear dependencies between the forecast error

and the information set used to generate the forecasts.
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1 Introduction

In the forecast evaluation literature, rationality is tested under different assumptions re-

garding the forecaster’s underlying loss function. Early works such as Theil (1958) [15],

Mincer and Zarnowitz (1963) [12] based their forecast evaluation framework on the as-

sumption of a symmetric loss, where positive and negative forecast errors are equally

weighted by the forecaster. Under a squared loss function, testing for forecast efficiency

means testing whether the forecast errors have zero mean and whether they are uncorre-

lated with the available information. Nevertheless, the assumption of quadratic loss can

be criticized due to different economic reasons. At a macroeconomic level, central banks

are averse to bad outcomes such as lower than expected real output growth and higher

than expected inflation and hence they incorporate this loss aversion into their forecasts.

At the firm level, the cost of under-predicting demand which results in loss of sales should

not necessarily be the same as the cost of over-predicting demand which means additional

storage costs.

Given that symmetric loss functions such as the mean squared error or mean ab-

solute error may not be flexible enough to capture the loss structures that forecasters

face, another line of the literature: Zellner (1986) [16], Christoffersen and Diebold (1997)

[5], Elliott, Komunjer and Timmermann (2005, 2008) [9] [10], Patton and Timmermann

(2007a) [13], Komunjer and Owyang (2007) [11] argues that an asymmetric loss function

that weights differently positive and negative forecast errors, could be more representa-

tive for the forecaster’s intentions. However, under an asymmetric loss, standard forecast

rationality tests could be misleading, not being able to distinguish whether the forecaster

uses inefficiently her information, or whether the underlying loss function is just asym-

metric. Thus, rejections of rationality in the standard rationality evaluation literature

may largely be caused by the assumption of a squared loss function.

EKT provide a GMM based forecast optimality testing framework based on a general

class of loss functions that allows for a parametrization of the asymmetry in the loss

function. They construct a forecast rationality test that allows for an asymmetric loss
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function. However, as we show in this paper, their methodology is loss function sensitive.

Thus, if the forecaster’s true loss function does not belong to the parametrization of

EKT, their test could lead to incorrect inferences. In general, the forecast evaluator does

not have much information about the true loss function of the forecast producer. Hence,

wrongly assuming that the forecasts have been constructed by minimizing the loss function

given in EKT could lead to misleading results. In addition, the EKT test is based on

the assumption that the forecasts were generated using a linear model. In their context,

failure to reject the null of rationality means an absence of linear correlation between the

forecast error and the information set used to generate the forecasts. Thus, their test may

not detect nonlinear dependencies.

Our paper suggests an alternative test for forecast rationality that allows for an asym-

metric loss function. Our test is consistent against generic (non)linear alternatives and

relaxes the assumption that the forecaster’s loss belongs to the parametrization of EKT.

In fact, our framework accounts for the possibility of asymmetry without restricting the

forecaster’s loss to any particular parametric form of the loss function. In the construction

of our test statistic, we require neither the knowledge of the underlying loss function nor

the knowledge of the forecasting model used by the forecaster. Our test is related to the

conditional moment type tests of Bierens (1982, 1990) [2] [3], de Jong (1996) [8], Corradi

and Swanson (2002) [7] and Corradi, Fernandez and Swanson (2009) [6].

The paper is structured as follows. Section 2 provides a brief review of the EKT (2005)

framework. In Section 3 we outline our suggested forecast rationality test. In section 4 we

compare the finite sample properties of the two tests by Monte Carlo simulations. In the

same section we show that misspecified losses lead to biased loss function estimates and

important size distortions for the J-test. Section 5 presents an empirical illustration using

data from the Survey of Professional Forecasters (SPF). Concluding remarks are provided

in Section 6. The main simulation and empirical findings are presented in Appendix A1.

Appendix A2 contains additional empirical results that support our findings.
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2 The EKT Framework

Consider the general class of loss functions introduced by EKT (2005, 2008) that includes

the mean squared error (MSE) or mean absolute error (MAE) as special cases. This

generalized loss function is defined as follows:

L1 (εt+h; p, α) = [α + (1− 2α) · 1(εt+h < 0)] · |εt+h|p (1)

where εt+h = yt+h − ft+h is the forecast error at horizon h, h ≥ 1. The forecast, ft+h, is

defined as ft+h = θ′Wt, where θ is an unknown d-vector of parameters and Wt is a d-vector

of variables that are Ft-measurable. The shape parameters of the loss function, L1, are

p and α, with p ∈ N∗ and α ∈ (0, 1). Special cases of L1 include: the absolute deviation

loss function, L1(εt+h; 1, 1/2) = 1
2
|εt+h|, the squared loss function L1(εt+h; 2, 1/2) = 1

2
ε2t+h

and their asymmetrical counterparts obtained when α 6= 1/2: the lin-lin loss L1(εt+h; 1, α)

and the quad-quad loss L1(εt+h; 2, α).

The shape parameter α describes the degree of asymmetry in the forecaster’s loss

function. Values for α less than one half suggest that the forecaster gives higher weights

on negative forecast errors than on positive ones of the same magnitude, or in other

words over-prediction is more costly than under-prediction. Values greater than one half

indicates a higher cost associated with positive forecast errors, or that under-prediction

is more costly than over-prediction. In the symmetric case, α equals one half. The costs

associated with positive and negative forecasts errors are equally weighted. The relative

cost of a forecast error can be estimated as α/1 − α (Capistran 2008). For example if

α = 0.75, positive forecast errors (obtained by under-forecasting) are three times more

costly then negative ones (obtained by over-forecasting).

EKT (2005, 2008) construct a test for forecast rationality allowing for an asymmetric

loss function as defined in (1). Their test is based on the following moment conditions:

E(Wt(1(ε∗t+h ≤ 0)− α0)|ε∗t+h|p0−1| = 0 (2)
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where ε∗t+h = yt+h−f ∗t+h is the optimal forecast error which depends on the unknown true

values p0 and α0.

It is shown that a sub-vector Vt, of Wt is sufficient to identify α0. Consequently, the

forecast user does not require the entire set of variables Wt used by the forecaster to

back out α0, but only a sub-vector of these variables. This result is relevant in practical

applications as the forecast user might not have access to the full information set used to

generate the forecasts. The moment conditions from (2) thus become:

E(Vt(1(ε∗t+h ≤ 0)− α0)|ε∗t+h|p0−1| = 0 (3)

Using the moment conditions in (3), they obtain a GMM estimator for α and then con-

struct a test for the validity of the d−1 overidentifying restrictions. The approach is used

to test a composite null that the loss belongs to a general family of loss functions and the

forecasts are rational. Testing this composite null hypothesis is conducted through the

following test statistic:

J =
1

T

(
T+τ−1∑
t=τ

vt[1(êt+1 < 0)− α̂T ]|êt+1|p0−1

)′
Ŝ−1

(
T+τ−1∑
t=τ

vt[1(êt+1 < 0)− α̂T ]|êt+1|p0−1

)
∼ χ2

d−1

(4)

The test is asymptotically distributed as a χ2 with d−1 degrees of freedom and rejects

for large values. In (4), êt+1 is the observed forecast error obtained as: êt+1 = yt+1− f̂t+1,

where f̂t+1 is the observed forecast reported by the forecast producer. The sample size is

denoted by T , τ is the beginning of the estimation sample, vt are the observations of the

vector of instruments Vt, α̂T is a linear instrumental variable estimator of the true value

α0,

α̂T ≡
[ 1
T

∑T+τ−1
t=τ vt|êt+1|p0−1]′Ŝ−1[ 1

T

∑T+τ−1
t=τ vt1(êt+1 < 0)|êt+1|p0−1]

[ 1
T

∑T+τ−1
t=τ vt|êt+1|p0−1]′Ŝ−1[ 1

T

∑T+τ−1
t=τ vt|êt+1|p0−1]

(5)
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and Ŝ defined as

Ŝ(ᾱT ) ≡ 1

T

T+τ−1∑
t=τ

vtv
′
t(1(êt+1 < 0)− ᾱT )2|êt+1|2p0−2

is a consistent estimate of a positive definite weighting matrix S, which depends on ᾱT ,

a consistent initial estimate for α0.

In practice, the computation of the estimator α̂T can be done iteratively. First, we

choose S = Idxd and use (5) to compute the corresponding α̂T,1. Using α̂T,1 a new weight

matrix Ŝ(α̂T,1) is obtained. This is more efficient than the previous one. The new weight

matrix is plugged into (5) obtaining α̂T,2. These two steps are repeated until α̂T,j equals

its previous value α̂T,j−1.

3 The Nonlinear Forecast Rationality Test

The forecast rationality test of EKT is based on the assumption that the forecasts were

generated using a linear model of the type: ft+1 = θ′Wt, and thus the observed forecast

error is: êt+1 = yt+1 − θ̂′Wt. In this framework, failure to reject the null hypothesis of

rationality, means an absence of linear correlation between the information set of the

forecaster and the forecast error. Hence, possible nonlinear dependencies are not neces-

sarily detected. The forecast error could be uncorrelated with Wt but correlated with a

nonlinear function of Wt. Even more, the error could be correlated with some variables

not included in Wt. In this section, we outline a forecast rationality test which allows for

an asymmetric loss function and it is consistent against generic (non)linear alternatives.

This test is able to detect any form of dependence between the forecasting error and the

available information set. Moreover, our forecast rationality test is not based on the as-

sumption of a particular loss function. This constitutes an important advantage over the

J-test, because as we show in Section 4.1, if the true loss function of the forecaster does

not belong to the class of loss functions defined in EKT, the results given by the J-test

could be misleading.
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The idea of our test is that asymmetric preferences imply an unconditional bias of the

forecast error but not a conditional bias. Under the assumption of asymmetric preferences,

the forecast error is unconditionally biased because forecasters systematically over or

under-predict. The forecasters get different losses from over and under-prediction and

thus it is rational for them to produce biased forecasts. However, the conditional bias of

the forecast error is zero if there is no issue of inefficient use of the available information.

We start by defining the null hypothesis for our forecast rationality test under asym-

metric preferences as follows:

H0 : E(εt+1|Wt) = E(εt+1) (6)

against the alternative:

H1 : E(εt+1|Wt) 6= E(εt+1)

where Wt contains all publicly available information relevant to predict a variable yt+1

at time t. If H0 is true, it means that the forecast error is independent of any function

which is measurable in terms of the information set available at time t. The forecasts

are rational even though they may be biased. We can rewrite the null given in (6) as

follows: H0 : E(εt+1|Wt) − E(εt+1) = 0 ⇔ H0 : E(εt+1|Wt) − E[E(εt+1)|Wt] = 0 ⇔
H0 : E[εt+1|Wt − E(εt+1|Wt)] ⇔

H0 : E[(εt+1 − E(εt+1))|Wt] = 0 (7)

The alternative of the new form of our null hypothesis, as given in (7), is:

H1 : Pr [E[(εt+1 − E(εt+1))|Wt] = 0] < 1

If the new form of H0 is rejected, the conditional bias of the forecast error is not zero

and we have evidence for non-rationality because the available information has been used

inefficiently when constructing the forecasts. We are able now to test the new form of our

null hypothesis, by constructing a Bierens (1982, 1990) type test, with an infinite number

of moment conditions. Conditional moment type tests are constructed based on the idea
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that for correctly specified models, the conditional mean of certain functions of data are

almost surely equal to zero. This quantity is the product of the model’s residuals (in our

case the conditional bias of the forecast error) and a weighting function which depends

on the conditioning variables.

In order to test the null given in (7), we apply to our context the test statistic suggested

by de Jong (1996) which generalizes the conditional moment type test proposed by Bierens

(1990), to the framework of time series. Thus, we define:

MT = supγ∈Γ|mT (γ)|

where:

mT (γ) =
1√
T

T−1∑
t=0

(êt+1 − e)w

(
t−1∑
j=0

γ′jΦ(Wt−j)

)
(8)

and the convention that the sum from 0 to -1 is zero. In (8), êt+1 is the observed one

step ahead forecast error obtained as the difference between the actual realization and the

forecasted value from the forecast producer, êt+1 = yt+1 − f̂t+1. The mean e is defined as

e = 1
T

∑T−1
t=0 êt+1. Our discussion focuses on êt+1, but the results generalize to êt+h, where

h > 1 is the forecast horizon.

The function Φ is a measurable one to one mapping from <d to a bounded subset of

<d - it can be choosen the arctangent function, for example. The weights, γj, attached

to observations decrease over time. The function w(γ′,Wt) is a generically comprehensive

function, a nonlinear transformation of the conditioning variables. Suppose that Wt is a

d-dimensional vector. The generically comprehensive function can be taken for example:

w(γ′,Wt) = exp(
∑d

i=1 γiΦ(Wi,t)), or w(γ′,Wt) = 1/(1 + exp(c −
∑d

i=1 γiΦ(Wi,t))), with

the constant c 6= 0. The choice of the exponential in this weight function is not crucial.

Stinchcombe and White (1998) show that any function that admits an infinite series

approximation on compact sets with non-zero series coefficients can be used to obtain a

consistent test.
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It can be shown, (see for example Corradi, Fernandez and Swanson (2008)) that our

test statistic has a limiting distribution that is a functional of a Gaussian process:

(i)Under H0, MT
d→ supγ∈Γ |mT (γ)|, where m(γ) is a zero mean Gaussian process.

(ii)Under H1, there exist an ε > 0, such that:

Pr

(
1√
T
MT > ε

)
→ 1

The proof follows from the empirical process CLT of Andrews (1991), for heterogeneous

near epoch dependent (i.e. functions of mixing processes) arrays. The limiting distribution

of our statistic, MT is the supremum over a Gaussian process and hence standard critical

values are not available. Also, note thatMT is not pivotal because the limiting distribution

depends on the nuisance parameter γ ∈ Γ. The test has power against generic nonlinear

alternatives, but the critical values have to be computed by bootstrap.

In the Monte Carlo study (Section 4) and the empirical part of the paper (Section 5),

we employ the block bootstrap to obtain the critical values for our statistic. In the block

bootstrap êt+1 and Wt are jointly resampled, in order to preserve the correct temporal

behavior and to mimic the original statistic.

4 Monte Carlo Evidence

Our Monte Carlo study consists of two parts. First, we illustrate the effect that a mis-

specified loss function can have in the forecast evaluation framework of EKT. Then, we

compare the empirical power of our Bierens type test with that of the J-test, in the pres-

ence of nonlinear dependencies between the sequence of forecast errors and the information

set available at the time the forecast is made.
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4.1 The Effect of a Misspecified Loss Function in Forecast Eval-

uation

To show that the J-test is loss function sensitive, we construct a Monte Carlo exercise

where the forecaster’s true loss function belongs to a different family than that assumed

by the J-test. Nevertheless, the evaluation is done under the particular loss function

introduced by EKT. To highlight the effect of a misspecified loss function, we examine

the behavior of the estimator α̂ and study the properties of the J-test.

We assume that the variable of interest is generated by a simple AR(1) process:

xt+1 = c+ bxt + εt

where εt ∼ N (0, 0.5) and the parameters are set to c = 0.9 and b = 0.7. We generate

random samples of size T = R+P−1, after discarding the first 100 observations to remove

any initial values effect. Using a rolling window of size R, the forecaster constructs P one

period ahead forecasts by minimizing the expected value of her loss function, L1, assumed

to be of the form given by (1). The observed one period ahead forecast is f̂t+1 = ĉ+ âxt

where:

(ĉ, b̂) = arg min R−1

R∑
t=1

L1(α0, xt+1 − c− bxt)

and where α0 is the true value of the forecasters loss function asymmetry parameter. The

sequence of the observed forecast errors is then computed as:

{êt+1}Tt=R = {xt+1 − ĉ− b̂xt}Tt=R

We perform 1000 Monte Carlo simulations for different choices of R, P and α0. Our

instrument set includes a constant and the lagged forecast error.

Table 1 reports the average α0 estimates for various sample sizes and various values

of the true asymmetry parameter. The estimator performs overall well when the loss

function is correctly specified, the estimated values being close to the true values. Table 2

10



reports the empirical rejections probabilities for the J-test. Size is well controlled overall.

We notice that there are some small size distortions in cases when R/P ≤ 1 .

Now, we examine the implications of falsely assuming that the forecasters true loss

function belongs to (1), the class of loss functions introduced in EKT. For this, we re-

construct the Monte Carlo exercise from above, assuming that the forecasters true loss

function is the widely used Linex loss defined as:

L2(εt+h; a) = exp(a · εt+h)− a · εt+h − 1 (9)

but this time, the forecast evaluation is inaccurately done under the loss function given

in (1). In this case, we estimate ĉ and b̂ as:

(ĉ, b̂) = arg min R−1

R∑
t=1

L2(a0, xt+1 − c− bxt)

where a0 is the true value of the Linex loss function’s asymmetry parameter.

Table 3 reports the average GMM estimates of α for different sample sizes and differ-

ent values of the Linex loss function’s true asymmetry parameter. The average estimates

present large variations across different values of the true loss function’s asymmetric pa-

rameter. The results given in Table 4 clearly indicate the size distortions of the J-test

obtained when the forecast evaluation is done under a misspecified loss function. The

J-test over rejects the null of rationality, the size distortions being larger, the larger is

the Linex loss function’s asymmetric parameter (in absolute value).

4.2 Empirical Size and Power Comparison

In our second Monte Carlo setup, we consider the following data generating process:

DGP : Yt+1 = θ′Wt + δg(φ′Wt) + Ut
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where θ′ = (θ1, θ2), φ′ = (φ1, φ2) and Wt = (W1t,W2t)
′. We set the following expressions

for the nonlinear function g, g(x) = x2, g(x) = exp(x), g(x) = arctan(x). We also

set different parametrizations for δ as indicated in Table 5. The parameters governing

the process, θ and φ, are fixed to (θ1, θ2) = (0.5, 0.5), (φ1, φ2) = (0.7, 0.8). Here, the

instruments are set to a constant and Zt (which is generated so that it is correlated with

W1t,W2t but uncorrelated with Ut). In order to ensure this, we generate W1t,W2t, Zt, Ut

from a multivariate normal distribution as follows:
W1t

W2t

Zt

Ut

 ∼ N(0,Σ)

where Σ is the variance-covariance matrix set to:

Σ =


2 0.1 0.8 0.2

0.1 2 1 0.1

0.8 1 2 0

0.2 0.1 0 0.8



We generate a sample of size T = 500 for Yt+1 according to our data generating

process. We assume the forecaster uses the first R = 0.6 ∗ T observations to estimte the

parameters of the linear forecasting model:

Yt+1 = θ1W1t + θ2W2t + εt

The observed one-step ahead forecasts Ŷt+1 and the observed one-step ahead forecast

errors êt+1 are obtained using a recursive scheme. Given that a linear forecasting model

was used to generate the forecast errors, even though the true data was generated by

a nonlinear process, we ensure that the forecast error is correlated with some nonlinear

function of Wt. This means that whenever δ 6= 0, we can study the empirical power

of the tests, while when we set δ to 0, we obtain the empirical sizes. We perform 1000

12



Monte Carlo simulations for both statistic. In addition, for the MT statistic, in order to

obtain the critical values, for each Monte Carlo replications we perform 100 bootstrap

simulations.

Table 5 reports the rejection frequencies at a 10% significance level, for different non-

linear functions, g(x), and for different parameterizations for δ. When we set δ = 0,

the forecast error is uncorrelated with the available information and both tests have an

empirical size close to the nominal size of 10%. In all the other cases, characterized by

a nonlinear relationship between the forecast error and the information set, our MT test

which has power against all possible deviations from the null outperforms the J-test.

5 Empirical Illustration

In this section, we perform an empirical comparison of the linear J-test and the nonlinear

MT test. The data set used in the paper is from the Survey of Professional Forecasters

(SPF) maintained by the Federal Reserve Bank of Philadelphia, where survey participants

provide point forecasts for macroeconomic variables in quarterly surveys. The SPF does

not specify the objective of the forecasting exercise and thus the objective of the forecasters

is unknown. It is not sure at all that the forecasters simply minimizes a quadratic loss

function and reports the conditional mean. It is thus reasonable not to impose too much

structure on their unknown loss function. Nevertheless, the forecasts should indeed reflect

the underlying loss function.

For our empirical illustration we use the following series: quarterly growth rates for

real GNP/GDP (1968:4-2012:4) (the SPF provides data on GNP before 1992 and on GDP

after 1992), the price index for GNP/GDP (1968:4-2012:4), and the quarterly growth rates

for consumption (Real Personal Consumption Expenditures) (1981:3-2012:4). The growth

rates are calculated as the difference in natural logs. In our empirical analysis, we focus

on the median responses (results in Appendix A1), however for robustness we perform

our analysis for the mean and range responses, too (see Appendix A2).
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In the computation of the two statistics, we considered the one-step ahead forecast

error obtained as the difference between the actual and the one-step ahead forecasted

value. The point forecast data set of the SPF provides data on the year, the quarter,

the most recent value known to the forecasters, the value for the current quarter (which

is usually forecasted) and then forecasts for the next four quarters. To compute the one

step ahead forecasted growth rates, we used values corresponding to the current quarter

and the most recent value known. For the actual values, the SPF provides a real-time

data set. In order to compute the actual growth rates we used the first release.

For the instruments of the J-test and the information set used in the computation of

our MT test, we considered the following 6 cases - Case 1: constant and lagged errors,

Case 2: constant and absolute lagged errors, Case 3: constant and lagged change in actual

values, Case 4: constant and lagged change in forecasts, Case 5: constant, lagged errors

and lagged change in actual values, Case 6: constant, lagged errors, lagged change in

actual values and lagged change in forecasts.

In the construction of the MT statistic we chose the exponential function for w and

the arctangent function for Φ. Following the literature, we set γj ≡ γ(j + 1)−2, where

γ ∈ [0, 3] for Case 1. When γ is multidimensional we have for example

γ =


γ1

γ2

γ3

 ∈ [0, 3]× [0, 3]× [0, 3]

and the test statistic say in Case 5 is computed as the supremum of the absolute value of:

mT (γ) =
1√
T

T−1∑
t=0

(êt+1 − e) exp

[
t−1∑
j=0

(γ1(j + 1)−2 tan−1(Z1,t−j)

+ γ2(j + 1)−2 tan−1(Z2,t−j) + γ3(j + 1)−2 tan−1(Z3,t−j))]

(10)

where Z1 is a vector of ones, Z2 contains the lagged errors and Z3 the lagged change in

actual values.
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The critical values for the nonlinear forecast rationality test, MT , are computed using

the block bootstrap with overlapping blocks of length 5 and an overlap length of 2. Given

the small sample sizes, we derive our conclusions based on the 10% bootstrap critical

values.

Table 6 reports the results for the J forecast rationality test based on the median

forecasts. For the real GNP/GDP, the estimates of the asymmetry parameter take values

slightly less than 0.5, suggesting that forecasters tend to give higher weights on negative

forecast errors than on positive ones. For the price index, the estimates take slightly

higher values than 0.5, under-prediction being more costly than over-prediction. How-

ever, performing a t-test that tests H0: α =0.5, we cannot reject the null of symmetric

preferences for GNP/GDP and for the price index. Interestingly, this null hypothesis is

rejected for consumption, variable for which forecasters tend to under-predict. At the

10% level, for GDP/GNP and the price index, the J-test does not reject the compos-

ite null hypothesis that the loss belongs to the family of loss functions defined in EKT

and that the forecasts are rational. However, it rejects for most instrument sets cases of

consumption, (more precisely for cases 1, 3, 5 and 6).

Analyzing now Table 7, where our suggested nonlinear test is computed, we notice that

for the real GNP/GDP, our test results are in conformity with the J- test’s results, forecast

rationality not being rejected for this variable. For the price index and consumption, we

obtain contrasting results that reveal interesting insights. Unlike the J-test, our MT

test rejects forecast rationality for the price index, which suggests that in the case of

inflation, the forecast error depends in a nonlinear fashion on the information set used to

produce the forecasts and the J-test is not able to detect these nonlinear dependencies.

For consumption, our test does not reject rationality, even though the J-test rejects the

null. This could indicate that the true loss function used to generate the forecasts for

consumption was from a different family of loss than the one the J-test is based on, and

consequently the J-test rejects the null.

The empirical results on the mean and the range responses, confirm our previous

findings. We include the results on these two series in Appendix A2.
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6 Concluding Remarks

In this paper, we propose a test for forecast rationality that allows for asymetric pref-

erences, is consistent against generic (non)linear alternatives and does not assume any

particular functional form for the forecaster’s loss function. The key idea in the construc-

tion of our test is that under the null of forecast rationality, asymmetric preferences will

always imply an unconditional bias of the forecast error, however the conditional bias

has to be zero if the available information was efficiently used in the computation of the

forecasts. Our test is a conditional moment type test in the spirit of Bierens (1982,1990),

de Jong (1996).

We show through a Monte Carlo exercise that the forecast rationality test of EKT

(2005, 2008) is loss function sensitive. The consequence of this is that if the true loss

function of the forecaster does not belong to the particular class of loss under which the

J-test is constructed, the test may lead to wrong inferences. In addition, simulations show

that our test has higher power than the J-test in the presence of nonlinear dependencies

between the forecast error and the information set used in forecasting.

Our empirical study highlights some different results that we obtain when applying

the two forecast rationality tests to data from the Survey of Professional Forecasters.

The contradiction in the results suggests that our proposed test could be used in broader

contexts.
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Appendix A1

Table 1: GMM estimates for α obtained under the true loss function

R, P α0 = 0.2 α0 = 0.4 α0 = 0.5 α0 = 0.6 α0 = 0.8

R=250, P=150 0.1970 0.3975 0.4976 0.6003 0.8028
R=250, P=200 0.1985 0.3992 0.4986 0.6020 0.8011
R=250, P=250 0.1995 0.4005 0.5021 0.5988 0.7998
R=200, P=250 0.2006 0.3988 0.4995 0.5990 0.8003
R=300, P=200 0.1997 0.3968 0.5009 0.6025 0.8011

NOTE: The table reports the average estimates for the asymmetry parameter α across 1000 Monte Carlo simulations for
different values of the true asymmetry parameter α0. R is the size of the rolling window used to construct the forecasts
and P is the size of the evaluation sample.

Table 2: Rejection frequencies for the J-test when the forecast evaluation is done under
the true loss function

R, P α0 = 0.2 α0 = 0.4 α0 = 0.5 α0 = 0.6 α0 = 0.8

R=250, P=150 0.0370 0.0380 0.0460 0.0420 0.0420
R=250, P=200 0.0400 0.0360 0.0400 0.0390 0.0410
R=250, P=250 0.0320 0.0390 0.0330 0.0280 0.0380
R=200, P=250 0.0300 0.0330 0.0370 0.0290 0.0300
R=300, P=200 0.0450 0.0350 0.0410 0.0400 0.0470

NOTE: The table reports the percentage of rejections of the null of rationality at the 5% nominal level for different values
of the true asymmetry parameter α0. The forecaster’s true loss function belongs to L1(εt+1; p, α) = [α+ (1− 2α) · 1(εt+1 ≤
0)] · |εt+1|p. R is the size of the rolling window used to construct the forecasts and P is the size of the evaluation sample.
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Table 3: GMM estimates for α obtained under a misspecified loss function

R, P a0=-2 a0=-1 a0=-0.5 a0=0.5 a0= 1 a0= 2

R=250, P=150 0.0189 0.0153 0.0782 0.9216 0.9734 0.5961
R=250, P=200 0.0181 0.0158 0.0813 0.9198 0.9711 0.6010
R=250, P=250 0.0163 0.0164 0.0816 0.9191 0.9787 0.6081
R=200, P=250 0.0130 0.0185 0.0841 0.9166 0.9757 0.6249
R=300, P=200 0.0219 0.0149 0.0791 0.9231 0.9565 0.5926

NOTE: The table reports the average estimates for the asymmetry parameter α across 1000 Monte Carlo simulations for
different values of the Linex loss asymmetry parameter and for different sizes of the rolling window R and forecast evaluation
sample P .

Table 4: Rejection frequencies for the J-test when the forecast evaluation is done under
a misspecified loss function

R, P a0=-2 a0=-1 a0=-0.5 a04 = 0.5 a0= 1 a0= 2

R=250, P=150 0.3290 0.0530 0.0740 0.0790 0.2390 0.4000
R=250, P=200 0.3620 0.0610 0.0740 0.0860 0.3400 0.4540
R=250, P=250 0.4640 0.0980 0.0660 0.0850 0.2440 0.4990
R=200, P=250 0.4250 0.0850 0.0680 0.0830 0.4620 0.4860
R=300, P=200 0.4570 0.0840 0.0890 0.0880 0.4960 0.4350

NOTE: The table reports the percentage of rejections of the null of rationality at the 5% nominal level for different values
of the Linex loss asymmetry parameter and for different sizes of the rolling window R and forecast evaluation sample P .
The forecaster’s true loss function is the Linex loss: L2(εt+1; a) = exp(a · εt+1)− a · εt+1 − 1 .
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Table 5: Empirical Size and Power for the two tests

J-Stat MT -Stat
g(x) = x2

δ = 0.2 0.186 0.436
δ = 0.5 0.244 0.662
δ = 1 0.242 0.592
δ = 2 0.310 0.800

g(x) = arctan(x)
δ = 0.2 0.296 0.610
δ = 0.5 0.302 0.724
δ = 1 0.298 0.762
δ = 2 0.320 0.812

g(x) = exp(x)
δ = 0.2 0.290 0.616
δ = 0.5 0.324 0.736
δ = 1 0.362 0.856
δ = 2 0.430 0.816

δ = 0 0.104 0.116

NOTE: The table reports test rejection frequencies at a 10% significance level using a sample size of T = 500. The number
of Monte Carlo replications is M = 1000. For the MT -stat the number of bootstrap replications for each Monte Carlo
replication is B = 100.
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Table 6: Linear Test for Rationality based on Median Forecasts

Instrument α std.err. t-Stat J-Stat CV at 10% p-value
Real GNP/GDP

Case 1 0.4630 0.0488 -0.7586 1.2149 2.71 0.2704
Case 2 0.4759 0.0484 -0.4966 0.5967 2.71 0.4398
Case 3 0.4651 0.0483 -0.7216 0.2062 2.71 0.6498
Case 4 0.4715 0.0483 -0.5890 0.0640 2.71 0.8003
Case 5 0.4683 0.0483 -0.6570 1.6501 4.60 0.4382
Case 6 0.4662 0.0482 -0.7010 2.5526 6.25 0.4659

Price Index GNP/GDP
Case 1 0.5541 0.0471 1.1480 0.4478 2.71 0.5034
Case 2 0.5676 0.0463 1.4601 2.6596 2.71 0.1029
Case 3 0.5626 0.0460 1.3622 0.9246 2.71 0.3363
Case 4 0.5610 0.0459 1.3312 0.6171 2.71 0.4321
Case 5 0.5621 0.0458 1.3549 0.9456 4.60 0.6233
Case 6 0.5587 0.0457 1.2841 1.9772 6.25 0.5772

Consumption
Case 1 0.2760 0.0502 -4.4603 5.9011 2.71 0.0151
Case 2 0.3075 0.0522 -3.6884 0.7563 2.71 0.3845

Case 3 0.2815 0.0503 -4.3453 4.1666 2.71 0.0412
Case 4 0.3057 0.0519 -3.7425 0.3205 2.71 0.5713

Case 5 0.2732 0.0498 -4.5532 6.0723 4.60 0.0480
Case 6 0.2651 0.0492 -4.7755 7.1208 6.25 0.0681

NOTE: The table reports the asymmetry parameter α estimates, corresponding standard errors, values of the t-statistic
testing H0: α=0.5, the values of the J statistic and its critical values and p-values for Cases 1-6. Case 1: constant and
lagged errors, Case 2: constant and absolute lagged errors Case 3: constant and lagged change in actual values, Case 4:
constant and lagged change in forecasts, Case 5: constant and lagged errors plus lagged change in actual values, Case 6:
constant and lagged errors and lagged change in actual values and lagged change in forecasts. The sample size is T = 177
for Output and Prices and T = 126 for Consumption.

22



Table 7: Non-Linear Test for Rationality based on Median Forecasts

Information Set Test Statistic Boot. CV at 5% Boot. CV at 10%
Real GNP/GDP

Case 1 0.0229 0.0581 0.0466
Case 2 0.0224 0.0439 0.0439
Case 3 0.0200 0.0457 0.0391
Case 4 0.0164 0.0554 0.0493
Case 5 0.0235 0.0470 0.0370
Case 6 0.0208 0.0577 0.0494

Price Index GNP/GDP
Case 1 0.0316 0.0340 0.0303
Case 2 0.0321 0.0257 0.0219
Case 3 0.0322 0.0419 0.0302
Case 4 0.0336 0.0319 0.0281
Case 5 0.0308 0.0315 0.0305
Case 6 0.0313 0.0371 0.0303

Consumption
Case 1 0.0152 0.0378 0.0338
Case 2 0.0114 0.0397 0.0347
Case 3 0.0171 0.0512 0.0400
Case 4 0.0123 0.0410 0.0377
Case 5 0.0220 0.0540 0.0471
Case 6 0.0239 0.0520 0.0464

NOTE: The table reports the values of our nonlinear test statistics and its Bootstrap Critical Values at 5% and at 10%
for Cases 1-6. Case 1: constant and lagged errors, Case 2: constant and absolute lagged errors Case 3: constant and
lagged change in actual values, Case 4: constant and lagged change in forecasts, Case 5: constant and lagged errors plus
lagged change in actual values, Case 6: constant and lagged errors and lagged change in actual values and lagged change
in forecasts. The sample size is T = 177 for Output and Prices and T = 126 for Consumption. The block length is 5. The
blocks are overlapping with an overlap length of 2. The number of bootstrap replications is B = 100.
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Appendix A2

Table 8: Linear Test for Rationality based on Mean Forecasts

Instrument α std.err. t-Stat J-Stat CV at 10% p-value
Real GNP/GDP

Case 1 0.4556 0.0488 -0.9100 0.7695 2.71 0.3804
Case 2 0.4688 0.0484 -0.6450 1.5282 2.71 0.2164
Case 3 0.4550 0.0481 -0.9348 0.2026 2.71 0.6526
Case 4 0.4603 0.0479 -0.8283 0.0144 2.71 0.9045
Case 5 0.4591 0.0479 -0.8532 0.8986 4.60 0.6381
Case 6 0.4567 0.0478 -0.9055 1.8447 6.25 0.6053

Price Index GNP/GDP
Case 1 0.5532 0.0472 1.1252 0.7229 2.71 0.3952
Case 2 0.5543 0.0468 1.1586 0.3312 2.71 0.5650
Case 3 0.5619 0.0461 1.3422 1.1376 2.71 0.2862
Case 4 0.5602 0.0460 1.3082 0.7403 2.71 0.3896
Case 5 0.5610 0.0460 1.3262 1.1972 4.60 0.5496
Case 6 0.5578 0.0459 1.2594 2.2457 6.25 0.5230

Consumption
Case 1 0.3041 0.0523 -3.7489 5.4346 2.71 0.0197
Case 2 0.3325 0.0538 -3.1113 0.3351 2.71 0.5627
Case 3 0.3152 0.0527 -3.5047 2.8750 2.71 0.0900
Case 4 0.3325 0.0538 -3.1158 0.0037 2.71 0.9515

Case 5 0.3043 0.0522 -3.7486 5.4401 4.60 0.0659
Case 6 0.2976 0.0518 -3.9110 6.4760 6.25 0.0906

NOTE: The table reports the asymmetry parameter α estimates, corresponding standard errors, values of the t-statistic
testing H0: α=0.5, the values of the J statistic and its critical values and p-values for Cases 1-6. Case 1: constant and
lagged errors, Case 2: constant and absolute lagged errors Case 3: constant and lagged change in actual values, Case 4:
constant and lagged change in forecasts, Case 5: constant and lagged errors plus lagged change in actual values, Case 6:
constant and lagged errors and lagged change in actual values and lagged change in forecasts. The sample size is T = 177
for Output and Prices and T = 126 for Consumption.
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Table 9: Linear Test for Rationality based on Range Forecasts

Instrument α std.err. t-Stat J-Stat CV at 10% p-value
Real GNP/GDP

Case 1 0.4606 0.0487 -0.8091 1.2459 2.71 0.2643
Case 2 0.4749 0.0483 -0.5192 0.7263 2.71 0.3941
Case 3 0.4651 0.0482 -0.7732 0.2062 2.71 0.6498
Case 4 0.4628 0.0482 -0.6253 0.2251 2.71 0.6352
Case 5 0.4664 0.0481 -0.6995 1.6993 4.60 0.4276
Case 6 0.4643 0.0480 -0.7430 2.6056 6.25 0.4565

Price Index GNP/GDP
Case 1 0.5454 0.0470 0.9656 1.1797 2.71 0.2774
Case 2 0.5492 0.0466 1.0556 1.1358 2.71 0.2865
Case 3 0.5503 0.0460 1.0922 0.8136 2.71 0.3671
Case 4 0.5464 0.0460 1.0077 0.2856 2.71 0.5931
Case 5 0.5486 0.0460 1.0575 1.2741 4.60 0.5289
Case 6 0.5454 0.0459 0.9894 2.3338 6.25 0.5061

Consumption
Case 1 0.2662 0.0494 -4.7295 6.7588 2.71 0.0093
Case 2 0.3042 0.0520 -3.7668 0.9609 2.71 0.3270

Case 3 0.2826 0.0503 -4.3194 3.7277 2.71 0.0535
Case 4 0.3069 0.0520 -3.7135 0.0219 2.71 0.8824
Case 5 0.2665 0.0493 -4.7306 6.7658 4.60 0.0339
Case 6 0.2584 0.0487 -4.9597 7.8038 6.25 0.0502

NOTE: The table reports the asymmetry parameter α estimates, corresponding standard errors, values of the t-statistic
testing H0: α=0.5, the values of the J statistic and its critical values and p-values for Cases 1-6. Case 1: constant and
lagged errors, Case 2: constant and absolute lagged errors Case 3: constant and lagged change in actual values, Case 4:
constant and lagged change in forecasts, Case 5: constant and lagged errors plus lagged change in actual values, Case 6:
constant and lagged errors and lagged change in actual values and lagged change in forecasts.The sample size is T = 177
for Output and Prices and T = 126 for Consumption.
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Table 10: Non-Linear Test for Rationality based on Mean Forecasts

Information Set Test Statistic Boot. CV at 5% Boot. CV at 10%
Real GNP/GDP

Case 1 0.0054 0.0460 0.0406
Case 2 0.0078 0.0612 0.0445
Case 3 0.0028 0.0578 0.0454
Case 4 0.0010 0.0453 0.0397
Case 5 0.0049 0.0600 0.0461
Case 6 0.0023 0.0542 0.0512

Price Index GNP/GDP
Case 1 0.0298 0.0306 0.0228
Case 2 0.0312 0.0380 0.0292
Case 3 0.0297 0.0361 0.0266
Case 4 0.0311 0.0326 0.0284
Case 5 0.0283 0.0297 0.0260
Case 6 0.0281 0.0309 0.0263

Consumption
Case 1 0.0130 0.0382 0.0350
Case 2 0.0087 0.0429 0.0365
Case 3 0.0137 0.0467 0.0387
Case 4 0.0086 0.0485 0.0376
Case 5 0.0188 0.0539 0.0436
Case 6 0.0196 0.0547 0.0481

NOTE: The table reports the values of our nonlinear test statistics and its Bootstrap Critical Values at 5% and at 10%
for Cases 1-6. Case 1: constant and lagged errors, Case 2: constant and absolute lagged errors Case 3: constant and
lagged change in actual values, Case 4: constant and lagged change in forecasts, Case 5: constant and lagged errors plus
lagged change in actual values, Case 6: constant and lagged errors and lagged change in actual values and lagged change
in forecasts. The sample size is T = 177 for Output and Prices and T = 126 for Consumption. The block length is 5. The
blocks are overlapping with an overlap length of 2. The number of bootstrap replications is B = 100.

26



Table 11: Non-Linear Test for Rationality based on Range Forecasts

Information Set Test Statistic Boot. CV at 5% Boot. CV at 10%
Real GNP/GDP

Case 1 0.0114 0.0601 0.0408
Case 2 0.0113 0.0522 0.0414
Case 3 0.0082 0.0477 0.0403
Case 4 0.0047 0.0572 0.0487
Case 5 0.0116 0.0601 0.0505
Case 6 0.0084 0.0697 0.0538

Price Index GNP/GDP
Case 1 0.0367 0.0337 0.0272
Case 2 0.0380 0.0377 0.0298
Case 3 0.0382 0.0357 0.0298
Case 4 0.0399 0.0416 0.0328
Case 5 0.0365 0.0348 0.0287
Case 6 0.0381 0.0417 0.0338

Consumption
Case 1 0.0116 0.0431 0.0361
Case 2 0.0074 0.0360 0.0306
Case 3 0.0124 0.0477 0.0376
Case 4 0.0071 0.0418 0.0360
Case 5 0.0178 0.0500 0.0432
Case 6 0.0187 0.0530 0.0485

NOTE: The table reports the values of our nonlinear test statistics and its Bootstrap Critical Values at 5% and at 10%
for Cases 1-6. Case 1: constant and lagged errors, Case 2: constant and absolute lagged errors Case 3: constant and
lagged change in actual values, Case 4: constant and lagged change in forecasts, Case 5: constant and lagged errors plus
lagged change in actual values, Case 6: constant and lagged errors and lagged change in actual values and lagged change
in forecasts. The sample size is T = 177 for Output and Prices and T = 126 for Consumption. The block length is 5. The
blocks are overlapping with an overlap length of 2. The number of bootstrap replications is B = 100.

27


	Introduction
	The EKT Framework
	The Nonlinear Forecast Rationality Test
	Monte Carlo Evidence
	The Effect of a Misspecified Loss Function in Forecast Evaluation
	Empirical Size and Power Comparison

	Empirical Illustration
	Concluding Remarks
	Bibliography

